TRobustEstimator*¶
public TObject
// Minimum Covariance Determinant Estimator - a Fast Algorithm
// invented by Peter J.Rousseeuw and Katrien Van Dreissen
// "A Fast Algorithm for the Minimum covariance Determinant Estimator"
// Technometrics, August 1999, Vol.41, NO.3
class¶
protected:
Int_t fNvar; //number of variables
Int_t fH; //algorithm parameter, determining the subsample size
Int_t fN; //number of observations
Int_t fVarTemp; //number of variables already added to the data matrix
Int_t fVecTemp; //number of observations already added to the data matrix
Int_t fExact; //if there was an exact fit, stores the number of points on a hyperplane
TVectorD fMean; //location estimate (mean values)
TMatrixDSym fCovariance; //covariance matrix estimate
TMatrixDSym fInvcovariance; //inverse of the covariance matrix
TMatrixDSym fCorrelation; //correlation matrix
TVectorD fRd; //array of robust distances, size n
TVectorD fSd; //array of standard deviations
TArrayI fOut; //array of indexes of ouliers, size <0.5*n
TVectorD fHyperplane; //in case more than fH observations lie on a hyperplane
//the equation of this hyperplane is stored here
TMatrixD fData; //the original data
//functions needed for evaluation
void AddToSscp(TMatrixD &sscp, TVectorD &vec);
void ClearSscp(TMatrixD &sscp);
void Classic();
void Covar(TMatrixD &sscp, TVectorD &m, TMatrixDSym &cov, TVectorD &sd, Int_t nvec);
void Correl();
void CreateSubset(Int_t ntotal, Int_t htotal, Int_t p, Int_t *index, TMatrixD &data,
TMatrixD &sscp, Double_t *ndist);
void CreateOrtSubset(TMatrixD &dat, Int_t *index, Int_t hmerged, Int_t nmerged, TMatrixD &sscp, Double_t *ndist);
Double_t CStep(Int_t ntotal, Int_t htotal, Int_t *index, TMatrixD &data, TMatrixD &sscp, Double_t *ndist);
Int_t Exact(Double_t *ndist);
Int_t Exact2(TMatrixD &mstockbig, TMatrixD &cstockbig, TMatrixD &hyperplane,
Double_t *deti, Int_t nbest,Int_t kgroup,
TMatrixD &sscp, Double_t *ndist);
Int_t Partition(Int_t nmini, Int_t *indsubdat);
Int_t RDist(TMatrixD &sscp);
void RDraw(Int_t *subdat, Int_t ngroup, Int_t *indsubdat);
Double_t KOrdStat(Int_t ntotal, Double_t *arr, Int_t k, Int_t *work);
public:
TRobustEstimator();
TRobustEstimator(Int_t nvectors, Int_t nvariables, Int_t hh=0);
virtual ~TRobustEstimator(){;}
void AddColumn(Double_t *col); //adds a column to the data matrix
void AddRow(Double_t *row); //adds a row to the data matrix
void Evaluate();
void EvaluateUni(Int_t nvectors, Double_t *data, Double_t &mean, Double_t &sigma, Int_t hh=0);
Int_t GetBDPoint(); //returns the breakdown point of the algorithm
/// returns a reference to the data matrix
const TMatrixD & GetData() { return fData; }
void GetCovariance(TMatrixDSym &matr); //returns robust covariance matrix estimate
const TMatrixDSym* GetCovariance() const{return &fCovariance;}
void GetCorrelation(TMatrixDSym &matr); //returns robust correlation matrix estimate
const TMatrixDSym* GetCorrelation() const{return &fCorrelation;}
void GetHyperplane(TVectorD &vec); //if the data lies on a hyperplane, returns this hyperplane
const TVectorD* GetHyperplane() const; //if the data lies on a hyperplane, returns this hyperplane
Int_t GetNHyp() {return fExact;} //returns the number of points on a hyperplane
void GetMean(TVectorD &means); //returns robust mean vector estimate
const TVectorD* GetMean() const {return &fMean;} //returns robust mean vector estimate
void GetRDistances(TVectorD &rdist); //returns robust distances of all observations
const TVectorD* GetRDistances() const {return &fRd;} //returns robust distances of all observations
Int_t GetNumberObservations() const {return fN;}
Int_t GetNvar() const {return fNvar;}
const TArrayI* GetOuliers() const{return &fOut;} //returns an array of outlier indexes
Int_t GetNOut(); //returns the number of points outside the tolerance ellipsoid.
//ONLY those with robust distances significantly larger than the
//cutoff value, should be considered outliers!
Double_t GetChiQuant(Int_t i) const;