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We propose a model based on quantum molecular dynamics (QMD) incorporated with a statistical decay
model (SDM) to describe various nuclear reactions in a unified way. In this first part of the work, the basic
ingredients of the model are defined and the model is applied systematically to the nucleon- (N-)induced
reactions. It has been found that our model can give a remarkable agreement in the energy-angle double

differential cross sections of (N, xN') type reactions for incident energies from 100 MeV to 3 GeV with a fixed

parameter set. A unified description of the three major reaction mechanisms of (N, xN') reactions, i.e., com-

pound, preequilibrium, and spallation processes, is given with our model.

PACS number(s): 24. 10.—i, 02.70.Ns, 25.40.Ep, 25.40.Qa

I. INTRODUCTION

Nuclear reactions reveal various aspects of the hadronic
many-body problem as a function of the target and projectile
combination, the incident energy, and the angular momentum
involved. In nucleon-induced reactions, for example, the
compound process is dominant in the low energy region,
while the preequilibrium and spallation processes become
more likely as the incident energy increases. In heavy-ion
collisions, we also have to introduce various models of dif-
ferent natures depending on each specific process. However,
most of them are restricted to the specific energy regime or
specific phenomenon and some of them have too many pa-
rameters to obtain a definite physical conclusion from the
analysis.

The main purpose of the series of our work is to develop
a model which can describe the various aspects of nuclear
reactions in a unified way. We try to seek a model with a
minimum number of parameters, a wide range of applicabil-
ity, and quantitative agreement with as many observables as
possible. In addition to these requests, we require the model
to be so simple that one can run its computer code on work-
stations.

In heavy-ion physics, microscopic models, which describe
reactions in terms of the dynamics of the interacting nucle-
ons, are commonly used to extract information on the
nuclear matter under extreme conditions from the final ob-
servables. The most popular models of this type are
the Boltzmann-Uehling-Uhlenbeck/Vlasov-Uehling-Uhlen-
beck (BUU/VUU) [I], the quantum molecular dynamics
(QMD) [2], and CASCADE type models [3,4]. So far these
microscopic models have shed light on several exciting top-
ics in heavy-ion physics, e.g. , multifragmentation, the How
of nuclear matter, and energetic particle production. How-
ever, the parameters of the models, such as the effective in-
teraction and elastic and inelastic channels of the NN cross
section, differ substantially from one model to another even
in the same type of model. Furthermore, these models have

not been tested intensively in much simpler light-ion reac-
tions except for an analysis of (p,xn) reactions carried out

by Peilert et al. [5]. In their analysis, however, the lower
part of the neutron energy spectrum cannot be treated, since
statistical decay following the QMD process was not in-
cluded. We thus start the series of our work from the analysis
of the simplest type of reactions, the (N, xN') (nucleon in,
nucleon out) reaction, in this paper, aiming to establish a
unified model for various nuclear reactions. In subsequent
works, we are planning to analyze (N, xm), (7r,xN), and
heavy-ion reactions.

We restrict our subject to the reactions of nucleon-
nucleus, meson-nucleus, and nucleus-nucleus collisions with
energies well above the Coulomb barrier up to several GeV/
nucleon, where the classical treatment of the collisions is
justified in a first-order approximation. We do not deal with
phenomena which are dominated by quantum effects. In this
energy regime, the whole reaction process can be divided
into two parts, i.e., the dynamical process and the statistical
process. These two processes are well separated in their time
scales. In the dynamical process, the direct reactions, non-
equilibrium reactions, and dynamical formation of highly ex-
cited fragments take place during typical collision times of
the order of 10 sec. After that, evaporation and fission
decay, which we call the statistical process, occur in a longer
time scale of the order of 10 ' —10 ' sec. We thus employ
a two-step model, namely, we incorporate quantum molecu-
lar dynamics (QMD) for the dynamical process with the sta-
tistical decay model (SDM). Similar hybrid models have
been used in the analysis of heavy-ion collisions [6—8].

In this paper, we define the basic ingredients of the QMD
plus SDM model and discuss how these two are combined
without introducing any additional parameter. We then apply
this model systematically to (N, xN') reactions, and discuss
which element in the model is crucial for describing these
reactions and what is necessary to develop the model further.
In Sec. II we describe the details of the QMD, the effective
interaction, the NN elastic and inelastic cross sections, the
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relativistic corrections, and the statistical decay model em-
ployed in our model. In Sec. III we compare the various
double differential cross sections calculated by this model
with the experimental data for proton-induced reactions with
incident energies from 100 MeV up to 3 GeV. We summarize
and conclude this work in Sec. IV.

II. DESCRIPTION OF THE BASIC MODEL

As we mentioned above, our basic model consists of two
parts, the quantum molecular dynamics (QMD) and the sta-
tistical decay model (SDM). The reason for employing the
QMD model for the description of the dynamical processes
is that the QMD can calculate the fragment formation in a
natural and practical way. Though the QMD method is
widely used in the study of nuclear fragmentation [2], the
details of the prescription differ from author to author. Aim-
ing to establish a simple standard model, we will start from
the standard type of QMD, taking into account the relativis-
tic kinematics and the relativistic correction for the effective
interaction. Additionally, we treat the resonances of the
nucleon, 5, and N (1440), and real pions with their isospin
degrees of freedom in the equation of motion. For the statis-
tical decay process, we use a simple prescription including
only the light-particle evaporation.

1 A 1 BH=g s, + ——g (p, ) + —,g (p, )2 po i
' 1+wpo

1 e2
+

2 g c; c, ~

~

erf(~R; —R,~!$4L)
IR —RJ

C,+ g (1 2~c, cj~) pj,
2po i j(+i)

with

F.;= gm, +P; (6)

where erf denotes the error function. In the above equation,
c; is 1 for protons and 0 for neutrons, while (p;) is an over-
lap of density with other nucleons defined as

f
(p )=X p =X'dr p (r) p, (r)

,~, J

=g (4mL) ' exp[ —(R;—R, ) l4L],
J@l

Skyrme type, the Coulomb, and the syrlu~etry terms in this
paper. By using the Gaussian function of nucleons [Eq. (3)],
we get

A. Quantum molecular dynamics

1. Basic equations and effective interaction

The QMD method is a semiclassical simulation method in
which each nucleon state is represented by a Gaussian wave
function of width L,

with

dp
p (r)= .2 g)3 fi(r p)

J j 2m'

=(2mL) exp[ —(r—R;) l2L]. (8)

1
P, (r) =

3,4exp—
(r—R;) i

+ —r.P;,

where R; and P; are the centers of position and momentum
of the ith nucleon, respectively. The total wave function is
assumed to be a direct product of these wave functions. Thus
the one-body distribution function is obtained by the Wigner
transform of the wave function,

f(r, p)=g f,(r, p), (2)

f;(r,p)=8 exp—(r—R;) 2L(p —P;)
2L 6

The time evolution of R; and P; is described by Newtonian
equations and the stochastic two-body collision term. The
Newtonian equations are derived on the basis of the time-
dependent variational principle [2] as

BH
i gp

P=-
l oiR,

' (4)

where the Hamiltonian H consists of the single-particle en-
ergy including the mass term and the energy of the two-body
interaction. As for the effective interaction, we adopt the

In this paper we use the parameters A= —219.4 MeV,
B= 165.3 MeV, and v=4(3 which yield a compressibility of
K=237.3 MeV, saturation at p=p0=0. 168 fm, and a
binding energy of 16 MeV per nucleon for infinite nuclear
matter. The symmetry energy parameter C, is chosen to be
25 MeV. The width of the Gaussian L is a parameter of the
QMD and fixed as L= 2.0 fm in this paper.

2. Two-body collision term

In addition to the Newtonian equation Eq. (4), the time
evolution of the system is affected by the two-body collision
term. In the QMD method, the stochastic two-body collision
process is introduced in a phenomenological way on the
analogy of the test-particle calculation of the BUU collision
term [1]. It includes the Pauli blocking factor
[1—f(r, p, t)], which is lacking in the cascade collision pro-
cess [3,4]. We follow basically the prescription of the two-
body collision term used in the BUU calculation done by
Wolf et al. [9,10], and modify it to extend the energy range
up to 3 GeV. We thus describe here the outline of the proce-
dure of Refs. [9,10] and explain the extensions introduced in
this paper. Further details of the collision term and the dy-
namics of 6's, N*'s, and pions discussed below can be
found in Refs. [9,10].

It is assumed that two particles collide if their impact
parameter defined in a covariant way is smaller than a given
value b,„=Qa.lm. obtained from the cross section o.. The
collisions are considered as an instantaneous interaction and
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a collision event is specified by the two points in space-time
where the collision happens. Therefore it is hard to retain the
covariance, since one has to choose a common reference
frame for the QMD calculations. Hence the average proper
time of the collision points defined by each particle is used to
determine the time step in which the collision happens. This
collision prescription was checked for heavy-ion collisions
from 400 MeV/nucleon to 2.1 GeV/nucleon, and it was
found that the disturbance of the covariance was very small

[9].
In order to treat reactions with high bombarding energies,

we include in our QMD simulation the nucleons (N), deltas
[A(1232)], N*(1440)'s, and pions with their isospin degree
of freedom. The 5's and N*'s are propagated in the same
interactions as the nucleons except for the symmetry term,
while pions are affected only by the Coulomb interaction.
The creation and absorption of these particles are treated in
the collision term. In the following, we list all channels in-
cluded in the collision term, where B denotes a baryon and

N, more specifically, a nucleon:

TABLE I. Elastic cross section parameters.

Others

C, (mb)

C, (mb)

C3 (mb)

C4 (mb)

28.0
27.0
12.34
10.0

35.0
20.0
9.65
7.0

For the production of baryonic resonances [channels 2
and 4 in Eq. (9)], we adopt the total cross section based on
the parametrization of VerWest and Amdt [13], in which the
pion cross sections are parametrized assuming the pions are
produced through baryonic resonances. Their parametriza-
tion was performed by fitting the experimental data up to 1.5
GeV incident energy. In order to extend the energy range up
to 3 GeV, we have modified the parameters in the following
way. In the model of VerWest and Amdt, the cross sections
are parametrized according to the initial and final total isos-
pin i and f of the two-nucleon system [13]as

1. B;+B) ~B;+B~,
2. N+ N~N+ 5,
3. N+ A~N+N,
4. N+ N~N+ N*,

5. N+ N* —+N+ N,

6. N+ vr —+5,
7. N+ vr~N*,

8. 5+ m~N*.

(9)

where

~(6c) I' p„I t' mol' (qlqo)
o;f(s) —

2 2 &! —,~ 2, p 21.2, (13)
2p (po) (s*—mo) +moI

2= 21
2po= —so —m~t so = (m~+ mo),

[s —(m~ —(M)) ][s —(m~+(M)) ]
p, (s) =

The channel 8 has been added to the prescription of Wolf
et al. [9], and is the inverse process of the additional decay
channel of N~(1440)'s (cf. channel 11 below).

We use the following parametrization for all baryon-
baryon elastic cross sections [channel 1 in Eq. (9)],

s*=(M)', qo= q(mo),

(14)
[s*—(m~ —m ) ][s*—(m~+m ) ]2

with

C1 + C~ (mb),1+ 100 s'

Ps' = max(0, Ps —M, —M, —cutoff) (GeV),

(10)

and (M) is the mean mass of the resonance [13] obtained
from a Breit-Wigner distribution with M0= 1220 MeV and,
I 0= 120 MeV for the 6 and M0= 1430 MeV and I"0=200
MeV for the N*. From these cross sections, we determine
the production cross section of b, 's [9] as

P+P n+5: ~10+ -g 11,
+ + 1

where the cutoff is 0.02 GeV for the nucleon-nucleon chan-
nel, while it is zero for the others. This is the conventional
Cugnon parametrization form [1,4]. We use this form up to
Ps'=0.4286 (GeV), which corresponds to 1 GeV lab en-

ergy for the nucleon-nucleon case. Above 1 GeV, we param-
etrize the experimental p-p and p-n elastic cross sections
[11,12] as

p+I p+~'
n+p~p+a0
n+p~n+5+

n+n —+p+5

n+ n+n+ 6

3
2 ~11~

l

2 ~11+ 4 ~10 ~

1 1

2 ~11+ 4 ~10
1~10+ 2 ~11 ~

3
2 &11

(15)

2
o =C~ 1 ——tan '(1.5+s' —0.8) +C4 (mb). (12)

In order to connect Eqs. (10) and (12) smoothly, we slightly
modified the parameters of Cugnon [1,4]. The actual values
of the parameters C; in the above equations are listed in
Table I. The angular distribution of the elastic channels is
taken from the same form as Cugnon parametrization [1,4].

We have effectively included the cross section of the md

final state, parametrized as o.,o in [13],in the cross section of
~10.

We assume in this paper that the cross section o.ot in [13]
contributes only to the N* production independently of the
isospin components. Thus we rename o.01 as a.N~, and the
N* production cross sections are given by
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[r[o (MeV)
I' (MeV)

3.0
0.9

1188
99.02

14.0
-0.3
1245
120.0

p+p p+N

n+ p~p+N*
n+p+n+N*+: 4 gN~,

n+ n —+n+N*

TABLE II. Inelastic cross section parameters.

23.0
1.5

1472
300.0

(16)

and Amdt [13], while the experimental data are taken from
Ref. [12].With this new parameter set, our pion production
cross section below 1.5 GeV does not differ very much from
the original results of VerWest and Amdt [13], which are
essentially the same as the data. However, above 1.5 GeV,
our result fitted the experimental data, while the result ob-
tained by extrapolating the original parametrization of Ver-
West and Amdt to higher energy shows a big bump, which
has no experimental support.

In the higher energy region, the role of N* becomes im-
portant. One of the good quantities which shows the charac-
teristics of the higher resonances is the elementary two-pion
production cross section. In the present prescription it is de-
scribed only by o.N+ combined with the decay modes of the
resonances which will be mentioned below. For example, it
is shown in our prescription that

The new parameters in Eq. (13) are given in Table II. In
order to determine these parameters and the parameters of
the elastic cross section in the high energy part defined in Eq.
(12), we fitted the experimental p-p and p nero-ss sections
[11,12]. In Fig. 1, we show the p-p (a) and p n(b) -total
(solid line), elastic (long dashed line), and inelastic (dot-
dashed line) cross sections. The inelastic cross section is the
sum of the 6 (short dashed line) and N* (dotted line) pro-
duction cross sections, calculated by Eqs. (10), (12), (13),
(15), and (16). In the same figure, we show the correspond-
ing experimental total (open circles), elastic (open triangles),
and inelastic (open boxes) cross sections [12]with error bars.
For the p-p case, the present parametrization of elastic and
inelastic cross sections fits the data for the whole energy
range up to 3 GeV except for some deviation around 1 GeV,
which is due to the elastic cross section and does not affect
the result. On the other hand, for the p-n case where only the
total cross section is available in the data, we fitted it at
energies higher than 0.7 GeV up to 3 GeV, and adopt the
Cugnon type elastic cross section in the low momentum re-
gion instead of the free elastic cross section.

In Fig. 2 we show the pion cross section of
pn~nnvr++ppm (solid line) obtained by our new param-
etrization of Table II. In the same figure, the gray bold line
denotes the result of the original parametrization of VerWest

rr(pn~pp7r 7r ) = —I's oA~,

o(pn~pn7r 7r ) = —,2oiv~,
+ — 5 (17)

rr(PP~PP[r 'Ir ) =
3~ [Trav*.

0.25I'
f(M)=(M M )2+0251- (18)

We thus plot the o.N~ in Fig. 3 as well as the experimental
two-pion production cross sections [12] scaled by the above
factors. This figure shows that our parametrization fitted the
gross features of the experimental data for the energy range
up to 3 GeV. Although this parametrization should be modi-
fied if the two-5 production channel or the direct two-pion
decay of N* or higher resonances is included, the present
prescription of the elementary inelastic channels could
roughly reproduce the experimental single- and two-pion
production cross sections for the energy range up to 3 GeV.

We do not take into account the direct s-state pion pro-
duction mechanism but all pions are assumed to be produced
through baryonic resonances. The masses of the resonances
are randomly distributed according to the Breit-Wigner dis-
tribution with a momentum-dependent width [14], i.e.,
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FIG. 1. p-p (a) and p n(b) total (solid line), e-lastic (long dashed line), and inelastic (dot-dashed line) cross sections; the last is the sum

of the 6 (short dashed line) and N* (dotted line) production cross sections, calculated by Eqs. (10), (12), (13), (15), and (16). The
experimental total (open circles), elastic (open triangles), and inelastic (open boxes) cross sections are taken from Ref. [12].
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20 TABLE III. Parameters in the width of resonances.

15
M„(MeV)

1232
1440

I „(MeV)

110
200

P„(MeV)

300
523

0—
0.5 1.0 1.5 2.0 2.5 3.0

T„(GeV)

with

)'

q ~'M„U(q) )'r=— I„,
) q„) M v(q, )t

(19)

where q denotes the c.m. momentum in the mN channel, the
index r refers to the values at the mass M, , and

FIG. 2. Pion cross sections of pn~nn7r++pp7r (solid line).
The gray bold lines denote the results of the original parametriza-
tion of VerWest and Amdt [13], while the experimental data are
taken from Ref. [12].

gg(s, cos0) =
p [gR(s, cos0) +gt)(s, coso)] (23)

where

The values of at(s) and as(s) are given in Table IV. In the

high energy region Ps)2.4 GeV, which corresponds to a
laboratory energy higher than 1.2 GeV, this angular distribu-
tion is assumed to be constant, since there are no experimen-
tal data to be fitted in this energy region. However, above the
resonance region E&,b) 1.2 GeV, this is not justified because,
for example, the angular distribution of protons from the

Al(p, p') reaction at 3.17 GeV calculated by Eq. (21) de-
viates from the experimental data (cf. discussions on Fig. 9
in the next section).

In order to get a better parametrization for the high energy
part, we assume that the angular dependence is effectively
written as a sum of gz and another term gz as

p2
U(q) =

„+q (20)

gn(s, cos 0) = bo(s) exp[ —2 p (s) b) (s) (1 —cos 9)],
(24)

and

We have applied this momentum-dependent width not only
to the 5 resonance but also to N*(1440). The values of the
parameters used in this paper are listed in Table III.

Another important ingredient of the resonance production
[channels 2 and 4 in Eq. (9)] is the angular distribution of the
resonances. Wolf et al. [9]parametrized the angular distribu-
tion of the experimental data [15] for p+p+n+tII++ and
assumed the same angular dependence for each isospin chan-
nel in the following form:

gR(s, cos0) =an(s) [a)(s)+3a3(s)cos 6)], (21)

p'(s) b t(s)
7r ( 1 —exp[ —4 p (s) b, (s)] )'

0.14 s [3.65 (Ps —m)v
—mR) ]

b)(s) =
1+[3.65 (ps —

m)v
—mR) ]

[s—(m~ —mR)'][s —(m~+ mR)' ]
p (s)=

(25)

(26)

(27)

with

20

E -l0

I I I j I I I I
J

I I I I
)

I

NN —&
NN* —& Nb7t m NNIt7t

pn ~ pp It' It x 15
pn ~ pn n II: x 12/5
pp~ppz K x3

I I
i

I I I I

1
aI) s) =

47r[a, (s)+a3(s)]
' (22)

This form of gD is obtained by modifying the Cugnon pa-
rametrization [1,4] of the NN elastic angular distribution so
as to trace the angular distribution of Eq. (21) in the reso-
nance region, and approach the elasticlike angular distribu-
tion for the higher momentum region. We use this angular
distribution for 5 resonance and N*(1440). For the latter

case, we apply this formula by shifting the energy vs by
the mass difference of the two resonances, i.e., 208 MeV.
The energy dependence of this angular distribution is shown
in Fig. 4, where we plot gR (gray bold dashed lines) and

go (solid lines) in (a), and gR (gray bold dashed lines) and

g„(solid lines) in (b). In these figures, we symmetrized the
elasticlike angular distribution, i.e., ( I/2) [go (s,cos 0)
+gr)(s, —cosO)], in order to compare it with the angular dis-
tribution of Eq. (21) (gray bold dashed lines). In the next

0 tesQo I

0.5 l.0 1.5 2.0 2.5 3.0
T, (GeV)

vs (GeV) Ps~ 2.14 2.14& Ps~ 2.4

TABLE IV. Parameters in fR(s, cos9)

2.4- Ps

FIG. 3. Two pion production cross section. The solid line de-
notes Ir~*, while the experimental data [12]are scaled according to
the factors of Eq. (17).

a](s)
a3(s)

0.5
0.0

29.03—23.75s+ 4.865s
—30.33+25.53s —5.301s

0.06
0.4
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g1.0 (
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O
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0.5 =
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I I ] I I I I
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I I II I I
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(a) Two components of Ang. Dis.
——Wolf et al.

1.0

~~

O
CL

1.5

0.5

0.0 0.5
cos(e)

I0.0
-1.0 -0.5

FIG. 4. The energy-dependent
angular distribution of resonance
production. (a) Two components
of the angular distribution. The
solid lines represent the elasticlike

24,angular distributions of Eq.
[go(s, cos8)+go($, cos8)j,

while the gray bold dashed lines
are the resonancelike angular dis-
tributions of Eq. (21). (b) The to-
tal angular distribution of 6 (solid
lines), which is the sum of gR annd

The gray bold dashed linesgD.
1.0 are the same as in (a).

9. A~N+ vr,

10. N'~N+ ~,
11. N*~A+ ~.

(28)

ed b aneca robability of the resonances is determine yh' o t -d d t
'

1 deca law using t eir mom
hd d. ~19~ and their proper time. e
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I. ) w* a+ I'I:I x*-a+ + w~-w+
in ratios concerning their isospin areg
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as in channel 7, shifting the energy by the mass i er
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h it still costs too much computing time toriant approac, it s i c
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main part of the relativistic dynamical effects in our mo e .
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R~MD, looking for relativistic ef ec s
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ed b the covariant treatmentfeet is partially counterbalance y e co

of the interaction, ub t there still remains an increase ow
1 QMD calculation. Based on their
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3. Relativistic corrections R =(R —R )2.jj (29)
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R, =R, + y,,(R;j P;,), (31)

w-ith

P;+P.
E+F '

l J
(32)

By this change, all interactions of the Hamiltonian [Eq. (5)]
depend also on the momentum. The form of the equation of
motion [Eq. (4)] changes to

P, 8 R,

qm +P. j

(34)

with

1 A 1 1 B 7, , 1

2L j;,—I+ —.2((j;) +(P,) )2LP;j

e2
+ C C

2 l J erf ' +8mLp;, ~

IR„I i 4L~ ", R'„

C, 1

2
'

( — I;—,l)2~v;,2po
(35)

and

28 R,J 2Rj'+ j2 yj(Rjjjj Pjj) Pjj jBR; (36)

8 R,, 2y, , ( p)
p' =

~ ~ (R;, Pj) R,,+ y"j(R;,"Pj)
~ Pij —

~E+

(37)

where p;, is defined in Eq. (7).
We also introduce the Lorentz-scalar quantities into the

one-body phase space distribution function Eq. (3) as

f;,=8 exp—
1 2 2L

ij $2 ij (38)

where P, denotes the squared relative momentum in the c.m.2

system of the particles i and j, which is expressed for two
particles with the same mass as

P,,=P,,—(F; Fj), —(39)

with

P P P . (40)

At the starting point of the QMD calculation, we boost the
ground state of the projectile (and the target as well if the

usual squared distance. We therefore change the argument in

Eq. (5) from R,, to the squared distance in the c.m. system of
the two particles R, , where the tilde means the quantities
defined in the c.m. system of the two particles,

c.m. system of the target and projectile is chosen as the ref-
erence frame) according to the beam energy. The coordinate
R",, and momentum P",, of the nucleon in the beam direction
z after the boost are obtained by Lorentz transformation from
those before the boost, R;, and P;, , as

R;&= (R & Ro&)l y+ Rp&,

p';, = y(p;, + p~;),

(41)

(42)

where Ro denotes the initial c.m. coordinate of the nucleus,
while P and y are the boosting velocity and its gamma fac-
tor, respectively. At this moment, the potential energy of the
system and the phase space distribution function keep the
same values as those before the boost due to their Lorentz-
scalar properties discussed above. During the propagation of
the boosted nuclei, however, those quantities are changing
slightly even in the above prescriptions, since the equations
of motion Eq. (33) and (34) are not covariant. But the dis-
turbance due to the noncovariant feature of the equation of
motion is negligibly small up to the energy 3 GeV/nucleon.
We thus introduce the relativistic corrections discussed
above to the noncovariant QMD to save computing time in-
stead of using the full covariant framework.

We should mention here that if one employs the Lorentz
contraction for the boosted initial state but does not replace
the arguments of the interaction and phase space distribution
by the Lorentz-scalar ones, the potential energy decreases
about 80 MeV and the phase space factor at each nucleon's
point changes by about 40% after the boost in the case of

Ca even at 1 GeV/nucleon boosting energy. This means
that the boosted ground state obtained in this way may decay
spontaneously before it collides with the other nucleus. By
our prescription, we are free from this problem.

We have checked the above prescription by analyzing the
transverse flow, which is sensitive to the treatment of the
relativity as discussed in Ref. [17]. In Fig. 5 we show the
energy dependence of so called directed transverse momen-
tum (P,"), which is a measure for the transverse flow and
defined by

N

(P,")= —g sgn[Y, (i)]p;, , (43)

where Y, (i) is the rapidity of the ith baryon in the c.m.
system and P; its transverse momentum in the reaction
plane. We plot the result of the present QMD simulation
(solid line with full boxes) as the difference from that of
RQMD [18]for Ca + Ca reactions at b = 2 fm, for the
energy range from 150 MeV/nucleon to 4 GeV/nucleon. In
these calculations, we use the same ground states (mentioned
below), the same Gaussian wave packets, and the same in-
teraction (mentioned before). We omitted the Coulomb inter-
action and two-body collision term for simplicity. In Fig. 5,
we also plot the other results obtained by standard QMD
(dot-dashed line with open circles) without the initial Lor-
entz contraction and without the relativistic corrections, and
by standard QMD only with the Lorentz contraction (dashed
line with open boxes). As mentioned before, the Lorentz con-
traction of the initial phase space distribution increases the
flow, which is shown by the change from the dot-dashed line
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In this test calculation, the form of BU/BR;, which is attrac-
tive in the beginning, is almost the same in our QMD and in
the RQMD. Thus the force of our QMD becomes larger and
deviates linearly from that of the RQMD as the energy in-
creases. Above 3 GeV/nucleon, therefore, the full covariant
prescription is necessary to describe the reactions, particu-
larly the nucleus-nucleus collisions. This is out of the scope
of this paper.

Some details of actual numerical calculations should be
mentioned here, since all potential terms depend on the mo-
mentum by the relativistic corrections. In order to keep nu-
merical accuracy, we use the second-order Runge-Kutta
method to integrate the equations of motion. For the energy
conservation for the collision term, we assume

E;+E + Up„=E,'+E'+ U„'„,

to the dashed line. By the full covariant treatment of the
interaction, however, this effect is counterbalanced, but an
increased flow still remains [17].As seen in Fig. 5, our pre-
scription does not deviate very much from the full covariant
treatment up to 3 GeV/nucleon. We thus expect that our
QMD simulation with the relativistic corrections is very
close to the covariant simulation RQMD in this energy re-
gime.

At much higher energy, however, our result decreases lin-
early from that of RQMD. This deviation comes from the
different treatment of the potential between the RQMD [18]
and our QMD; a Lorentz-scalar type in the former, and a
time component of the vector type in the latter. This is un-
derstood qualitatively by considering a single-particle mo-
tion under a fixed external potential U. In the Lorentz-scalar
treatment of the potential U, the single-particle energy p, is
expressed in this simple case as

p, = gp, + m, +2m;U. (44)

Accordingly the equation of motion is

I; BU
t 0 gRi

(45)

On the other hand, in our prescription they are

p, =gp, +m, +U (46)

and

BR;
(47)

FIG. 5. The directed transverse momentum as a function of
energy/nucleon for the Ca+ Ca reaction at b = 2 fm. The results
are shown as the differences from that of the RQMD [18].The solid
line with full boxes denotes the result of the present model with the
relativistic corrections and the initial Lorentz contraction. The dot-
dashed line with open circles is the result of the standard QMD
without the initial Lorentz contraction and without the relativistic
corrections, while the dashed line with open boxes is the result of
the standard QMD only with the initial Lorentz contraction. E;+E + Up„= E~+ U'„, (49)

where Ez is the resonance energy. In this case, we determine
iteratively the rest mass of the resonance to conserve the
energy.

4. Properties of "ground state"

An important ingredient of the QMD calculation is how to
determine the initial phase space distribution of the projectile
and target. For that we cannot use the real ground state (en-
ergy minimum state) of the system defined by the Hamil-
tonian Eq. (5), since the model does not have fermionic
properties. However, it is necessary to obtain a stable
"ground state. " Also some typical properties of the real
ground state should approximately be fulfilled, especially the
binding energy and phase space distribution. To get such a
"ground state, " we employ the following random packing
procedure [8].

We distribute the centers of position R; of the individual
Gaussian wave packet according to a distribution of the
Woods-Saxon shape with the radius Ro= 1.124A' —0,5 fm
and the diffuseness parameter a=0.2 fm. We cut off the
Woods-Saxon tail at Rm„= 1.124A" fm. In this procedure,
we impose a minimum distance between the centers of the
Gaussians in order to reduce the density fluctuation. We use
1.5 fm for identical nucleons and 1.0 fm for the others.

Now we can calculate the density and potential energy at
any point (here, we do not need the relativistic correction
discussed in the previous subsection). Then the center of
momentum P; is randomly sampled from the sphere of radius

pF(R;) which is the Fermi momentum obtained by the local
Thomas-Fermi approximation. This sampling is rejected and
another value is sampled if the sum of kinetic and potential
energy of the particle is positive or the phase space factor
f(R~, Pi) [cf. Eqs. (2) and (3)] for the nucleon j which have

where E;, E, and E,', E'. are the energies of particles i and

j before and after the collision, while Up„and Up t are the
potential energy of the system. We determine iteratively the
final momenta of the colliding particles so as to satisfy the
energy conservation Eq. (48). This prescription is applied to
the channels 1—5 in Eq. (9) and 9—11 in Eq. (28). For the
pion absorption channels 6, 7, and 8 in Eq. (9), the energy
conservation is written as



2628 KOJI NIITA et al. 52

0.5

0.4—

0.3—

0.2::—

0.1

0.0

"Ca QMD

HF
---- Matter

r (fm)

(a) Density distribution

10— QMD

HF

Matter

0 I I I I I t & I I I

0.0 0.5 1.0
p (1/fm)

1.5

I I I I j I I I I
i

I I I I
i

I I I I15—
(b) Momentum distribution

FIG. 6. (a) Density distribution

p(r) and (b) momentum distribu-
tion p(p) of the ground state of

Ca obtained by QMD simula-
tion (solid lines) averaged over
time evolution up to 200 fm/c and
over 100 events. The error bars
denote the fluctuations in time
evolution averaged over 100
events. The dot-dashed lines show
the results of Hartree-Fock calcu-
lations, while the dashed lines de-
note the limit of infinite nuclear
matter.

been previously accepted violates the Pauli principle [8].
Finally, we check the total binding energy with the simple

mass formula [20], i.e.,

(N Z)—
Ebln 15 s56A + 17e23A + 46o57

3 Z

5 1 24A
(50)

If the binding energy per nucleon obtained by our sampling
lies within Eb;„0.5, we adopt this configuration as a
"ground state. "

Thus the "ground state" obtained by this procedure al-
ways has an appropriate binding energy. However, there is
still open phase space below the Fermi surface, since the
"ground state" is not the energy minimum state of the fer-
mions. In fact, during the time evolution of the "ground
state" under the QMD dynamics described in the previous
subsection, only 70% of the collisions are blocked by the
final state Pauli blocking in the two-body collision term. It is
allowed at a collision that one nucleon goes down to the
lower energy state and the other goes up to the positive en-

ergy state. This means that some nucleons could be sponta-
neously emitted after some time due to the fluctuation of the
configuration. To avoid this problem, we assume from a tech-
nical point of view that any pair of nucleons originating in
the same nucleus do not collide with each other until at least
one of them experiences a collision with a nucleon from the
other nucleus. By this assumption the number of emitted
nucleons from the "ground state" is reduced to less than
about 1% of the nucleons up to the time 200 fm/c.

The density profile of the "ground state" obtained here
has high density in the center and a rather wide surface
shape. This is due to the large width of the Gaussian
L=2.0 fm used in this paper. On the other hand, the mo-
mentum distribution of the "ground state" well reproduces
the result of a Hartree-Fock calculation. In Fig. 6, we show
(a) the density distribution p(r) and (b) the momentum dis-
tribution p(p) for the "ground state" of Ca obtained by
QMD simulation (solid lines). The results shown here are
averaged quantities over time evolution up to 200 fm/c and
over 100 events. The error bars in Fig. 6 denote the fluctua-
tions in time evolution averaged over 100 events. Although
the fluctuation of one event is much larger, this figure shows
that the ground state profile is very stable in time on the

B. Statistical decay model

At the end of the dynamical stage of the reaction, the
QMD simulation yields many fragments, which are normally
in highly excited states. One may think that the decay pro-
cess of the excited fragments might be described by QMD
dynamics if we can continue the calculation for a long
enough time. However, we do not follow this method but
instead we stop the QMD calculation and switch to the sta-
tistical decay model (SDM) at the end of the dynamical
stage. There are two reasons for this hybrid model. One is
that the time scales of the dynamical and statistical processes
are quite different. It is not clever or even practically impos-
sible to continue a reliable QMD calculation for more than
10 sec, which is necessary to calculate the decay process.
Another is a more fundamental reason that the Fermi statis-
tics, which is essential to describe the decay process of the
fragments, cannot be traced correctly in the QMD simulation
P2]

We identify the fragments together with their excitation
energies at about 100—150 fm/c of the QMD simulation. The
dependence of the final results on this switching time will be
discussed in the next section. Each fragment is recognized by
using a minimum distance chain procedure, i.e., two nucle-
ons are considered to be bound in a fragment if the distance
between their centroids is smaller than 4 fm. We then calcu-
late the total energy of the fragment in its rest frame and
estimate the excitation energy by subtracting the ground state
energy given by Eq. (50).

Though many sophisticated statistical decay codes have
been proposed so far, we use here the simple model of light-
particle evaporation. We consider only n, , p, d, t, He, and
u evaporation. The emission probability P of these particles
x is given with the Fermi gas model as

P, =(2J +1) I, e tr, (e) p(E) de, (51)

average over the events. In the same figure, we also plot the
results of a Hartree-Pock calculation (dot-dashed lines) and
the limit of infinite nuclear matter (dashed lines). The energy
spectra of the emitted particles given in the next section,
particularly of the subthreshold particle production [21], are
more sensitive to the momentum distribution than the density
profile. This is the reason why we adopted a parametrization
which leads to a better momentum distribution at the cost of
a diffuse density profile.
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where J, , m, , and e are the spin, mass, and kinetic energy
of the particle x, while o;(e) and p(E) denote the inverse
cross section for the absorption of the particle with energy
e and the level density of the residual nucleus with the exci-
tation energy E, respectively. We use the following simple
form for p(E):

p(E)=wo exp(2/aE), (52)

with a=A/8 MeV ' and ~0 a constant. The inverse cross
section is assumed to have the form

(1 —U /e) mR, e) U
o.,(e) = & 0 @~U (53)

where R denotes the absorption radius and U is the Cou-
lomb barrier for the particle x, for which we employ empiri-
cal values used in the existing statistical decay code [23].
The excitation energy E in Eq. (52) is given by

E=EII—e —Q, (54)

where Eo denotes the excitation energy of the parent nucleus
and Q is the reaction Q value calculated from the mass for-
mula Eq. (50). The total emission probability R„of the par-
ticle x is obtained by integrating the available energy of Eq.
(51) as

"&0—&x
R =(2J +1) m,

JU
e rr, (e) p(Eo —Q, —e) de.

(55)

This integration can be calculated analytically and the energy
spectrum of the emitted particles is given by

e —U e —U
N(e, ) de =

2 exp — de, (56)

with

a T, =EII—U —Q, . (57)

III. ANALYSIS OF THE (N, xN') REACTIONS

In this section, we systematically apply the QMD plus
SDM method described in the previous section to (N, xN')
(nucleon in, nucleon out) type reactions. In order to get suf-
ficient statistics, we performed the QMD calculations for a
large number of events, typically 50 000 events, and aver-
aged them to obtain the following results.

We first check the dependence on the switching time t,
when the QMD calculation is stopped and switched to SDM,
which is an ambiguous point of the present model. In Fig. 7,
we show a typical neutron energy spectrum at 30 laboratory

In this formulation, we do not consider the y decay nor
the angular momentum dependence. The latter is important
for heavy-ion reactions but not so serious for the nucleon-
induced reactions considered in this paper. We simulate the
whole statistical decay process as a sequential light-particle
evaporation discussed above by making use of the Monte
Carlo method until no more particles can be emitted.
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FIG. 7. Neutron energy spectrum at the 30 laboratory angle for
the reaction p(1.5 GeV)+ Pb. The experimental data (full boxes
with error bars) are taken from Ref. [24].The solid line denotes the
final result of the QMD + SDM calculation with the switching time

ts = 100 fm/c. The dot-dashed line is the result obtained only by
the QMD calculation up to 100 fm/c, while the dashed line is the
neutron spectrum coming from the QMD fragments calculated with
the SDM.

angle for the reaction p(1.5 GeV)+ Pb. Note that the x
axis is plotted in the logarithmic scale to compare the calcu-
lated results in detail with the experimental data particularly
in the low energy region. The experimental data (full boxes
with error bars) are taken from Ref. [24]. The solid histo-
gram denotes the final result of the QMD + SDM calcula-
tion. In this case, we switch the QMD calculation to SDM at
100 fm/c. In the same figure, we also plot the spectrum of
the neutron obtained only by QMD calculation up to 100
fm/c (dot-dashed histogram) and that coming from the QMD
fragments calculated with SDM (dashed histogram), respec-
tively. The former shows a cascade and/or preequilibrium
energy spectrum, and the latter an evaporation spectrum.
These two components of the spectrum are affected by
changing the switching time t, . However, the total spec-
trum shape, which is the sum of the two components, stays
almost unchanged if an adequately long time is chosen for
the switching time t, . This is shown in Fig. 8, where we
plot results of the total spectra calculated by QMD + SDM
with three different switching times, 50 fm/c (dashed line),
100 fm/c (solid line), and 150 fm/c (dot-dashed line). This
figure shows that, although the latter two lines resemble each
other, they deviate definitely from the first line. This indi-
cates that the QMD fragments before 100 fm/c are not in
thermal equilibrium and that within a time interval from 100
fm/c to 150 fm/c the decay processes of the excited frag-
ments described by QMD and SDM are nearly equivalent.
Although we should keep in mind that these two are not
identical at low temperature as the former is always domi-
nated by the classical statistics [22], we can conclude that the
final results are not sensitive to the switching time t, as long
as it is chosen after the time when thermal equilibrium is
achieved and before the time the temperature of the frag-
ments becomes low and classical statistics breaks down se-
riously. A similar conclusion has been obtained in Ref. [6],
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which indicates that the minimum switching time to get
stable results depends on the size of the system and the in-
cident energy. For the case of nucleon-induced reactions, we
found that 100 fm/c is enough to get stable results and we
use this value for all systems in the present study.

The next check is the detailed examination of the inelastic
channels in the two-body collision term. For this purpose we
compare our results with the experimental data at high inci-
dent energy of protons on the light-mass target, which di-
rectly rejects the elementary processes included in the
model. In Fig. 9, we plot the invariant cross section of the
proton (left-hand side) and negative pion (right-hand side)
emission for the reaction p (3.17 GeV)+ Al. The experi-

FIG. 8. The total energy spectra calculated by QMD + SDM
with different switching times t,„=50 fm/c (dashed line),
t, = 100 fm/c (solid line), and t,„=150fm/c (dot-dashed line). The
reaction system is the same as in Fig. 7.

mental data (full boxes with error bars) are taken from Ref.
[25] and the results of QMD + SDM are denoted by solid
histograms. In the same figure, we plot the results of QMD
+ SDM with different choices of the angular distribution of
the resonances. The dashed histograms are the results ob-
tained with only the resonancelike angular distribution of Eq.
(21), while the dot-dashed histograms are those with the di-
rectlike angular distribution of Eq. (24). This figure shows
that the average of the two components of the angular distri-
bution of Eq. (23) well fits the experimental proton spectra.
On the other hand, the pion spectra are rather insensitive to
the angular distribution of the resonances. Instead, their
spectra are predominantly determined by the mass distribu-
tion of the resonances of Eq. (18). Although the authors of
Ref. [25] analyzed these data by making use of the two-
moving-source model, our QMD + SDM can reproduce ex-
cellently the proton and pion spectra at the same time with-
out any special assumption.

In Figs. 10—15, we compare the neutron energy spectra
obtained by the QMD + SDM calculations with the experi-
mental data [24,26] for Fe and Pb targets at proton energy
from 113 MeV up to 3 GeV. In the fields of application of
accelerators, such as spallation neutron sources, accelerator-
based transmutation systems, and shielding of cosmic rays in
space activity, the production of slow neutrons plays an im-
portant role. That is the reason we chose these data [24,26] to
compare with, since the neutron spectra from 1 MeV up to
the beam energy are available. For efficient comparisons of
the calculations and the data, both for low energy and high
energy regions, we plot the same results in two figures with
the x axis in a logarithmic scale (left-hand side) and in a
linear scale (right-hand side). One can see the detail of the
thermal and preequilibrium neutron spectra in the former fig-
ure, and the directlike components of the spectra in the latter
figure.
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FIG. 9. Invariant cross sec-
tions of the proton (left-hand side)
and negative pion (right-hand
side) emission for the reaction
p(3.17 GeV)+ Al at different
laboratory angles as indicated in
the figure. Full boxes with error
bars are the experimental data
taken from Ref. [25] and the re-
sults of QMD + SDM are denoted

by solid histograms. The dashed
histograms are results of another
QMD + SDM obtained with only
the resonancelike angular distribu-
tion Eq. (21), while the dot-
dashed histo grams are obtained
with the directlike angular distri-
bution Eq. (24).
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FIG. 10. Neutron energy spec-
tra for the reaction p (113 MeV)
+ Fe at different laboratory
angles as indicated in the figure.
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NUcLEUS I 27] at the 150' labora-

tory angle.

These figures indicate that over a broad range of incident
energies from 100 MeV to 3 GeV, independently for the
targets, and of all angles of the outgoing neutrons, our results
for the neutron energy spectra agree well with the data from
1 MeV up to the beam energy. Though one may notice some
disagreement at the high energy part of the most forward
angle, which will be discussed later, the overall agreement is
satisfactory. In particular, a remarkable agreement of the
present calculations with the low energy neutron data below

several tens of MeV confirms that the QMD gives proper
excitation spectra of the excited fragments from which the
statistical neutron emission takes place. With a suitable cho-
sen fixed set of parameters, our QMD plus SDM model is
able to reproduce quantitatively the overall neutron spectra
for the broad range of incident energies and target masses.

At 113 MeV, we additionally compare our results with the
prediction of the intranuclear cascade plus light-particle
evaporation model (NUCLEUS) [27].This model is essentially
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the backward angle, which is denoted by the dashed histo-
gram at 150' in Fig. 10. In this energy regime it has been
reported [30,31] that the semiclassical preequilibrium models
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the angular distributions. We found from detailed compari-

son of the calculations that the underestimation of the back-
ward angle in the above models is due to the insufficient
treatment of the soft interaction of a nucleon with all the rest
of the nucleons in the nucleus, which is naturally included in
the QMD formalism.

One may think that this explanation is in contradiction
with Refs. [5,32] where the authors attribute the failure to
insufficient contributions from second- and higher-order col-

10

10

10'

I I I I llli I I I I ! Illi I I I I I llli-
'"Pb (p xn) E, = 800 MeV 1 0

10' I-

10'

"Pb (p, xn) E, = 800 MeV

QMD+ SDM

Meier et al ~

10
O
CD

~10'

E10
LlJ

10(

- 104

10)
~ 10-'

E10
LLI

10(

1 0-4

0 0

FIG. 13. Same as Fig. 10 for
the reaction p (800 MeV)+ Pb.

10' 10'

10 Meier et al. 10

10 10

10'
10'

I I I I I llll

10' IO
E„(MeV)

10
10

0 200
I

400
E„(MeV)

600 800



ANALYSIS OF THE (N, xN') REACTIONS BY QUANTUM. . . 2633

10

10

1O'

I I I I I lli I I I I I I II) I I I I I I ii)

"'Pb (p,xn) E, = 1500 MeV 10

10

10' )

I I I
I

I I I I
I

I I I I
I

"'Pb (p, xn) E, = 1500 MeV~ QMD+SDM
Ishibashi et al.

)~ 10'

~~ 10
E

QJ 10

~ 104

1O'

1O')~ 1O'

~~ 10
E

LLI 10

~10(

1O'

FIG. 14. Same as Fig. 10 for
the reaction p (1500 MeV)
+ Pb. The full boxes with error
bars are the experimental data
taken from Ref. [24].

10 1O'

10 10

1 0-8 10'

1O'
100 10' 10

E„(MeV)
10

I I I I I I III I I I I I I III I I I I I I III 1O'
0 500 1000

E„(MeV)
1500

lisions. To resolve this problem, we have checked that
NUCLEUS has almost the same prescription of hard nucleon-
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QMD part includes the soft nucleon-nucleon interaction but
NUCLEUS does not. This soft interaction diffracts the nucleon.
As a result, the yields of the backward angle increase and for
the same reason the number of multiple hard collisions also
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On the other hand, the multistep model of Feshbach-
Kerman-Koonin (FKK) [33] has been also applied to the
energy regime around 100 MeV [32]. Although the FKK
approach successively reproduced the angular distribution,
the overall absolute values of their results are very sensitive
to the strength parameter of the residual interaction, which is
adjusted to fit the experimental data. The strength so deter-
mined depends on the incident particle, target nucleus, and
incident energy. In QMD, on the contrary, the parameters of
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the soft nucleon-nucleon interaction in Eq. (5) are taken
common to all reactions and determined from the nuclear
saturation condition. In addition, the final results are not so
sensitive to them.

The first analysis of (p, xn) reactions by the QMD ap-
proach in the energy regime up to 800 MeV has been done
by Peilert et al. [5]. The neutron spectra of their results are
very similar to those of the present work above several tens
of MeV. Their analysis, however, cannot predict the whole
spectra of neutrons, since the contribution of the statistical
decay from the excited fragments produced in the QMD cal-
culation was not considered in their work.

Though the present results show overall agreement with
the data for a very broad energy regime, one can see a sys-
tematic deviation from the data in the high energy part of the
neutron spectra at the most forward angle at incident energy
from 113 MeV up to 800 MeV (see the right-hand side of
Figs. 10—13). We suppose that the soft nucleon-nucleon in-
teraction is responsible for this deviation. One possibility is a
momentum-dependent interaction that is not included in the
present QMD, by which the nucleon could be affected coher-
ently by the surrounding nucleons when its momentum is
drastically changed by the hard nucleon-nucleon scattering.
For the higher incident energies (see Figs. 14 and 15), this
deviation disappears. In those cases, we have checked that
the neutrons in the high energy part of the forward angle
emerge after at least once experiencing the resonances of the
nucleon, and that the effect of the soft interaction is rela-
tively small. An analysis by the QMD including the momen-
tum dependent interaction will be reported in a forthcoming
paper.

IV. SUMMARY AND CONCLUSION

We have proposed quantum molecular dynamics (QMD)
incorporated with the statistical decay model (SDM), aiming
to describe various nuclear reactions in a unified way, and
applied this model to the (N, xN') reactions. We have
checked and found that the final results do not depend on the
switching time when the QMD simulation is stopped and
switched to the SDM calculation as long as the switching
time is chosen between 100 fm/c and 150 fm/c for nucleon-
induced reactions. Therefore little ambiguity is left with re-
spect to the switching of the two different kinds of models to
describe the whole process of the reactions in a unified way.

In order to describe the reactions at high incident energies
up to 3 GeV, we have taken into account two baryonic reso-
nances, for the 5(1232) and the N*(1440) as well as the
pions in the QMD model. The elementary cross sections re-
lated to these resonances and pions are basically taken from

the experimental data. The angular distributions of the reso-
nances, for which information is very poor in the experimen-
tal data, have been fixed to fit the Al(p, p') data [25] at
3.17 GeV. It should be noted that the energy spectra of the
nucleons from (N, xN') reactions on a small target are suit-
able quantities to obtain detailed information of the angular
distribution of the resonances, while the pion spectra are use-
ful to extract information on the mass distribution of the
resonances.

In addition to the relativistic kinematics and approxi-
mately covariant prescription of the collision term, we have
introduced Lorentz-scalar quantities to the arguments of the
interactions and to the phase space factor. By these relativis-
tic corrections together with the Lorentz contraction of the
initial phase space distribution, the main part of the relativ-
istic dynamical effects is approximately described in our
QMD for the energy regime up to 3 GeV/nucleon. The va-
lidity of this model has been confirmed by analysis of the
transverse Bow for the heavy-ion collisions in comparison
with the results obtained by the covariant version of quantum
molecular dynamics (RQMD).

We have applied systematically QMD + SDM to the
(N, xN') reactions for a broad range of incident energies
from 100 MeV to 3 GeV and of target masses. The present
model reproduced the overall features of the outgoing neu-
trons quite well without assuming any reaction mechanism,
and without changing the parameter set. Although there are a
lot of parameters in the model which have not been investi-
gated extensively in this paper, the final neutron spectra ana-
lyzed here do not depend very much on them, for example,
the equation of state (choice of the interaction), the width of
the Gaussian wave packets, and the details of the statistical
decay process. The main ingredients of the mode1, which
produces the present results of the neutron spectra down to
an energy of several MeV, are the parametrization of the
elastic and inelastic elementary cross sections and the many-
body dynamics itself, which have both been discussed in
detail in this paper. We thus conclude that the present QMD
+ SDM scheme gives a unified picture of the three major
reaction mechanisms of (N, xN') reactions; i.e., compound,
preequilibrium, and spallation processes.

Finally, we should mention that the present model is ready
to be applied directly to heavy-ion reactions in its original
form. A study of heavy-ion reactions using this model is now
under consideration.

The authors are grateful to Professor K. Ishibashi and
Professor M. M. Meier for supplying us with their experi-
mental data prior to publication.
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