# TLinearFitter* The Linear Fitter - fitting functions that are LINEAR IN PARAMETERS ```cpp // Linear fitter is used to fit a set of data points with a linear // combination of specified functions. Note, that "linear" in the name // stands only for the model dependency on parameters, the specified // functions can be nonlinear. // The general form of this kind of model is // // y(x) = a[0] + a[1]*f[1](x)+...a[n]*f[n](x) // // Functions f are fixed functions of x. For example, fitting with a // polynomial is linear fitting in this sense. // // The fitting method // // The fit is performed using the Normal Equations method with Cholesky // decomposition. // // Why should it be used? // // The linear fitter is considerably faster than general non-linear // fitters and doesn't require to set the initial values of parameters. // // Using the fitter: // // 1.Adding the data points: // 1.1 To store or not to store the input data? // - There are 2 options in the constructor - to store or not // store the input data. The advantages of storing the data // are that you'll be able to reset the fitting model without // adding all the points again, and that for very large sets // of points the chisquare is calculated more precisely. // The obvious disadvantage is the amount of memory used to // keep all the points. // - Before you start adding the points, you can change the // store/not store option by StoreData() method. // 1.2 The data can be added: // - simply point by point - AddPoint() method // - an array of points at once: // If the data is already stored in some arrays, this data // can be assigned to the linear fitter without physically // coping bytes, thanks to the Use() method of // TVector and TMatrix classes - AssignData() method // // 2.Setting the formula // 2.1 The linear formula syntax: // -Additive parts are separated by 2 plus signes "++" // --for example "1 ++ x" - for fitting a straight line // -All standard functions, undrestood by TFormula, can be used // as additive parts // --TMath functions can be used too // -Functions, used as additive parts, shouldn't have any parameters, // even if those parameters are set. // --for example, if normalizing a sum of a gaus(0, 1) and a // gaus(0, 2), don't use the built-in "gaus" of TFormula, // because it has parameters, take TMath::Gaus(x, 0, 1) instead. // -Polynomials can be used like "pol3", .."polN" // -If fitting a more than 3-dimensional formula, variables should // be numbered as follows: // -- x0, x1, x2... For example, to fit "1 ++ x0 ++ x1 ++ x2 ++ x3*x3" // 2.2 Setting the formula: // 2.2.1 If fitting a 1-2-3-dimensional formula, one can create a // TF123 based on a linear expression and pass this function // to the fitter: // --Example: // TLinearFitter *lf = new TLinearFitter(); // TF2 *f2 = new TF2("f2", "x ++ y ++ x*x*y*y", -2, 2, -2, 2); // lf->SetFormula(f2); // --The results of the fit are then stored in the function, // just like when the TH1::Fit or TGraph::Fit is used // --A linear function of this kind is by no means different // from any other function, it can be drawn, evaluated, etc. // 2.2.2 There is no need to create the function if you don't want to, // the formula can be set by expression: // --Example: // // 2 is the number of dimensions // TLinearFitter *lf = new TLinearFitter(2); // lf->SetFormula("x ++ y ++ x*x*y*y"); // --That's the only way to go, if you want to fit in more // than 3 dimensions // 2.2.3 The fastest functions to compute are polynomials and hyperplanes. // --Polynomials are set the usual way: "pol1", "pol2",... // --Hyperplanes are set by expression "hyp3", "hyp4", ... // ---The "hypN" expressions only work when the linear fitter // is used directly, not through TH1::Fit or TGraph::Fit. // To fit a graph or a histogram with a hyperplane, define // the function as "1++x++y". // ---A constant term is assumed for a hyperplane, when using // the "hypN" expression, so "hyp3" is in fact fitting with // "1++x++y++z" function. // --Fitting hyperplanes is much faster than fitting other // expressions so if performance is vital, calculate the // function values beforehand and give them to the fitter // as variables // --Example: // You want to fit "sin(x)|cos(2*x)" very fast. Calculate // sin(x) and cos(2*x) beforehand and store them in array *data. // Then: // TLinearFitter *lf=new TLinearFitter(2, "hyp2"); // lf->AssignData(npoint, 2, data, y); // // 2.3 Resetting the formula // 2.3.1 If the input data is stored (or added via AssignData() function), // the fitting formula can be reset without re-adding all the points. // --Example: // TLinearFitter *lf=new TLinearFitter("1++x++x*x"); // lf->AssignData(n, 1, x, y, e); // lf->Eval() // //looking at the parameter significance, you see, // // that maybe the fit will improve, if you take out // // the constant term // lf->SetFormula("x++x*x"); // lf->Eval(); // ... // 2.3.2 If the input data is not stored, the fitter will have to be // cleared and the data will have to be added again to try a // different formula. // // 3.Accessing the fit results // 3.1 There are methods in the fitter to access all relevant information: // --GetParameters, GetCovarianceMatrix, etc // --the t-values of parameters and their significance can be reached by // GetParTValue() and GetParSignificance() methods // 3.2 If fitting with a pre-defined TF123, the fit results are also // written into this function. ``` TLinearFitter 继承 TVirtualFitter ## class ```cpp TLinearFitter(); ///default c-tor, input data is stored ///If you don't want to store the input data, ///run the function StoreData(kFALSE) after constructor TLinearFitter(Int_t ndim, const char *formula, Option_t *opt="D"); ///First parameter stands for number of dimensions in the fitting formula ///Second parameter is the fitting formula: see class description for formula syntax ///Options: ///The option is to store or not to store the data ///If you don't want to store the data, choose "" for the option, or run ///StoreData(kFalse) member function after the constructor TLinearFitter(Int_t ndim); ///The parameter stands for number of dimensions in the fitting formula ///The input data is stored. If you don't want to store the input data, ///run the function StoreData(kFALSE) after constructor TLinearFitter(TFormula *function, Option_t *opt="D"); ///This constructor uses a linear function. How to create it? ///TFormula now accepts formulas of the following kind: ///TFormula("f", "x++y++z++x*x") or ///TFormula("f", "x[0]++x[1]++x[2]*x[2]"); ///Other than the look, it's in no ///way different from the regular formula, it can be evaluated, ///drawn, etc. ///The option is to store or not to store the data ///If you don't want to store the data, choose "" for the option, or run ///StoreData(kFalse) member function after the constructor TLinearFitter(const TLinearFitter& tlf); virtual ~TLinearFitter(); TLinearFitter& operator=(const TLinearFitter& tlf); virtual void Add(TLinearFitter *tlf); ///Add another linear fitter to this linear fitter. Points and Design matrices ///are added, but the previos fitting results (if any) are deleted. ///Fitters must have same formulas (this is not checked). Fixed parameters are not changed virtual void AddPoint(Double_t *x, Double_t y, Double_t e=1); ///Adds 1 point to the fitter. ///First parameter stands for the coordinates of the point, where the function is measured ///Second parameter - the value being fitted ///Third parameter - weight(measurement error) of this point (=1 by default) virtual void AddTempMatrices(); virtual void AssignData(Int_t npoints, Int_t xncols, Double_t *x, Double_t *y, Double_t *e=0); ///This function is to use when you already have all the data in arrays ///and don't want to copy them into the fitter. In this function, the Use() method ///of TVectorD and TMatrixD is used, so no bytes are physically moved around. ///First parameter - number of points to fit ///Second parameter - number of variables in the model ///Third parameter - the variables of the model, stored in the following way: ///(x0(0), x1(0), x2(0), x3(0), x0(1), x1(1), x2(1), x3(1),... virtual void Clear(Option_t *option="");///Clears everything. Used in TH1::Fit and TGraph::Fit(). virtual void ClearPoints();///To be used when different sets of points are fitted with the same formula. virtual void Chisquare();///Calculates the chisquare. virtual Int_t Eval(); /// Perform the fit and evaluate the parameters /// Returns 0 if the fit is ok, 1 if there are errors virtual Int_t EvalRobust(Double_t h=-1); ///Finds the parameters of the fitted function in case data contains ///outliers. ///Parameter h stands for the minimal fraction of good points in the ///dataset (h < 1, i.e. for 70% of good points take h=0.7). ///The default value of h*Npoints is (Npoints + Nparameters+1)/2 ///If the user provides a value of h smaller than above, default is taken ///See class description for the algorithm details virtual Int_t ExecuteCommand(const char *command, Double_t *args, Int_t nargs); ///To use in TGraph::Fit and TH1::Fit(). virtual void FixParameter(Int_t ipar);///Fixes paramter #ipar at its current value. virtual void FixParameter(Int_t ipar, Double_t parvalue);///Fixes parameter #ipar at value parvalue. virtual void GetAtbVector(TVectorD &v);///Get the Atb vector - a vector, used for internal computations virtual Double_t GetChisquare();/// Get the Chisquare. virtual void GetConfidenceIntervals(Int_t n, Int_t ndim, const Double_t *x, Double_t *ci, Double_t cl=0.95); ///Computes point-by-point confidence intervals for the fitted function ///Parameters: ///n - number of points ///ndim - dimensions of points ///x - points, at which to compute the intervals, for ndim > 1 /// should be in order: (x0,y0, x1, y1, ... xn, yn) ///ci - computed intervals are returned in this array ///cl - confidence level, default=0.95 /// ///NOTE, that this method can only be used when the fitting function inherits from a TF1, ///so it's not possible when the fitting function was set as a string or as a pure TFormula virtual void GetConfidenceIntervals(TObject *obj, Double_t cl=0.95); ///Computes confidence intervals at level cl. Default is 0.95 ///The TObject parameter can be a TGraphErrors, a TGraph2DErrors or a TH123. ///For Graphs, confidence intervals are computed for each point, ///the value of the graph at that point is set to the function value at that ///point, and the graph y-errors (or z-errors) are set to the value of ///the confidence interval at that point ///For Histograms, confidence intervals are computed for each bin center ///The bin content of this bin is then set to the function value at the bin ///center, and the bin error is set to the confidence interval value. ///Allowed combinations: ///Fitted object Passed object ///TGraph TGraphErrors, TH1 ///TGraphErrors, AsymmErrors TGraphErrors, TH1 ///TH1 TGraphErrors, TH1 ///TGraph2D TGraph2DErrors, TH2 ///TGraph2DErrors TGraph2DErrors, TH2 ///TH2 TGraph2DErrors, TH2 ///TH3 TH3 virtual Double_t* GetCovarianceMatrix() const;///Returns covariance matrix virtual void GetCovarianceMatrix(TMatrixD &matr);///Returns covariance matrix virtual Double_t GetCovarianceMatrixElement(Int_t i, Int_t j) const {return fParCovar(i, j);} virtual void GetDesignMatrix(TMatrixD &matr);///Returns the internal design matrix virtual void GetErrors(TVectorD &vpar);///Returns parameter errors virtual Int_t GetNumberTotalParameters() const {return fNfunctions;} virtual Int_t GetNumberFreeParameters() const {return fNfunctions-fNfixed;} virtual Int_t GetNpoints() { return fNpoints; } virtual void GetParameters(TVectorD &vpar);///Returns parameter values virtual Double_t GetParameter(Int_t ipar) const {return fParams(ipar);} virtual Int_t GetParameter(Int_t ipar,char* name,Double_t& value,Double_t& /*verr*/,Double_t& /*vlow*/, Double_t& /*vhigh*/) const; ///Returns the value and the name of the parameter #ipar ///NB: In the calling function the argument name must be set large enough virtual const char *GetParName(Int_t ipar) const;///Returns name of parameter #ipar virtual Double_t GetParError(Int_t ipar) const;///Returns the error of parameter #ipar virtual Double_t GetParTValue(Int_t ipar);///Returns the t-value for parameter #ipar virtual Double_t GetParSignificance(Int_t ipar);///Returns the significance of parameter #ipar virtual void GetFitSample(TBits& bits); ///For robust lts fitting, returns the sample, on which the best fit was based virtual Double_t GetY2() const {return fY2;} virtual Bool_t IsFixed(Int_t ipar) const {return fFixedParams[ipar];} virtual Int_t Merge(TCollection *list);///Merge objects in list virtual void PrintResults(Int_t level, Double_t amin=0) const; virtual void ReleaseParameter(Int_t ipar);///Releases parameter #ipar. virtual void SetBasisFunctions(TObjArray * functions); ///set the basis functions in case the fitting function is not /// set directly /// The TLinearFitter will manage and delete the functions contained in the list virtual void SetDim(Int_t n); ///set the number of dimensions virtual void SetFormula(const char* formula); ///Additive parts should be separated by "++". ///Examples (ai are parameters to fit): ///1.fitting function: a0*x0 + a1*x1 + a2*x2 /// input formula "x[0]++x[1]++x[2]" ///2.TMath functions can be used: /// fitting function: a0*TMath::Gaus(x, 0, 1) + a1*y /// input formula: "TMath::Gaus(x, 0, 1)++y" ///fills the array of functions virtual void SetFormula(TFormula *function);///Set the fitting function. virtual void StoreData(Bool_t store) {fStoreData=store;} virtual Bool_t UpdateMatrix();///Update the design matrix after the formula has been changed. //dummy functions for TVirtualFitter: virtual Double_t Chisquare(Int_t /*npar*/, Double_t * /*params*/) const {return 0;} virtual Int_t GetErrors(Int_t /*ipar*/,Double_t & /*eplus*/, Double_t & /*eminus*/, Double_t & /*eparab*/, Double_t & /*globcc*/) const {return 0;} virtual Int_t GetStats(Double_t& /*amin*/, Double_t& /*edm*/, Double_t& /*errdef*/, Int_t& /*nvpar*/, Int_t& /*nparx*/) const {return 0;} virtual Double_t GetSumLog(Int_t /*i*/) {return 0;} virtual void SetFitMethod(const char * /*name*/) {;} virtual Int_t SetParameter(Int_t /*ipar*/,const char * /*parname*/,Double_t /*value*/,Double_t /*verr*/,Double_t /*vlow*/, Double_t /*vhigh*/) {return 0;} ``` ## code ## class