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Abstract:

The quantum molecular dynamics approach, an n-body theory to describe heavy ion reactions between 100 MeV/n and 2 GeV/n, is reviewed. We
start out with a survey of the present status of nuclear matter calculations and of kinetic theories as far as they are of importance for our approach.
We then present a detailed derivation of the quantum molecular dynamics equation, discuss the various approximations necessary to derive this
equation and to make actual calculations feasible. The calculations presented aim at the solution of two of the most interesting questions of
contemporary heavy ion physics: What causes a nucleus to fragment into many heavy pieces, and can we determine the nuclear equation of state
from heavy ion reactions? We first make detailed comparisons with a multitude of experimental data, which yield unexpectedly good agreement. We
then proceed to detailed investigations of these questions. We find that fragmentation at these energies is triggered by the density wave caused by
the projectile while travelling through the target. We reproduce the “squeeze out” and the “‘bounce off” predicted by hydrodynamical calculations
and recently seen in experiment. Thus there is hope that the nuclear equation of state can be extracted from heavy ion experiments. However, very
careful multiparameter experiments are necessary before one can achieve this goal.

1. Introduction

One of the most challenging questions which presently are addressed in nuclear physics is the
behaviour of nuclear matter under extreme conditions. The correct answer has consequences which
reach far beyond the scope of nuclear physics. The explosion mechanism of supernovae, the interior
structure of neutron stars and the formation of matter during the evolution of the early universe
strongly depend on the properties of hadron matter over a wide range of densities and temperatures.

Unfortunately these astrophysical objects are remote in space and time so that their use for studies of
the nuclear matter equation of state under extreme conditions is quite difficult and the conclusions
drawn depend on a rather limited set of observations of these rare natural events. The only possible
candidates for a systematic study of the nuclear matter properties in the laboratory are high energy
heavy ion experiments. Here the system may be dominated by the surface and the influence of the short
reaction time must be addressed. Furthermore it has to be investigated whether equilibrium is reached
in these reactions.

These experiments became possible at the beginning of the seventies. At that time the BEVALAC at
the Lawrence Berkeley Laboratory in Berkeley and the Synchrophasotron in Dubna started to deliver
highly accelerated heavy ions.

Previously heavy ions with energies larger than 20 MeV/n were only available as part of cosmic rays.
The technical complications to measure reactions of these natural beams and their rareness set strong
limits to the number of events recorded. From accelerator experiments one could expect an increase in
the number of events of several orders of magnitude as well as a clear set up for multiparameter events.

The previously available proton beams neither compress the system substantially nor do they deposit
a large amount of energy in the target. The interaction of protons with heavy ions was successfully
described in the framework of the Glauber theory [1], which assumes that the incoming proton crosses
the target on a straight line and deposits around 400 MeV/c momentum in the transverse direction per
collision with a target nucleon. Thus the target does not receive a substantial excitation energy.

Heavy ion projectiles were expected to allow one to explore large regions of the density—
temperature (p, T) plane. Theoretical calculations predicted this plane to be full of structure. A
pictorial view of the different speculations is shown in fig. 1. It also contains trajectories of heavy ion
reactions and supernova explosions. At moderate temperatures (7~15MeV) a liquid—gas phase
transition is predicted. Speculations about density isomers at p =3p, and the occurrence of pion
condensation at about the same density were advanced. Finally, for very high densities and tempera-
tures one expects the transition to the quark—gluon plasma. Testing these speculations seemed to be
possible in the now available experiments.
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Fig. 1. Phase diagram of nuclear matter. We see the theoretical predictions of what may occur at high densities and high temperatures. The only
experimentally known point is p = p,, T=0. Also displayed are the trajectories of a supernova explosion and of a heavy ion reaction.

The first — inclusive — experimental results were rather disappointing. It seems that heavy ion
experiments between 250 MeV/n and 1 GeV/n could be well described by the participant spectator
model. In this model nucleons in the geometrical overlap of projectile and target form a globally
equilibrated source of particle emission whereas the rest of the matter — the spectators — remains cold
and undetected, being either at rest in the laboratory system (target spectators) or at 8 = 0° (projectile
spectators). Hence all observables are determined by the expansion of a thermalized nuclear gas. Even
the formation of light composite particles was obtained in these models applying a coalescence formula
to the single particle spectra. For a discussion of these thermal models we refer to a recent review of
Csernai and Kapusta [2].

The more exclusive experiments were performed, the more it became obvious that this was a highly
idealized picture of the collision. Determining the centrality of the collision with a multiplicity trigger, it
turned out that only central collisions of a heavy projectile—target combination lead to an almost
complete stopping and thermalization. The lighter the projectile and the more peripheral the reaction
was, the stronger non-equilibrium components appeared. This general behaviour was confirmed when
some years later the experimental gap between low energy heavy ion accelerators (E,,, <20 MeV/n)
and BEVALAC energies (E,,, > 250 MeV/n) was closed by the new machines at CERN, Michigan State
University and GANIL.

The general feature which emerged from the analysis of these reactions shows that equilibrium
situations can only be found at very low and very high energies. In between we see a wide range of
energies where projectile and target do not equilibrate and thus the measured quantities reflect directly
the dynamics of the heavy ion reactions. At low energies we find compound nuclear reactions where
collisions are almost absent and hence the mean field keeps the nucleons together long enough to
equilibrate. At high beam energies, on the contrary, frequent nucleon—nucleon collisions cause the
thermalization whereas effects of the mean field are small. Results of kinetic theory indicate that about
three collisions per nucleon are sufficient to produce a Maxwellian spectrum. Since Pauli blocking is no
longer severe at very high energies, the mean free path A is roughly given by A = 1/0p =2 fm, where o
denotes the free nucleon—nucleon cross section. Hence we should expect equilibration at central
collisions of heavy projectile-target combinations. Indeed, an almost complete equilibration is seen
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experimentally. Between these two extremes the Pauli blocking of the collisions is neither strong
enough to avoid emission during the mean field equilibration time, nor is it weak enough to allow a
sufficient number of nucleon—nucleon collisions before the system disperses.

Hence intermediate and high energy heavy ion reactions offer a unique possibility to study the
evolution of nuclear systems towards equilibrium, the details of the reaction mechanism and how
nuclear forces act in the dense nuclear environment. Two observables emerged as the most exciting
ones from the present experiments: multifragmentation and the collective flow of nuclear matter.

Multifragmentation, i.e. the production of low and medium mass fragments 5< A <30, has first
been observed in proton induced collisions with heavy targets and beam energies well beyond 5 GeV.
These fragments have received the name “deep spallation products” but their production was never
explained in physical terms. They are much more copiously produced than expected from compound
evaporation models and hence they point to a new reaction mechanism which is absent at low beam
energies. When heavy ion projectiles were available for the first time the experiments indicated that
these fragments cannot come from an equilibrated source. Emulsion data revealed [3] that several of
these fragments were produced simultaneously in central collisions. The form of the mass yield curve
triggered the suggestion that these fragments present evidence for a liquid—gas phase transition and that
their yield is directly connected with the critical exponent. This conjecture caused a lot of interest
although it was never substantiated by a detailed theoretical analysis of all measured quantities.

The flow of nuclear matter in heavy ion collisions has been predicted by hydrodynamical calculations
[4]. It is caused in nearly central collisions where nuclear matter is first compressed and the
compressional energy is released afterwards. The compressional energy stems from the longitudinal
motion but the release is isotropic thus accelerating particles also transversely. Experimentally it has
been first observed by the Plastic Ball Group [5-8]. This observation of flow demonstrates clearly that
the mean field still plays an important role for the dynamics of the reaction at beam energies around
1 GeV/n and that nuclear matter is compressed in the course of the reaction. More exciting, however, is
the relation between the flow and the nuclear equation of state. Thus measurements seem to offer an
experimental handle on the equation of state, i.e., on the compressibility of nuclear matter.

Flow of nuclear matter is a collective phenomenon. Nucleon—nucleon collisions tend to destroy the
alignment of the momentum of the collision partners and hence weaken the collective flow. On the one
hand, nucleons which suffer violent two-body collisions usually end up at different regions of phase
space compared to those nucleons which go with the flow and are unscattered. On the other hand,
nucleons which suffer violent two-body collisions are less likely to end up as part of a fragment.
Combining both observations we can expect that complex fragments provide an even better tool to
study the collective flow than emitted protons.

To pin down the nuclear equation of state from relativistic heavy ion collision data several reliable
independent models should be employed to follow the evolution of the system. The predicted
observables from such time dependent theories must then be compared with data by adjusting the
equation of state.

Theoretical investigations of heavy ion collisions can have two starting points. Either one can invent
simple phenomenological models which describe one or another aspect of the reaction, or one has to
find reasonable approximations to the time dependent n-body Schrddinger equation

ihay™ot=Hy™ . (1.1)

Here ¢ is the n-body wave function and H™ the n-body Hamiltonian. The first approach has the
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advantage of being clearly defined and quite simple. Indeed, many of the gross features of heavy ion
reactions have been understood by such models. The above mentioned participant—spectator model is
an excellent example. It has the disadvantage that the complex reaction dynamics cannot be studied in
such simple models. Consequently, the results may strongly depend on the particular choice of the input
and the assumed reaction dynamics. An example of these problems are the models which try to
understand multifragmentation. Starting from quite different, almost opposite, assumptions (which
range from global equilibrium to processes like shattering of glass, from a liquid—-gas phase transition to
percolation of a lattice) almost all models produce the same form of mass yield curve. Conversely, it is
hard to make sure that the agreement between model and experiment really reveals the underlying
physics. For a discussion of these models see ref. [9].

The second approach suffers from the complexity of the equation, which cannot be solved in a
straightforward manner. Hence reasonable approximations are required. Before starting to solve the
time dependent equation a close inspection of the solutions of the time independent equation

Ed/(n) — H(")¢(") (12)

is advised. This equation was widely used to study the nuclear matter properties as well as binding
energies and root mean square radii of finite nuclei. One has to keep in mind, however, that this
equation is only valid as long as the mesons do not have to be treated as particles themselves but only
appear as potentials.

One of the most surprising results was, that in spite of the strength of the nucleon-nucleon
interaction, nucleons at low energies can be described in the Hartree-Fock approach. Here the
nucleons move in an average potential

(av™a)= X ({a,blv?Pfa,b) - (a,blv®|b,a)), (1.3)

E(b)< EFermi

which is generated by all other nucleons and no explicit two-body interaction is required. v'* refers
here to the two-body interaction. The single particle wave functions are then solutions of the one-body
Schrédinger equation with the potential V™" and the n-particle wave function is just the Slater
determinant of the single particle wave functions. Attempts to use potentials fitted to nucleon-nucleon
scattering data failed because the two-body term diverges. By employing effective potentials obtained
by summing the one-hole graphs, i.e., by solving the Bethe—Goldstone equation, this problem can be
resolved [10]. Even better agreement with nuclear matter properties is obtained employing a density
dependent local interaction V™" = U(p). The validity of such an approximation can be verified by
comparing these results with the original results based on two-body interactions. For actual calculations
a renormalized form of the density dependent potential is used which gives proper binding energies and
saturation density. Both quantities could not be reproduced simultaneously by a nonrelativistic
potential based on scattering data. Nevertheless, density dependent potentials seem to be a good
starting choice to describe the dynamics of nucleus—nucleus collisions.

In the energy regime E, , >25MeV/n, which we are interested in, the two colliding ions usually do
not come to global equilibrium in the course of the reaction. This complicates the problem tremendous-
ly. If equilibrium is reached, the details of the dynamics on the way towards it are not reflected in the
final observables. Here we have to follow the details of the dynamics from the initial separation of
projectile and target up to the final distribution of the remnants in phase space.
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The calculation of the time evolution of two colliding nuclei in phase space has first been performed
successfully in hydrodynamical calculations. Later also the Time Dependent Hartree-Fock (TDHF)
and the Boltzmann—Uehling—Uhlenbeck (BUU) equations were solved. The validity of each of these
approaches is limited to a certain energy regime. However, these equations have in common that they
are one-body equations; hence all predictions are limited to one-body observables like the double
differential cross section for protons or (n — 1)-body observables like the linear momentum transfer.
(Here the terms one-body and (n — 1)-body have to be taken with a grain of salt.) The formation of
fragments is beyond the scope of these models. The results obtained with these approaches have
recently been reviewed [4].

Here we present a microscopic dynamical n-body theory tailored to describe the formation of
fragments in heavy ion collisions [11-19]. It is dubbed “‘quantum molecular dynamics” (QMD), since it
is essentially a quantal extension of the classical molecular dynamics approach widely used in chemistry
and astrophysics. We will see, however, that this extension is not straightforward although the formal
structure of the equations is quite similar. Starting from the n-body Schrodinger equation we will derive
the time evolution equation for the Wigner transform of the n-body density matrix. This will show that
the time evolution is determined by the real and imaginary parts of the transition matrix (or - if the
blocking of the intermediate states becomes important —the Briickner g-matrix). We discuss the
approximations which are necessary to solve the final equation with present day computers. These
approximations include:

(a) the assumption that the scattering of the nucleons can be treated as if they were free, thus
allowing us to use measured nucleon—nucleon cross sections;

(b) the assumption that interference between two different sequences of collisions vanishes;

(c) the assumption that collisions are independent;

(d) the replacement of the real part of the transition matrix by an effective potential, which is easier
to handle and can be directly compared with the results of nuclear matter calculations and with the
effective potentials used in one-body theories;

() the assumption that the fermionic nature of the nucleons can be mimicked and that calculations
with antisymmetrized wave functions, which require an order of magnitude more computer time and
have not even been tried so far, do not give substantially different results.

To establish the validity of our approach we present extensive comparisons with the results of
one-body theories. The differences we find are rather small and are expected from statistical
fluctuations.

The emphasis of the QMD approach resides in actual calculations, which allow a detailed com-
parison with experimental data. Here our interests are concentrated on two topics: the understanding of
multifragmentation and the extraction of the nuclear equation of state.

For the first topic we performed calculations for almost all high energy fragmentation data. We find
remarkable agreement not only with single particle observables but also with fragmentation data. These
include the total cross section for fragment production, the multiplicity of fragments in a single event
and the transverse momentum the fragments gain as a consequence of the bounce off. This agreement
gives us confidence that we can use our approach to investigate the central question, namely what
causes a heavy target to break up into fragments? We find that at the energies considered the
multifragmentation is caused by a high density zone due to the traversing projectile. We could not find
any evidence for a liquid—gas phase transition. On the contrary, the investigated systems never reached.
complete local or global equilibrium.

Although in principle the nuclear equation of state should be obtained by nuclear matter calcula-



240 J. Aichelin, ** Quantum™ molecular dynamics

tions, it turns out that the uncertainties due to higher order terms and to the largely unknown behaviour
of mesons and resonances in nuclear matter are so large that reliable predictions are not presently
within reach. It is therefore a challenging possibility to infer the nuclear equation of state from heavy
ion reactions. For this purpose one follows the strategy of employing various potentials, which yield
different equations of state in nuclear matter, and investigating their influence on observables.
Unfortunately it turns out that the effects are of the same order of magnitude as those caused by small
variations in other input quantities, such as a change in the nucleon—nucleon cross section due to
in-medium effects, or a slight change of the momentum dependences of the nucleon—nucleon potentials
without changing the equation of state. Therefore many observables have to be measured simultaneous-
ly in order to disentangle these different effects. We will report on the present status of this project.

Although in principle the dependence of the equation of state on the input parameters can also be
investigated in one-body theories, this approach has a large drawback. Experimentally single particles
and fragments are measured. Both react differently to changes of the input parameters and have a
different probability to be detected even for the same energy/nucleon. In one-body theories there exist
only single particles. Hence a direct comparison with experiment is not possible and unfortunately the
effects observed by varying the parameters are of the same size as the uncertainties in relating
experiments to the one-body theories. Thus in this case a theory which is able to describe the formation
of fragments is again superior to one-body approaches.

This paper is organized as follows.

In chapter 2 we start with a review of the nuclear equation of state obtained in nonrelativistic and
relativistic nuclear matter calculations. We discuss why it is essential to disentangle the density and
momentum dependent parts of the nucleon—nucleon potentials, which determine the equation of state.
We give the present status of different nuclear matter approaches and discuss the current results for the
optical potential at high densities and temperatures.

In chapter 3 we review the kinetic equations which are or which can be employed to describe the
dynamics of heavy ion collisions on the one-body level. The quantal one-body equations can be derived
from the n-body von Neumann equation in analogy to the BBGKY hierarchy in classical transport
theory. We will show which approximations are made to obtain the TDHF, the intranuclear cascade
and the BUU equations.

In chapter 4 we discuss the derivation of the QMD equation from the n-body Schrodinger equation.
We investigate in detail the approximations which are necessary and the range of validity of the QMD
approach. We motivate the choice of the initial distribution, and finally discuss the independent
scattering approximation and the present status of the attempts to solve the time evolution equation for
fermionic systems.

Chapter 5 is devoted to the description of the numerical realization of the QMD model. We discuss
the inputs from nuclear matter calculations and present in detail how the equations are solved. We
report on the tests performed and compare our results with those of one-body theories.

In chapter 6 we present calculations of fragment production and confront them with experimental
data. We take advantage of the additional information available in the calculation, i.e., we study the
coordinate space distribution as a function of time to investigate the impact parameter dependence of
the reactions and to study correlations between the initial and final distribution of the nucleons.

In chapter 7 we present a detailed comparison of our proton data with experiments and with the
results of one-body theories. We investigate different suggestions of observables being sensitive to the
nuclear equation of state and discuss the influence of the equation of state on particle production and
the collective flow. We also investigate how variations of the cross section and the momentum
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dependence of the interaction influence the observables and whether this may spoil the information on
the equation of state.
Finally, in chapter 8 we summarize the results and present the conclusions.

2. The nuclear equation of state

One can think of three different sources to obtain information about the nuclear equation of state
(EOS):

(1) astrophysical measurements, in particular the explosion of supernovae and the stability of
neutron stars;

(2) giant monopole vibrations;

(3) high energy heavy ion collisions.

Up to now the key quantity “compressibility” extracted in these three different approaches still
differs by a factor of two. Some authors claim that their models for supernovae need a soft equation of
state (EOS) with a compressibility of K = 140 MeV in order to make them explode [20]. A stiffer EOS,
i.e. a larger value of K, does not allow sufficient energy to be stored during the collapse phase and
hence the subsequent explosion dies out on the way to the surface.

Early analyses of giant monopole resonances seemed to yield a compressibility of K ~ 200 MeV [21].
Recent more refined experiments, however, lead to much larger values (K =300 MeV) [22]. A still
higher compressibility, K =380 MeV, has been deduced from 4w data [23, 24].

The discrepancy between the results obtained in these different fields may be less surprising if one
keeps in mind the quite strong assumptions made in the calculations of heavy ion reactions and
astrophysical phenomena as well as the different time scales and/or momentum space distributions
involved:

(1) The iron core of the progenitor star could be smaller [25] than estimated previously [26]. Then
prompt supernovae explosions would occur even with a stiff EOS [27].

(2) The supernova explosions could be due to mechanisms other than the prompt bounce, e.g. by
late shock revival due to neutrino heating [28].

(3) The time scales involved in the two processes are quite different (107> s versus 10> 5), so that a
softening of the neutron matter equation of state due to processes in B-equilibrium could be important
[29].

(4) The angular momentum of the progenitor, which should play an important role in the prompt
collapse, has been ignored in most calculations. Up to now almost all conclusions are based upon
one-dimensional hydrodynamical calculations [30]. Recent calculations present evidence that the
collapse of a rotating star can yield a quite different scenario compared to a static collapse [31].

(5) The momentum dependence of the interactions could provide an additional repulsion in heavy
ion collisions, which could help to produce the large observed transverse momentum transfer [13, 32~
35].

(6) The in-medium scattering cross section could be smaller or larger than the free cross section. Up
to recently nuclear matter calculations predicted a reduced in-medium cross section [36,37] for
momenta larger than the Fermi momentum. Now it seems that a better description of the pion
polarization may enhance the cross section [38, 39].

(7) In monopole vibrations [21,22] the nucleons oscillate around their equilibrium density. How-
ever, the change in density is less than a tenth of a percent, whereas in heavy ion collisions we expect to
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obtain more than twice nuclear matter density. So it seems quite unrealistic to extrapolate the EOS
from these small density variations to very high densities.

All information beyond the sparse astrophysical observations on rare events like, e.g., SN1987A has
ultimately to be obtained from nuclear collisions simply because there is no other reliable source of
experimental information. This situation makes it not only worthwhile but compulsory to try to extract
information on the nuclear equation of state (EOS) from heavy ion experiments. This, however, is a
very complicated task and hence only about the first steps towards this ultimate goal can be reported.
The main ~omplications are:

(1) The properties of finite nuclei are quite different from those of nuclear matter. Even in the
heaviest nuciei most nucleons “feel” the surface. This makes it difficult to relate results of nuclear
experiments to properties of nuclear matter.

(2) High densiites can be obtained in heavy ion collisions only for very short times (of the order of
10 fm/c). Such & time span may be too short to allow possible phase transitions, which may occur at the
same densiiy but on a longer time scale.

(3) Nuclear matter calculations are not able to reproduce the known nuclear properties. Even the
most sophisticated nuclear matter calculations with potentials adjusted to nucleon-nucleon phase shifts
are not able to describe the experimental facts on the binding energy at saturation density and the
optical model potentials measured in proton—nucleus collisions. Modelling high energy heavy ion
collisions requires knowledge of these potentials not only at nuclear matter density and zero tempera-
ture but also at high densities and high temperatures. Even calculations which agree on ground state
properties and optical potentials at normal nuclear matter densities give vastly different results at high
densities and temperatures.

(4) Only in extreme cases (central collisions in heavy projectile—target combinations) [17] do the
light particles reach a global equilibrium. Usually we face situations far from equilibrium. This
complicates the theoretical calculations tremendously; e.g., relatively simple equilibrium Pauli blocking
in the g-matrix calculation cannot be applied. Furthermore, dynamical models which require local
equilibrium like fluid dynamics or hydrodynamics can only be applied with caution. They do not allow
one to investigate whether a discrepancy between theory and experiment is due to the assumptions of
equilibrium kinematics or due to a wrong parametrization of the potentials.

So the determination of the properties of nuclear matter under extreme conditions requires not only
a detailed calculation of the dynamics of the system but also further progress in calculating the static
properties of finite nuclei under extreme densities and temperatures. Ultimately only a combined effort
can lead to success.

2.1. The nuclear equation of state

The properties of nuclear matter in equilibrium can be described by two variables, the density p and
the temperature T. The pressure P, i.e. the equation of state, can be obtained from these variables via
the thermodynamical relations. In nuclear physics one usually defines the energy/baryon E, which is a
function of p and T. E is connected to the pressure by the relation P = p”> 0E/dp|,._.. ... Here S denotes
the entropy. The compressibility K is defined as K =9p dP/3p|s_.one- In order to disentangle the
change of the static energy/baryon due to cold (7 = 0) compression from the energy due to an increase
of the temperature, we define [4, 40]

E(p’ T)=ET(p’ T)+EC(p7 T=0)+E0’ (21)
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where E_ is the compressional energy and E; is the thermal energy. E; consists of the kinetic energy
above the degenerate Fermi gas and possibly of a potential energy (if momentum dependent potentials
are used). Only a single point of this two-dimensional surface E(p, T) is known experimentally: At
normal nuclear matter density k ~1.36 fm ™, the binding energy per baryon is E, = —15.75 MeV
and the pressure equals zero.

Fermi

2.2. Nonrelativistic nuclear matter calculations

The energy per nucleon in nuclear matter and ultimately the equation of state, i.e. the dependence
of the binding energy on the density p and the temperature T, should in principle be calculated from the
underlying nucleon—nucleon interactions. This has been attempted using the Briickner g-matrix [10, 41]
approach, but was not completely successful, as we will see. The same is true for the optical potential,
which describes how an incoming proton reacts with the target nucleus, which is considered as a
one-body object, thus reducing the (n + 1)-body problem to a two-body problem.

The retarded Green’s function, which describes at the same time the propagation of a particle added
to the medium and of a hole punched into the medium (of momentum k and energy E), is given by

1

G+k,E= ’
(k E) E-K/2m - M(k,E) +ie

(2.2)

where the mass operator M(k, E) is a function of the Briickner g-matrix. The g-matrix is defined via the
Bethe-Goldstone equation,

Za,b |a’ b><a’ b|

BE)=V +V g 8E). (23)

If E is less than twice the Fermi energy the imaginary part of the propagator can be omitted because it
does not have a pole. We will discuss the consequences in chapter 3. Here V is the elementary
nucleon—nucleon interaction; usually a multiparameter fit to nucleon-nucleon scattering data such as
the Reid soft core potential [42] is used in these approaches. The sum runs over all unoccupied states
|a, b) and e(a) is the single particle energy of the state a,

e(a) = a’/2m + Re M(a, e(a)) . (2.4)
The mass operator M(a, e(a)) can be expanded in g [41]. The second-order approximation reads as
M(a, E) = M,(a, E) + My(a, E), (2.5)

M,(a, E) = 2,: n(j)a, jIg(E + e()))la, j) +{a, jIg(E + e(j))|], a) , (2.6)

M,(a. E) = % ];k n()n([L - n(o)] [/, jlge®) +§(1)212’, Ii)ef,ﬁl’-jlf,-(fflf : eIk )l
h (2.7)

Here n(j) is the occupation probability of the single particle state j. The single particle energy e(a)
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depends on M(a, e(a)). M(a, e(a)) in turn depends on the single particle energy e(a), so that we have to
determine M(a, e(a)) self-consistently. The mass operator M(a, e(a)) can be identified with the complex
optical model potential,

M(a, e(a)) = V(a) +iW(a) , (2.8)

which is the potential felt by a particle that enters nuclear matter. This potential can be measured in
proton—nucleus reactions. This allows us to check the validity of the approximations necessary to
calculate an optical potential from the nucleon—nucleon interaction. Actual calculations show [41] that
for particle energies between O and 200 MeV the real part of the optical potential can be quite well
approximated by

V(k, p) = Vy(p) + (ak’/2m)plp, , » (2.9)

with @ =0.3. & is the proton momentum and m the proton mass. Comparing now eq. (2.9) with the
result of eq. (2.2) we find that the main influence of the surrounding nuclear matter on a particle is the
change of its mass from m to

K m
AKY2m + (@k2m)plp,]  1+03plp,

*

m (2.10)

The momentum dependence of the optical potential contains a generic momentum dependence of the
potential as well as the nonlocality of the potential. By inspecting the Schrodinger equation, one can see
that the latter can also be expressed as a momentum dependence.

The extraction of the nuclear matter properties from nucleon-nucleon potentials adjusted to
nucleon-nucleon scattering data [42], however, failed in nonrelativistic calculations. They yield a
saturation density of nuclear matter about twice as high as experimentally observed. Also, when applied
to finite nuclei, these forces do not reproduce experimental facts [43]. For different potentials which are
adjusted to nuclear scattering data the extracted binding energies and root mean square radii fall on a
line, the Coester line, which does not match the experimental point. Even the inclusion of three-body
correlations [44] does not cure this problem, which seems to be intrinsic in nonrelativistic nuclear
matter calculations. The most probable reason for this will be discussed in the next section.

In order to enforce saturation at normal nuclear matter density a phenomenological force has to be
invoked. Friedman and Pandharipande [45] introduced a repulsive interaction in a form which can also
be expressed as the density dependence of the two-body potential v,. For densities close to nuclear
matter density

AE/A = —v,ap =3.6(plp,)’ [MeV] (2.11)

yields the correct binding energy of —15.75 MeV/n of nuclear matter. Calculating the energy/nucleon,
i.e. the equation of state

E_, 1f ] f (1-26 )
—=31E.+>|dpV(p)=3E.+=B|dppll-—"p]), 2.12
a - sEt o] de (p)= %E¢ pB pp R4 (2.12)

we obtain a quite low compressibility as can be seen by inspecting fig. 2.
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Fig. 2. Nuclear equation of state as predicted by different theories. We display the compressional energy obtained in the phenomenological
approach of Friedman and Pandharipande [45], which is very close to that of Horowitz and Serot [47], as well as Dirac—Briickner calculations by ter
Haar and Malfliet [36]. For the sake of comparison we also display the hard equation of state used in VUU and QMD calculations [64).

The phenomenological introduction of such a term excludes, however, the approach for high energy
heavy ion collisions. In the ground state the equation of state is a function of the density only, because
the Fermi motion yields terms proportional to (p/p,)*". Thus from comparison at the single point (at
zero temperature and normal nuclear matter density) where one knows the binding energy one cannot
disentangle the static from the kinetic part of the equation of state [see eq. (2.1)], i.e. momentum and
density dependent potentials. To have both these parts separated is essential for the description of
heavy ion collisions. Here we have initially a large relative momentum between projectile and target
nucleons and hence a momentum dependent potential would act quite differently than a density
dependent potential. This will be discussed in section 2.4.

2.3. Relativistic nuclear matter calculations

Relativistic nuclear matter calculations [36, 46—48] usually start out from a Lagrangian density which
describes baryons i, scalar mesons ¢ and vector mesons V,,

L=y, (10" — g V*)—(m—g )y
+5(0, 09" —mi¢*) - 1(8,V,—a,V, ) + YmlV V* —iF, F*". (2.13)

Mesons with pseudoscalar and pseudovector coupling are neglected because they do not contribute in
the mean field approximation in spin saturated nuclear matter. The motivation for this approach comes
from the experimental observation that nucleon—nucleon potentials, fitted to nucleon—nucleon scatter-
ing data, exhibit a strong attraction due to the exchange of a scalar particle at medium range and strong
repulsion at short range due to the exchange of a vector particle. The parameters of this theory, i.e. the
masses and the coupling constants, can be determined from experiments.

The equations of motion of these interacting fields have not been solved so far. Further approxima-
tions have been made. The most commonly used approximation is the mean field approach of Serot and
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Walecka [46]. They assume that the time and space evolution of the mesons can be neglected and the
actual meson fields can be replaced by their mean values,

¢y = (&/m) () = (8/md)p, , (2.14)
Vo=(8/m){y'y) = (g/m)p. (2.15)

Here p, is the scalar density and p is the baryon density. With these approximations we calculate the
energy density

E g m: | f
Z =05y 40 —m*)Y -+ - B Ik VE + 2.16
A 2m2 P 283 (m m ) P 2m3 p (271_) o m* ( )

v

where the density p, the scalar density p_, the baryon current B and the effective mass m* are given b
y Y P y g y

ke
_ 7 J' 3
= d’k, 2.17
p (271_)3 J ( )
kg

— , 2.18
P, (277)30 ViE+ m* (2.18)

kF
Y 3 k
B= d’k , 2.19
(2 )3 Vik? + m*? ( )
m*=m~(g/m})p, . (2.20)

For later use we define U =g./m_ and V= g>/m’, with couplings chosen in order to reproduce the
binding energy at normal nuclear matter density. For nuclear matter (degeneracy factor y =4) this
mean field ansatz yields a very stiff equation of state (K = 500 MeV). This approach can be extended to
finite temperatures and to terms proportional to ¢’ and ¢* [49]. The higher order terms allow a
softening of the equation of state in agreement with the known nuclear matter properties. They
introduce two new parameters, which can be fixed by optical model experiments [49] and by the
compressibility extracted from monopole vibrations.

Recently it was pointed out by Brown et al. [50] that the failure of the nonrelativistic nuclear matter
calculations is most probably due to a process which is embedded neither in a nonrelativistic theory nor
in a relativistic mean field approach. A strongly repulsive density dependent contribution to the particle
potential is caused by the virtual production of a nucleon—antinucleon pair via a scalar interaction. For
p’> <M this term contributes to the single particle energy by [51]

AE=(UM)p*2m . (2.21)

Assuming that U = —400 MeV- p/p, the energy per nucleon is changed by [51]
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AE=2.4(plp, P {(p) (2.22)

where ( p?) =0.6p}. .. is the average Fermi momentum squared at normal nuclear matter density. This
term reveals a quadratic density dependence and hence the same form — and even the same numerical
values — as the phenomenological term of Friedman and Pandharipande (eq. 2.11). A comparison with
the experimental values of the optical potential clearly demonstrates that the virtual pair creation
accounts for almost the entire energy dependence. However, this should be verified by more elaborate
calculations since it would imply that all the other contributions to the momentum dependence of the
potential have to cancel.

The other contributions can best be discussed using the [51, 52] “Schrodinger equivalent” potential
of the Walecka mean field theory. The Dirac equation of a particle with energy E interacting with the
medium via a mean scalar field U and vector field V is

(E-Vp)y,—yp—m—Up,=0. (2.23)
We multiply the equation with

(E-Vp)y,—y-pt+tm+ Up, (2.24)
and we obtain the quadratic equation

(E-Vp)-p*=(m+Up) . (2.25)

Replacing E by ¢ + m and identifying the asymptotic momentum k>, = &’ + 2me with p* + 2mV(e),
we finally arrive at

(Up)" — (o)’

V(e)=Vp + Up, + o

+Vp % , (2.26)

with p, = (E/m)p. The energy/nucleon is then given by

E 3p: 1 3 p;
ZZE_;; fV( s)dp~——F+2V(e), (2.27)

where the factor 1/2 comes from the conversion of the potential to the potential energy for a two-body
potential.

We see also that relativistic calculations yield a repulsive potential which is proportional to the
kinetic energy of the particles and proportional to the density. Taking the values of the original mean
field theory U= —-420MeV and V=330MeV we even end up quantitatively with the nonrelativistic
dependence of eq. (2.9), V(k, p) =V,(p) + 0.3Tp/p,, where T is the kinetic energy of the particle. The
value of the coefficient of proportionality « as well as the linear dependence of the second term on the
density have been confirmed recently by more involved Briickner—Dirac [36, 47] calculations.

Horowitz and Serot [47] advanced a renormalized theory where the one nucleon loop corrections
were taken into account. These loops are very repulsive thus lowering the value of the attractive scalar
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potential to roughly half of the original mean field value. A smaller scalar potential increases the value
of the effective mass, which was too low at high densities (m*/m = 0.2 at p = 4p,). The repulsive vector
potential is lowered in magnitude as well. Both together reproduce the binding energy at normal
nuclear matter density quite well. This calculation yields a quite soft equation of state (compressibility
K =200 MeV), a value which is almost identical to the one obtained by Friedman and Pandharipande
[45] in their phenomenological nonrelativistic calculation. Ter Haar and Malfliet [36] published results
of a Briickner-Dirac calculation which include the production of the A(3, 3) resonance but they do not
renormalize the one nucleon loop. Their results agree almost completely with the original mean field
values, in the quantitative values as well as in their dependences. Thus they obtain a very hard equation
of state with a compressibility of 500 MeV. Both calculations, however, do not agree with experiment.
In a recently published analysis of Ca(p,p’) data Cooper and al. [53] found a quite strong energy
dependence of both the scalar as well as the vector potential. Both lose strength almost linearly with
increasing energies. In mean field calculations, where the mesonic degrees of freedom are not treated
dynamically, both fields have to be constant. So obviously one has to go beyond the mean field
approach to explain the data. First successful attempts to include the dynamics of the meson field were
reported by Cusson et al. [54] and more recently by Feldmaier et al. [55], who solved the Euler-
Lagrange equations derived from the Lagrangian (2.13). However, a detailed comparison between data
and theory has not been made up to now.

Applying the mean field concept to relativistic heavy ion collisions several additional difficulties arise
[51]:

(1) Projectile and target are moving in the centre of mass system. In a moving system the scalar
density is decoupled from the vector density because p, equals p/y. In heavy ion collisions projectile
nucleons ““feel” the potential not only from the other projectile nucleons - where p = p, - but also from
the target nucleons — where p > p —and vice versa. The resulting repulsion adds to the energy
dependence already present as one can see from eq. (2.26).

(2) The vector potential, which has only a fourth component in the rest system, now gets other
components. The vector field carries a sizeable fraction of the total momentum and hence the
momentum of the nucleons is lowered.

(3) We explore densities much higher than normal nuclear matter densities. During equilibration the
density increases and the energy is stored in mesonic degrees of freedom. None of these problems is
satisfactorily solved so far.

Due to these circumstances it is premature to use the result of one specific relativistic or
nonrelativistic nuclear matter calculation as input of a dynamical calculation. Considering the men-
tioned difficulties we cannot expect to relate the specific form of the nucleon—nucleon interaction with
the results of a dynamical calculation. Rather than aiming at deriving the nucleon-nucleon potential
from heavy ion experiments, we have the more moderate goal of obtaining information on the equation
of state in nuclear matter. We start with a parametrization of the nuclear equation of state with as few
parameters as possible and adjust the experimental energy dependence. This operational point of view
ensures that we get the correct infinite matter properties. The dependence on the parameters chosen is
easy to handle. If we reduce our n-body theory to a one-body theory, the average potential coincides
with a nonrelativistic local density approximation to the g-matrix. This approximation has been
successfully used in time dependent Hartree—Fock calculations. Recently it has been shown that this
approach remains reasonable also at high beam energies [56].

Since we want to solve an n-body theory we have to employ nucleon-nucleon potentials and not a
mean field. There are an infinite number of effective nucleon—nucleon potentials which yield a given
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equation of state. We take one which is easy to handle numerically, i.e. a local interaction in coordinate
space supplemented by a Yukawa and a Coulomb part. Hence the total interaction reads as

V= 0‘53(’1 —-r)+ 353("1 - "z)53("1 —r)+ Veoulr,— 1)
+ Viury = 1) + Voa(py _P2)53("1 -r). (2.28)

Vnai Stands for the momentum dependent interaction. The parameters are varied to allow the study of
different equations of state without changing the ground state properties.

This procedure results in the following strategy: Rather than performing straightforward calculations
with nucleon—-nucleon interactions adjusted to scattering data and making predictions, we have to
perform the calculation with a variety of reasonable sets of parameters which all give the correct ground
state properties. We first have to search for observables which are sensitive to different interactions and
investigate then whether one set of parameters can satisfy all the experimental observations. Further-
more this can help to determine which additional observables should be measured. One of the major
obstacles towards this goal is the observation that momentum dependent interactions and density
dependent interactions can produce, at least qualitatively, the same phenomena.

2.4. Momentum dependent versus density dependent interactions

In this section we will explain why momentum dependent and density dependent interactions can
produce similar effects for some observables.

As long as the projectile and target do not overlap, the relative momentum between the interacting
nucleons is rather small. Therefore momentum dependent interactions do not play an essential role.
Now let us assume that projectile and target hit at a semi-central impact parameter. As soon as the
nuclei overlap, particles of very large relative momenta are positioned closely in configuration space
(fig. 3a).

Here projectile nucleons “feel” a very strong repulsive potential due to the neighbouring target
nucleons and vice versa (fig. 3b). Outside the overlap region we find either projectile or target
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Fig. 3. Transverse momentum caused by momentum dependent forces. (a) The reaction in the beam—impact parameter plane. (b) The potential
along the x axis. We see in the overlap region a strong repulsive and outside it an attractive potential. Hence the particles want to leave the overlap
zone by gaining transverse momentum.
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off plane squeeze -out

bounce off

Fig. 4. Pictorial display in the in-plane bounce off caused by compression. We see that the forward moving particles have opposite transverse
momentum to the backward moving particles. Also displayed is the squeeze out, the enhanced emission of light particles perpendicular to the
reaction plane close to mid-rapidity. Both effects are caused by compression and have been predicted in hydrodynamical calculations {4].

nucleons, and therefore the potential is still attractive. Consequently there is a strong potential gradient
perpendicular to the beam direction, i.e. in the direction of the impact parameter. This causes a strong
force which tries to sweep particles out of the overlap zone quite early during the reaction. This force
transfers an appreciable amount of transverse momentum to the particles. So we expect a finite
transverse momentum transfer. This transverse momentum causes the system to expand radially, thus
decreasing the density. Hence we obtain a lower maximal compression. In this more dilute system fewer
collisions can occur since the mean free path has increased. Observables which are connected to the
number of nucleon-nucleon collisions should reflect this lower number. Also we should see a strong
beam energy dependence of the observables.

If we employ a static interaction only, we have a density of about twice nuclear matter density in the
overlap region when the nuclei start to overlap. For realistic potentials the difference between normal
and twice nuclear matter density is small as compared to the additional difference due to the
momentum dependent interactions. Therefore we do not have large transverse momenta at the
beginning of the interaction. We rather expect more equilibration and a higher central density. Hence
more energy is stored in compressional energy. During the expansion this energy is released.
Consequently particles from the compression zone pick up their transverse velocity later than in the
case of momentum dependent interactions. A pictorial view of this process is displayed in fig. 4.

Since the mean free path is shorter in this case, all observables connected with the number of
collisions should be different from the values calculated for a momentum dependent potential.

Hence finite transverse momentum transfer is obtained in both cases. However, it remains to be
checked, and this is one of the goals of the detailed calculation, whether the two different assumptions
can quantitatively produce the same result. This question will be investigated in chapter 7.

3. Kinetic equations

All information about a quantal n-body system such as two colliding nuclei with A projectile and
n— A_ target nucleons - if we neglect particle production — is contained in the n-body density matrix,
whose time evolution is given by the von Neumann equation. As a boundary condition the solution of
this equation requires the knowledge of the unknown initial correlations among all nucleons and
therefore only a formal solution is possible. This formidable task has not been tackled so far.
Furthermore, a complete solution probably is so complicated that it does not help to understand the
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physics which governs the nucleus—nucleus reaction. So it is not only compulsory but also for the benefit
of understanding if one concentrates on reasonable approximations to the quantal n-body equation.

A variety of approximations have been suggested and applied so far to investigate heavy ion
reactions. Their validity depends on the energy range and the desired information. One can start out
from the intuitive picture that a nucleus which interpenetrates another nucleus can be described as a
superposition of quasi-particles. They move in an average field generated by all the other nucleons and
undergo hard stochastic scattering, which changes the quantum state of the considered nucleon. This
picture emerges from the structure of potentials fitted to nucleon-nucleon scattering data and their
action in nuclear matter. They show a strong repulsive core and a long range attraction. In nuclear
matter the long range attraction of all the fellow nucleons can be described as a mean field. The short
range repulsion is highly suppressed due to the Pauli principle and can be understood as a scattering of
the particles into unoccupied states. Low momentum scattering and hence long range correlations are
forbidden since the states which can be reached with low momentum transfer are already occupied and
hence Pauli blocked. So between subsequent collisions the particles move on mean field orbitals.

The classical equation of motion approach [33, 57, 58] lacks stochastic collisions. It is assumed that
classical potentials act among the nucleons which are considered as classical particles. This approach
will be discussed in section 3.1.

The validity of the different approximations made can best be judged if one introduces different
length scales. For this purpose we define:

mean free path: A =2-10 fm,

length of the system: L =5-15fm,

range of the hard core interaction: a = 0.4 fm,

length of the de Broglie wavelength: A~ 1fm at the Fermi energy.

Unfortunately in nuclei all ratios of these length scales are of the order of unity. So any
approximation which is based on the ratio of two lengths being small is close to the limit of its validity if
applied to nuclear physics.

If A< X we are in the classical regime (although this is not quite true since we have diffractive
scattering). This approximation is best for E,_, =200 MeV/n, where the energy per nucleon in the
centre of mass system is large as compared to the Fermi energy. This is the energy regime where the
classical molecular dynamics approach [33, 57, 58] has been applied to heavy ion collisions.

If A< L we are in the domain where fluid or hydrodynamical equations can be applied {4, 59].
However, these equations are derived under the assumption of local equilibrium and small deviations
from local equilibrium, respectively. Therefore they rely completely on the assumption that in heavy
ion collisions the time for local equilibration is short. Since A is decreasing with energy due to the less
effective Pauli blocking, this approach is best suited to high energy collisions of very heavy nuclei.

If a< A and A< 2 we are in the dilute limit. This is the domain of the Boltzmann equation, the
Boltzmann-Uehling-Uhlenbeck equation [60-65] and the cascade calculations [66, 67]. All assume that
subsequent nucleon—nucleon collisions are independent. Between collisions the particles move on
straight line trajectories (in cascade calculations) or on curved trajectories (in Boltzmann-type
calculations) under the influence of a mean field.

Finally, at very low energies we find A > L; due to the Pauli principle most of the states into which
the particles may scatter are already occupied and hence the effective cross section is quite small. At
beam energies of a few MeV/n we can expect a mean free path of ~10 fm [68]. In this extreme limit one

may neglect collisions completely and then arrives at the time dependent Hartree—Fock theory [69-71]
(TDHF).
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Formally the Boltzmann-Uehling-Uhlenbeck equation, TDHF, cascade calculations and hydro-
dynamics represent just different truncation schemes to the n-body density matrix. This will be
discussed in sections 3.2 and 3.3. Some of the results obtained with these approaches have recently been
reviewed [4].

3.1. Classical molecular dynamics approach

A classical n- body system is described completely by the n-body phase space density
f™(p,s....p, r...,r,, t), whose time evolution is given by the Liouville equation

(8/anf (1) = u1ﬂ%m—~20-VfW+Ame> (3.1)

Here {a, b} denotes the Poisson bracket and we have made use of Hamilton’s equations.

The classical molecular dynamics approach is directly modelled to solve the Liouville equation
numerically, using a Monte Carlo sampling procedure. For heavy ion collisions the calculations
(33,57, 58] are performed as follows: Initially the posmons and momenta of all » nucleons are chosen
randomly in a sphere of radius R = r,]AlT/3 and R = r A}, respectively. Hence the n-body phase space
density is the product of delta functions in phase space. During the nuclear collision the nucleons are

propagated using Hamilton’s equations,

':l':Vp‘H=pi/m+Vp,V(pl""’p")’ (32)

p=-VH=F,, (3.3)

where the force F; is glven by F,= -V U with U, = %,.; V- Finally, physically meaningful observables
are obtained by averaging over many runs of dlfferent initial configurations.

Hence, the Classical Molecular Dynamics approach is a true n-body theory, which keeps track of all
correlations among the particles. It is also able to treat nonequilibrium situations, which appear at the
early stage of a heavy ion collision.

In this approach all essential quantum effects have to be mimicked by the proper choice of the
potential. In order to give the calculations a predictive power, the classical nucleon—nucleon potential
V,;, simultaneously has to take care of

(1) the proper binding energy/nucleon,

(2) the measured scattering cross section,

(3) the stability of the nucleus for a time span required for a nucleus—nucleus collision.

Especially the second point is hard to mimic in classical theories because it reflects typical quantum
features like Pauli blocking and diffractive scattering.

In practice [33, 57, 58] the potential is chosen as a sum of an attractive and a repulsive Yukawa
interaction. Hence four parameters have to be adjusted (two ranges and two strengths). The cross
section is calculated with the weight factor appearing in the calculation of the viscosity coefficient from
the Boltzmann equation. This weight factor emphasizes the transverse momentum transfer more
strongly than the total cross section.

Actual calculations have shown that the potential cannot fulfill the above-mentioned requirements to
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a degree which allows quantitative comparison with experiments. There is not enough room to
accommodate the Pauli principle, and probably more important, for strong gradients of the potentials
Hamilton’s equations are a poor approximation to the evolution of the quantum system. Here the
quantal features must be implemented via short range stochastic scattering [72], as we will see in
chapter 4. Usually the stability leaves much to be desired because due to the huge fluctuation of the
potential it is almost impossible to initialize the nucleus close to its ground state. So the particles are
emitted rapidly. Hence the classical molecular dynamics approach was mainly used for schematic
studies and never allowed detailed comparison with experiments. The only recent use of this model was
an investigation of the possibility of a liquid-gas phase transition in expanding nuclei [73].

3.2. Density matrix, reduced density matrix and their time evolution

In this section we will review the definition of the n-body density matrix and the reduced density
matrices. We will start out from the quantum von Neumann equation, which is equivalent to the n-body
Schrodinger equation. It describes the complete time evolution of a quantal system. We proceed by
defining reduced density matrices which act in a subspace only. Their time evolution can be defined in
very close analogy to the classical BBGKY hierarchy equations [74]. We derive the equation for the
time evolution of the one-body density matrix, which depends on the two-body density matrix. This
general feature that the equation for the m-body density depends on the (m + 1)-body density, which is
true for all reduced density matrices, requires for actual calculations a truncation of the (m + 1)-body
density into products of at most m-body densities. This will be discussed in section 3.3.

N-body density matrix. Let |®,) being a n-body state vector of an isolated n-body system with the

quantum number k. Then the complete information about the n-particle system is contained in the
n-body density operator

p(")=l¢k><¢kl ) (3.4)
which reads in coordinate space as
PAR(CHY A RN AEK X (SR -1 (A A N (3.5)
The expectation value of an operator A can be defined as |
(4)=(9]A|2,)
=f¢*(r{,...,r,’,)A(rl,...,rn,r{,...,r,’,)<I>(r1,...,r,,)d3r1---d3rnd3r{---d3r,’,
=tr[ Ap] . (3.6)
For an isolated system the density operator is a projection operator,
Py =p", (3.7).

with Tr[p°] =1. A system whose density matrix satisfies this condition is said to be in a pure state.
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If the system is not isolated but, for example, in contact with a heat bath it is useful to extend the
above definition and define the density matrix of a system in a mixed state as

P(n):;|¢k>wk<¢k|’ (3.8)

where k runs over the complete set of basis states |®, ) and w, describes the probability that the system
is in the state |®,). We normalize w, by requiring L, w, = 1.

Reduced density matrix. We define reduced density matrices by

p = —= LLePo) n)p(n) . (3.9)

,,,,,

,.)P(") =1, we obtain for the expectation value of the k-body operator A“,

.....

(A“y =~ tr(l A P (3.10)

However, other definitions can also be found in the literature.

Time evolution of density matrices. The time evolution of the n-body density operator is given by the
von Neumann equation

i(a/0t)p (1) =[H, p™(1)] . (3.11)

Here H is the Hamiltonian, which is assumed to consist of the kinetic energy and two-body interactions
only,

H=2T,.+%EVU. (3.12)
i ij
i#j

One defines the Liouville operators L, =[T;, ] and L,;=[3V;, ] and expresses the von Neumann
equatlon by

n

2y =-i(Z L+ 3 L,)o"(). (3.13)

j#i

To obtain the time evolution for the k-body density matrix we integrate over (n — k) particles and, due
to the cyclic invariance of the trace, arrive at

(k) =_-_n‘_ <" N ) )
p (1) 1( et TGt g ‘El (1)
J#i
o > 1+ 3 1,43 3 1)
=gz - . "(r). 3.14
el S0 2D 3 L) (3.4

&
L}
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Since by definition the density operator is symmetric in its variables we can simplify this expression
further,

M-

LS

k k
d 3 . n! ( _ ) (n)
ot p « (H)=-i (n—k)! T, n) 2 L+ A lLij +(n—k) 12::1 Ly )p (1). (3.15)

i=1 i

i Eat

This is the general form of the evolution equation of a reduced density matrix. We observe that for
two-body interactions the time evolution of the reduced m-body density matrix depends on the
(m +1)-body density matrix. The same feature is observed in classical physics for the BBGKY
hierarchy equations [74], i.e., the equations for the time evolution of the reduced phase space densities.
In order to obtain a solution one has to truncate the (m + 1)-body density matrix to products of at most
m-body density matrices.

The first two equations of this hierarchy read as follows:

d .

3t p (1) = _1[L1P(l)(t) + tr(z)leP(Z)(t)] ) (3.16)

d . .

ot P(Z)(t) =—i[(L, + L, + le)P(Z)(t) (L + L23)p(3)(t)] . (3.17)
The sum over all particles i +1, . .., n cancels just the different factors in front of the traces tr;, n)
and tr

(i+1,..., n)

3.3. Different truncation schemes

In order to solve the time evolution equation of the m-body density one has to truncate the
(m + 1)-body density matrix. In this section we will review three different truncation schemes of the
two- and three-body density matrices, which lead to different one-body quantum kinetic equations. The
first approach reduces the time evolution of the one-body density matrix to the TDHF equation written
in the density matrix formalism. The second approach describes the time evolution of the one-body
density if the range of the interaction potential is small compared to the mean free path, i.e. the dilute
limit. In contrast to the TDHF equation the potential does not have to be smooth. We introduce two
different time scales, ¢_,, the time between two subsequent collisions, and ¢,,,, the duration of the
interaction. If ¢, >t , we can assume that between the individual nucleon-nucleon interactions the
density matrix is diagonal in momentum space; then the n-body density matrix is just the product of
one-body density matrices. With this approximation the equation turns out to be formally very similar
to that of the classical Boltzmann equation with vanishing potential.

The third approach makes a specific ansatz for the three-body density matrix and describes the time
evolution of the one-body density in a smoothly varying self-consistent mean field with short range hard
core interactions. This reduction scheme was widely used in the so called Boltzmann—-Uehling—
Uhlenbeck (BUU) or Vlasov-Uehling—Uhlenbeck (VUU) calculations. In the further derivation we
will set A=1.

Time dependent Hartree—Fock equation. In the time dependent Hartree~Fock approach [69, 70]
(TDHF) the two-body density matrix is approximated by the antisymmetrized product of the one-body
density matrices,
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Prows = 0103 = p3 0" = AppiVpl (3.18)
This method to approximate two-body densities by the product of one-body densities is called the
Stosszahlansatz and goes back to Boltzmann, who via this method obtained the classical Boltzmann

equation. With this ansatz for eq. (3.16) we can perform the trace over particle 2 and arrive at the
familiar TDHF equation,

(3/30)p (1) = ~i[T + U, p{"(0)], (3.19)
where U is obtained by performing

tr(z)[vlza p(Tz];HF] = [Ugic + Ueyens Pﬁl)(t)] =[U, p(l)(t)] .

This approximation is valid, as we will see, if V,, <V,,G "V, i.e., if the Born approximation is
valid. G™™ is the in-medium Green’s function, which we will discuss later. These requirements are
quite reasonably fulfilled in low energy heavy ion collisions provided one uses effective interactions and
not the Hartree-Fock (HF) terms with a potential adjusted to nucleon—nucleon scattering data. Due to
the hard core the HF matrix elements diverge. The remedy is to replace the bare nucleon—nucleon
interaction by an effective interaction, usually the Briickner g-matrix [10]. It is an infinite sum of
scatterings of two nucleons in a nuclear medium, i.e. a sum over all ladder diagrams. In chapter 4 we
will see that this approximation scheme gives indeed the right low density limit. The contribution of the
different diagrams is proportional to (ak;)", where a is the range of the interaction, k. is the Fermi
momentum and n is the number of hole lines. Hence at low densities the g-matrix can be obtained
systematically employing (ak) as the expansion parameter. The g-matrix obeys the Bethe-Goldstone
equation, which we met already in the nuclear matter discussion (eq. 2.3),

(ab|g(E)|cd) = (ab|V|cd) + D, (ab|V|mn)G "™ {mn|g(E)|cd) (3.20)

+med

where the in-medium propagator G is defined as

+med __ Q12
G T E—e(m)—e(n)+ic (3.21)

e(n) is the single particle energy of the state n and V includes direct and exchange terms. Q,, is the
Pauli projection operator, which allows scattering into the unoccupied states only. It is taken as

Q,=(1-p{")(1-p"). (3.22)

If the starting energy E is smaller than 2¢; we cannot have a singularity in the propagator and can
ignore the i in the denominator. The solution can be obtained in analogy to that of the Lippmann—
Schwinger equation. For the wave function we find

Q
E-H,

|1I,cd> =|cd) + g(E)|cd) , Holab> =(E + Eb)|ab> ) (3.23)

In contrast to the solution of the Lippmann-Schwinger equation the second term disappears for larger
distances,
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lim (rl’rzlq,cd> (ry, ryled) (3.24)

|"1 '2|

if E<2¢,.

The S(flution shows that at large distances the particles do not feel the hard core interaction. Hence
the correlations induced by the hard core potential are short ranged. For lim,, _, =0 (r,r|¥,
vanishes, and hence the matrix elements remain finite despite the hard core. The g-matrlx turns out to
be a smooth function, which for practical purposes can be expressed as a function of the local density.

Actual calculations usually start from the Schrodinger equation, with a mean field U, in which the
nucleon—nucleon potential is replaced by the real part of the g-matrix,

U= 2 ({ib|Reg|i,b)+ (i, b|Re g|b, i)). (3.25)

E(b)<EFermi

U, has to be calculated self-consistently. The time evolution of the single particle orbital ¢, with the
quantum numbers « in the self-consistent mean field U, is given by the one-body Schrddinger equation ,

(T, + U)g, (i) =ide, (i)/dt (3.26)

Here T, is the kinetic energy. The n-body wave function is just the Slater determinant of the one-body
wave functions.

The first TDHF calculations for heavy ion collisions were performed in the seventies [69]. Later also
axial symmetric and full three-dimensional calculations were advanced [70]. In these calculations a local
density approximation to the g-matrix is used which has been proven to be quite accurate even for light
nuclei, and which simplifies calculations tremendously. In this approximation U, is given (in nuclear
matter) by

Ul(p) 4t0p + 16t3p + 80(3t +5t2)pk}“erm1 ’ (327)

with parameters ¢, to ¢, adjusted to reproduce nuclear matter properties [70]. For finite nuclei the
energy density is supplemented by terms proportional to the gradient of the density and the spm density
[4,70]. We observe that the parametrization of the potential has terms proportional to p and p” as well
as a momentum dependence which is proportional to the kinetic energy. The same structure of the
potential will be recovered below when the Boltzmann-Uehling-Uhlenbeck theory and the quantum
molecular dynamics approach are discussed.

These TDHF calculations were quite successful in describing fusion cross sections, scattering angles,
deep inelastic collisions and momentum transfer at E,,, <5MeV/n. Due to the lack of two-body
collisions this approach fails as the energy increases and hard core two-body collisions can occur.

Many attempts have been made to extend the TDHF approach by including a collision term [75, 76].
However, already in first-order perturbation one has to evaluate octupole Fock space operators. Hence
these attempts have never succeeded in producing calculations which allow detailed comparison with
experiments.

Cascade calculations. The second approximation, which describes almost the opposite situation, was
developed by Snider [77]. He considers the situations where long range interactions among particles can
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be neglected and collisions (i.e. rapidly changing short range correlations) play the dominant role for
the time evolution of the density matrix. The average number of particles in the phase space volume 4’
is assumed to be small so that the Pauli blocking of the collisions can be neglected.

Following Snider, we introduce two different time scales, the time between two subsequent
collisions, ¢, and the duration of the interaction, ¢, ,. This implies two length scales, the mean free
path A and the range of the potential a. We expand the Green’s function, which describes the
propagation of the particle between both scatterings, in a power series in a/A and keep only the first
term. This is equivalent to assuming that the particle moves on shell between the scattering events and
that the cross section for double scattering is proportional to the square of that for single scattering.

We transform the two-body density matrix into the interaction representation. Then it does not
change due to the kinetic motion of the particles. Then formal scattering theory is applied with an
adiabatic switching of the interaction. In the above mentioned approximation outside the interaction
radius the density matrix is that of free moving particles. Hence the n-body density matrix is just the
product of one-body density matrices. Mgller operators transform the density matrix from outside to
inside the scattering range, so the two-body density matrix at the interaction time ¢ is approximated by

P =07(= 1) (t)p ()R (- 1) (3.28)

We choose the zero of our time scale in which we measure ¢,

. s the macroscopic time ¢ where the
collision occurs. The Mgller operator 2" is defined as

I

0" =lin(1) lim -sJ'e”" e e T gy
=0t -—x
0
;
=>lim lim —¢| e e™|¢ V(¢ e E"dr'=1+ G (E, V" . 3.29)
£rl) (' — o o 0 @

0
For the last step we have introduced a complete set of asymptotic basis states. The Green’s function G
is given by

G, (E,)=lim

— - 30
«—0 E_—H,*1i¢ (3.30)

Ifz.,>t,,, we can perform the limit ' — — in eq. (3.29), although on the macroscopic time scale ¢,

this is a small time span during which the one-body density matrix does not vary substantially. Hence
we can neglect retardation effects and replace p(r —t') by p(¢).
The transition matrix is connected with the Mgller operator by the relation

T=v0". (3.31)
We apply this relation to our eq. (3.28) and obtain

(8/31)p V(1) = —itr ) [Tiopi (00" (1) — p1 (0P () T,
+ Tyt (09 (VT 1,Gq — Gy Tiopi V(03 (0T 7,] - (3.32)
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We recall that
G,(E)— G,(E)=—2mié(E - H,) . (3.33)
We normalize the plane wave states by 8°(p— p') and give some results of the scattering theory,
V1O P) = —2(27) Im( p| T p) , (3.34)
da(p, p)/d2=2m)'w’|(p'|T|p)I". (3.35)
v, is the relative velocity between the scattering partners, u is the reduced mass and o,,, is the total

cross section for particles with the relative momentum p. Since p is diagonal in momentum space, we
can easily perform the trace over the second particle and arrive finally at

C
(2m)’

:
5P (P 0)= fdsp &qv,ap (P, =g+ p, 0P —q-p,1)

X (83(p—q)0'°'(p)—6(p—q) L ga(dq—;E))- (3.36)
P

The right hand side of this equation is, up to a normalization factor, exactly the collision term of the
Boltzmann equation integrated over coordinate space. The time evolution of the one-body density
matrix of a system of particles which interact by short range interactions has the formal structure of a
collision integral. The system described by this equation behaves like a quantum billiard system,
quantum in the sense that we do not have a unique relation between scattering angle and impact
parameter as in classical physics. The cross section can be taken from experiment and one may include
also inelastic processes.

In practice [66, 67] the form of the scattering term is just taken as a guideline and implemented in a
classical environment. Particles are initialized with sharp momenta and definite positions and are
randomly distributed over a sphere of nuclear radius as in the classical molecular dynamics approach.
They are boosted and then move on straight line trajectories until a nucleon-nucleon collision occurs.
Whenever two particles come closer than r =V o, /m, the nucleons collide with a scattering angle 6,
which is chosen randomly under the constraint that the average over many equivalent collisions
reproduces the experimentally measured cross section do, /d6. Thus the stochasticity of the scattering
and the production of particles are the only quantum features in this approach.

This approach describes successfully inclusive proton spectra at high beam energies (E,,, > 500 MeV/
n), predicts the observed pion yield to within a factor of two [78] and makes possible the study of
reaction dynamics in detail. The average number of collisions [66] and the production of entropy [79]
were among those questions which were investigated in this approach. The limit of this approach is the
lack of any mean field. So particles cannot form fragments. This rules out a straightforward application
to peripheral or low energy reactions where clusters are observed in the final state. Furthermore, due to
the lack of any repulsive potential, the average density obtained in these calculations for high beam
energies is much larger than that obtained in more realistic approaches. Pauli blocking can only
approximately be included by forbidding scattering into phase space regions which were initially
occupied by target or projectile.
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Boltzmann-Uehling—Uhlenbeck approach. The cascade reduction of the density matrix is certainly
not appropriate for intermediate energy nuclear physics, where the nucleons outside the hard core
interaction radius are not free but move in the slowly varying field generated by all the other nucleons.
For particles moving in an external potential this approach was first considered by Nordheim [60] and
Uehling and Uhlenbeck [61]. If we want to treat the mean field as generated by all the other nucleons
and not by an external source we have to start from the three-body density matrix. Besides the particle
under consideration, we need a second particle as a scattering partner and a third particle which
generates the field in which the first two particles move outside their hard core interaction radius. This
situation is similar to that of the scattering of a deuteron, which also requires a three-body density
matrix approach. For the latter case Remler [80, 81] has introduced the following approximation to the
density matrix:

2) (1
P(S) = -()1+3A139(1?;_)P§1)'01+3Jr + Q;3A23P§2)pg )'Q;; . (3.37)

A is the exchange operator. This is the first-order approximation to the full three-particle Mgiller
operator £2.,, for p'3) [82]. Recently Botermans and Malfliet [83] have proposed the same approxima-
tion to describe the hard scattering of two particles which move in a slowly varying field. The potential
between the pairs (1,3) and (2, 3) is assumed to be sufficiently smooth to approximate the Megller
operators {2}, and £,, by 1, i.e., to apply the Born approximation, whereas that between 1 and 2 is
considered as strong. In chapter 4 it will be shown that such a splitting of the nucleon—-nucleon potential
in a weak long range and a strong short range part is not necessary, even somehow misleading. Pursuing
this approach we see that as in the TDHF approach the trace over particle 3 produces just a mean field
U, in which the particle i moves,

try[Vis + Vs, p(132)2] =[U,+ U,, P(lzz)] ) (3.38)
where U, is given by (i =1, 2)

U= tr(3)Vi3Ai3pgl) . (3.39)
Recalling now our evolution equation (3.17) for the two-body density matrix,

(a/at)P(z)(t) =-i[(L, + L, + le)P(Z)(t) * tr(s)(Lls + L23)P(3)(t)] , (3.40)
we see that the approximation (3.37) closes this equation on the two-body level,

(3/30)p ()= —{[T, + T, +V,, + U, + U,, p®(1)]. (3.41)

Performing the trace over particle 2 and neglecting retardation effects (as discussed in the above
derivation of the cascade equations) we obtain

(6/6t)p(1)(t) = _i{[Tl + U, P(l)(t)] + tr(z)[vlz’ P(z)(t)]} . (3.42)

Comparing eqs. (3.19), (3.36) and (3.42) we see that the last equation describes a particle which moves
in a self-consistent mean field and undergoes hard core two-body scattering. To evaluate the collision



J. Aichelin, **Quantum™ molecular dynamics 261

term we proceed as above but now take into account the fact that the nucleons move in a mean field
between subsequent collisions.

If we want to take into account the Pauli blocking we have to replace the transition matrix by the
Briickner g-matrix, the solution of the Bethe—Goldstone equation (eq. 3.20). Then one can write the
time evolution of the one-body density in a completely equivalent form to eq. (3.32) [83],

i(a/00)p (1) = [T, + Uy, p V(0] + 11, [ g0 (0037(0) ~ V()0 "(1)g ]

+ 1) [801 (005 (08'G, ™ = G ™ g (1)p3 (1)g] (3.43)

The exchange operator is absorbed in the g-matrix. As in the cascade approach we assume two different
time scales. Because we approximated {2 by 1 in the derivation, we can apply this approach only to
slowly varying potentials, i.e., where the Born approximation is valid. The propagators then can be
approximated by a delta function for energy conservation as is the case for free scattering. With these
approximations we now obtain an equation which describes the time evolution of the one-body density
matrix in a smooth mean field, generated by all the other particles, and a short range interaction, which
is described by an effective cross section. It differs from the free cross section in the Pauli blocking of
the final and intermediate states. Furthermore, the energy denominators of the Green’s function
contain now also the potential energy. For a different approximation scheme we refer to chapter 4.

In practice [62-65] eq. (3.43) is solved with the test particle method. This was developed by Wong
[71] in order to calculate time dependent Hartree—Fock equations. In this approach the particles are
initially placed at random in a sphere of the projectile or the target radius, as is done in the cascade or
the classical molecular dynamics calculations. They have sharp momenta and positions. Then projectile
and target are boosted towards each other. Applying a fixed time step the positions and momenta of all
particles are updated via Hamilton’s equations,

(n+ 4
r,=V,H— ri(n+1)=r,.(n)+£—'£m_)—2— At, (3.44)
p‘i = —Vr’_H—>p’.(n + %) =p[,(n - %) — Vr,_Ul.(n) At , (3-45)

where the potential is calculated self-consistently.

In principle, potential and cross section should be obtained from the real and the imaginary part of
the g-matrix calculation with realistic nucleon-nucleon interactions. However, the nonrelativistic
approaches do not give the right saturation density of finite nuclei, as shown in chapter 2. At relativistic
energies, where nuclear matter is compressed substantially, the real parts of the different approaches to
the g-matrix have differences in the compressional energy of the order of 100 MeV for the same density.

Therefore a reliable input for the Boltzmann-Uehling—Uhlenbeck equation is not at hand. For the
imaginary part of the g-matrix the situation is even worse at these energies. An actual calculation of the
g-matrix suited for the calculation of heavy ion collisions has to take into account the highly nonthermal
environment at the beginning of a heavy ion collision. Here the Pauli blocking of the intermediate
states cannot be calculated with an average occupation probability as for a gas at a temperature T.
Rather one has to take into account that initially there are two well separated Fermi spheres, out of
which particles are scattered. Gradually the momentum space around mid-rapidity gets filled, which
influences the blocking probability. Only very late in the course of central collisions of heavy nuclei can
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the distribution of nucleons approximately be described by a single thermal distribution centred around
mid-rapidity.

Due to these difficulties one takes an operational point of view: it is assumed that eq. (3.43) has the
proper form. One takes for the mean field a Skyrme-type potential, which was already employed in the
TDHEF calculations (eq. 3.27),

U=U(p)=aplp,+ B(plp,)" - (3.46)

The density is calculated via a space fixed grid with cells of size 1fm’ [63] or via a comoving sphere
around the test particles [64].

Beyond the pion threshold the experimentally measured (elastic or inelastic) scattering cross section
is employed,

do/d0 =do,, /d0. (3.47)

Scattering does not take place if the final state of the scattering partners is already occupied by other
nucleons.

At lower energies, where the experimental cross section is several hundred millibarns, an isotropic
40 mb cross section [63,64] or a density dependent suppression factor x with o = «(p)a,,  [65] is
employed.

This operational point of view has the advantage of a very controlled equation of state, since two out
of the three parameters of eq. (3.46) are fixed by the requirement that in nuclear matter the total
energy has a minimum at p = p, with a binding energy of 15.75MeV/n. The only free parameter is
hence determined by requiring a specific compressibility. Rather than extracting the equation of state
from the highly involved g-matrix calculation, this approach offers the opportunity to test how stiff the
EOS has to be in order to reproduce the experimental data. Hence effectively the compressibility is
treated as a free parameter of the theory.

All actual calculations suffer from huge density fluctuations occurring during the simulation of the
individual nucleus-nucleus collisions. In order to dampen these fluctuations one typically solves 100
collisions in parallel and averages the potential over all these simulations. This reduces statistical
density fluctuations to a tolerable 15%.

The BUU model was first developed at Michigan State University by Bertsch, Kruse and Stocker in
order to test the conjecture that in relativistic heavy ion collisions the pions can serve as a measure for
the compressional energy and hence of the nuclear equation of state [62, 64]. Later improved versions
were used to investigate heavy ion reactions at energies as low as 25 MeV/n [63]. In this energy regime,
where single particle spectra show that no equilibrium is achieved, the model offered for the first time
the possibility to investigate the space—time evolution of the reaction. The remarkable agreement of the
results with experiments was taken as evidence that the essential physics is contained in the BUU
equation despite the many approximations. These calculations helped to understand the proton spectra,
the origin of the Fermi jets, the linear momentum transfer and out of plane correlations. In recent years
this model has also turned out to be a successful tool to study the creation of particles like pions [84],
photons [85], kaons [86], deuterons [87], and etas [88], especially its dependence on the nuclear
equation of state. For reviews we refer to refs. [4, 89].

Recently it has been verified that the solution of the classical Boltzmann equation employing the test
particle method is indeed equivalent to the analytical solution as far as the single particle distribution is

xp
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concerned [90]. It was never investigated, however, how far the success of the BUU model in heavy ion
physics depends on the fact that the test particle method induces many body correlations. In the limit of
vanishing potentials the test particle method is equivalent to the cascade calculations if one chooses one
test particle for each nucleon. In this case the test particle method solves the n-body and not a one-body
equation. The mean field, as calculated in the BUU approach, reduces these correlations in an
uncontrolled way. It is not strong enough, however, to wash out the correlations completely. Suppose
we change the momenta of all particles of one simulation of a cold nucleus at ;. Then most of these
particles which had scattered at ¢, will scatter again at 2(¢, — ;) due to an only moderate change of the
mean field generated by all the other simulations whose momenta have not been changed at ¢,. Hence
these particles are correlated, which should not happen in a one-body theory. The procedure to make a
real one-body theory out of the BUU model is easily seen: At each time step the one-particle
distribution function f*’ has to be generated from the test particles. Then one chooses again randomly
test particles according to the distribution £, This method destroys all correlations in each time step.

For practical purposes one would like to keep these correlations because they are physical. The price
one has to pay, however, is that the BUU approach cannot be compared in detail with systematic
approximations to the von Neumann equation in the framework of the BBGKY hierarchy [91].

Although some correlations are present in the BUU approach, its predictive power is limited to
one-body observables. Many of the most challenging problems such as correlations between emitted
particles and the formation of clusters in the exit channel cannot be addressed and even for the
one-body observables there remains always the problem of how to deal with the measured composite
particles.

Fluid dynamics and hydrodynamics. The BUU/VUU calculations can be used to calculate the time
evolution of mean values like the density p(r, ), the average velocity u(r,t) and the temperature
T(r, t). Under the assumption of local thermal equilibrium, i.e., when the collision term has established
a locally stationary momentum distribution, the time evolution of the mean values p, u, T is given by
the Euler equations. Certainly these are highly idealized assumptions for a heavy ion collision. A more
realistic description can be expected from the Navier-Stokes equations, which treat small deviations
from equilibrium. The transport coefficients, i.e. the viscosity and the heat conductivity, which appear
as an input in the Navier-Stokes equations, as well as a judgement about the validity of this equation at
certain impact parameters, can be obtained from the Boltzmann—-Uehling—Uhlenbeck calculation.

Hydrodynamical calculations are widely used. In these calculations viscosity and thermal conductivity

are just treated as parameters. A detailed description of this approach to heavy ion collisions is given in
ref. [4].

4. On the derivation of the quantum molecular dynamics approach

In chapter 3 we have seen that a quantum system of distinguishable particles obeys the cascade
equations if the mean free path is large compared to the range of the nucleon-nucleon potential. Then
the particles move on shell between subsequent collisions and the scattering amplitudes coincide with
those of free particles. The pure fact that nuclei are bound shows that these conditions are not fulfilled
in heavy ion reactions.

In a denser system we observe that during a collision the collision partners are interacting with other
nucleons, and hence are not in momentum eigenstates before, during and after the interaction.
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Furthermore, the amplitudes of different collisions may interfere, and the on shell approximation for
the propagation between the collisions may not be valid.

In this chapter we investigate the above-mentioned topics. We start in section 4.1 with the
investigation of the most simple situation where the particles are not in plane wave states prior to
scattering: the collision of a projectile on a bound target particle. We find that under certain conditions
the collision can be treated as a collision between two free particles, and verify that one of these
conditions is met in heavy ion collisions.

We want to formulate our approach in phase space coordinates. This amplifies the understanding of
the highly complicated heavy ion collisions. How quantum mechanics can be transformed into phase
space coordinates has been shown by Wigner [92]. In section 4.2 we present the basic definitions for this
transformation and show how the Schrodinger equation is formulated in this approach. We display the
close connection between time dependent perturbation theory, formulated with wave functions, and the
solution of the time evolution equation of the Wigner transform of the density matrix. In section 4.3 we
discuss scattering in the Wigner density formalism. We will derive the equations for potential scattering
and two-body collisions. In this section we will present our basic equation. In section 4.4 we extend the
work presented in section 4.1 and investigate the interaction between systems of bound particles. We
discuss which approximations can be justified, and present the equations that are approximately solved
in the quantum molecular dynamics approach. Finally we outline the method of solution and the
approximations required to make calculations feasible. In section 4.5 we give reasons for our choice of
the initial phase space distribution of the nucleons.

Section 4.6 is devoted to the second of the above-mentioned topics. We calculate the total cross
section for a sequence of scatterings and find that there exists a “formation time” and a “formation
distance” below which a scattered particle does not interact with the next one as it should in the
independent collision approach. This also sheds light on the recent controversy about the existence of a
formation time in nuclear reactions at much higher energies. Furthermore we show that in the
quasi-free limit the interference terms vanish because two different sequences of scatterings lead to
different final states. With increasing width of the final state in momentum space we observe the
occurrence of interference. However, due to kinematical constraints the interference term does not play
a decisive role in heavy ion collisions at the energies of interest.

To treat nucleons as fermions is beyond the limits of all available kinetic theories, which are suited to
describe medium and high energy heavy ion collisions. The quantum molecular dynamics approach is
no exception to this. As in all the other approaches, it assumes that the essential quantum features can
be mimicked and do not require the calculation of the time evolution of antisymmetrized wave
functions. Recently this common belief was questioned. It is argued that a fermionic system does not
obey Hamilton’s equations. In section 4.6 we will discuss this topic and show that the non-Hamiltonian
dynamics is due to the method applied and is not a consequence of the fermionic nature of the particles.

Much of the material presented in this chapter has been discussed by various authors. Many detailed
calculations of in-medium effects of an interacting many body system can be found in ref. [93]. The
application of the Wigner transforms to — usually high energy — heavy ion collisions was developed in
the seventies. Details, especially concerning the high energy limit (eikonal approximation), may be
found in refs. [80, 94-97].

4.1. Scattering on a bound particle

In this section we start with the simplest situation in which the free particle transition matrix has to
be modified: the scattering of a projectile particle on a particle that is bound in a fixed potential centred
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at the origin. We will call this bound particle the target particle and refer to it with the index T. The
quantities connected with the beam particle we will denote by P. We will show in this section that under
certain conditions the scattering on a bound particle can be described by the free particle transition
matrix, and will also demonstrate that one of these conditions is met in medium and high energy heavy
ion collisions. We will assume that we can apply nonrelativistic kinematics.

Description of the scattering. The target particle is bound by the potential U(r,). Its Hamiltonian H;
is therefore

1
Hy==3- V24 U(r) =Ty + U, 1

Initially the target particle is in its ground state y,(r,), which is the solution of the Schrédinger
equation,

Hyx(r) = Woxo(ry) - (4.2)

W, is the binding energy of the target particle. After the scattering the target particle may be free or in
an excited state y,, which is an eigenstate of the same Schrddinger equation with the energy eigenvalue
W,. The projectile particle is initially (t— —) free. It is described by a plane wave

0, (r,)=(2m) "2 (4.3)

which is the solution of the projectile Schrodinger equation,
2

1
Ho0,(r) = Tog,(r,) = =5 V36, (r) = 5= ¢,(r.) (4.4)

For simplicity we assume the masses of target and projectile particle to be the same. The initial state of
the combined target-projectile system is the direct product of the projectile and target states,

o, = 0,0 = (2m) 7 " x(ry) (4.5)
and satisfies the Schrodinger equation
(Hy + HP)¢0p =(Tp+ T, + U)¢Op = (Pz/zm + WO)¢0p . (4.6)

The interaction between the projectile and the target particle is given by V(r, — r,). For simplicity, but
without losing the generality of the derivation, we neglect any interaction between the projectile and
the binding potential. The asymptotic scattering state ¥,, can be obtained by solving the Lippmann-
Schwinger equation,

1
W, +pi2m— H,— H, +i¢

q,()p = ¢0p + Tb¢0p ’ (47)

1
T,.
W, +p%2m—H,- H, +ie °

T,=V+V (4.8)
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T, = ( p'n|T,| p0) represents the transition matrix from the initial state ( p, 0) to the final state ( p’, n).
If the target particle were initially free (with momentum p.), the scattering would be described by the
free particle transition matrix,

1

T=V+V = 5 — T
pr2m+p2m— T, — T, +i¢

(4.9)

Thus the fact that the target nucleon is bound is manifested by the appearance of the potential energy
“operator in the denominator and by the appearance of W, instead of the kinetic energy term. In more
complicated situations this term encapsulates the full complexity of the n-body system.

In order to reduce the complexity of the many body system contained in eqs. (4.7) and (4.8), Chew
[98] introduced the so-called impulse approximation, in which the bound state transition operator T, is
approximated by the free scattering transition operator T. This approximation is valid if one of two
quite different criteria are met:

— the binding energy of the bound particle is small compared to the beam energy (weak binding limit),
or

— the potential is smooth (quasi-classical limit).

In the extreme case of a constant potential T, and T coincide.

The first criterion has frequently been used to justify the calculation of proton-heavy ion collisions at
high beam energies in the impulse approximation. For our purpose the second condition is more
important because in cold or moderately excited nuclei the gradient of the potential is such that this
condition is fulfilled.

Impulse approximation. We will now derive the limits of validity of the impulse approximation. For
this purpose it is useful to define

2

” 1%
& =piiam= (i Tol) = = | ) 3 xlr) 0,

(4.10)
a 2
U= {xlUlxy) R=W,—p1/2m.
With these definitions we can write the bound state transition operator as
T,=V+V ! T (4.11
b pil2m+p2m—T,—T,+R-U+ie ' 1

T, differs from the free scattering transition matrix of particles with momentum p and p, by the
presence of the term R — U. Under the aforementioned conditions this term is small as we will
demonstrate now. Employing the operator identity

=— -~ Bt (4.12)
we can expand the propagator and obtain

T,=T+TG,(U-R)G,T+O(U-R)". (4.13)
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G, is defined as

1

G, = :
O pi2m+p2m— Ty — T, +ic

(4.14)

In order to justify the impulse approximation, i.e. the approximation of T, by T, we have to show that
the correction term

A=TG (U-R)G.T (4.15)

is small compared to T. There may be two situations in which this happens: either both U and R are
small quantities, or (U — R) is small. In the first case — the weak binding limit — we can assume U to be
zero because a finite U lowers the correction. If we assume that the particles move on shell between
collisions, one finds for the correction term [93]

Ay~ T(%’- f R) , (4.16)

where fis the scattering amplitude. Aiming at corrections of the order of 10% for R = 10 MeV, we need
projectile momenta of the order of 2 GeV/c.

We now investigate the second condition, i.e. the validity of the impulse approximation for smoothly
varying potentials. If we take U as rigorously constant, T, coincides with T because the bound particle
is also in a momentum eigenstate, and we obtain R = U. Thus intuitively it is obvious that for smooth
potentials the bound particles have a narrow width in momentum space.

In order to estimate A for a smoothly varying potential we assume that we can approximate

(U-R)G,T=[U, G,T], (4.17)
which implies
(xlUlxo) = (k|U|k") for k=K', (4.18)

and zero otherwise. If we further assume that the momentum transfer due to the potential is small
compared to that due to scattering, and hence

[U, T]=0, (4.19)
we obtain
(U-R)G,T=[U, G,|]T=G\[T,, U)G,T. (4.20)

To obtain the right hand side of this expression we have used the identity

5 (B=4) % . (4.21)
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The last expression can be easily verified using the matrix representation of the operators. The
commutator can now be approximated,

1., 1 U
[T;, U]= —%[V,U]~2—E?, (4.22)
where a is the range of the potential.
Collecting the terms we obtain
1 -
T,=T+ T U(TG.T)=T(1+ 4), (4.23)
with
[8(i+j—k—Dk+1—m—n)({|T|k){K|T\mn) , ,
ij| TG T|mn) = d1d’k . 4.24
<l.]| 0 |mn> J [(1/2m)(m2 + n2 _ 12 _ kZ) +i£]3 ( )
Employing the residue theorem we can evaluate this integral and obtain [93]
FU2m#
A=——T. 4.25
—r— (4.25)

For typical values f=11fm, U =40MeV, a =3 fm and p = 300 MeV/c we obtain
A=1/15.

Although the weak binding condition is not fulfilled in this case, we only expect corrections of the order
of 10% (due to the smooth potential) if we use T instead of T,. For more energetic particles the
corrections decrease as p°, hence at p =500 MeV/c we have corrections of the order of 1%.

Next we calculate the wave function of the final state in the impulse approximation. It is defined by
the Lippmann-Schwinger equation

1
v o=@, + Té,, .
o = oy W, +pt2m=T,- T, - U +ie %

(4.26)

Similar to the above case of the transition matrix, we can expand the propagator around the free
particle propagator,

1
pi2m+R+pi2m—T,—T,— U +ie

1 = 1 )]
= = U-R . (427
pl2m+ pil2m— T, — T, +ie Z ( ) p2m+ pii2m — T, — Ty +ie (4-27)

If the impulse approximation is valid, we can truncate the expansion after the leading term and obtain
finally
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1
pil2m+pil2m— T, — T, +i

¥, = by, + -~ Ty,

or, in matrix representation,

<kkT|T|pr><pTlX0>
22m+ p'l2m — K2m — k3 2m + ie

3
(k,kTIW)z(k,kT|¢0p)+fp Sk+k,—p—p;)dp,.
(4.28)
Thus in the impulse approximation the particles scatter as if they are free. The only reminder of the
fact that the particles are bound is their wave function. The bound particles are not in momentum
eigenstates, but have a momentum distribution |x,( p)|>. The impulse approximation will be the
essential tool when we derive the time evolution equation for nucleus-nucleus collisions. However,
before that it is necessary to give an introduction into the Wigner density formalism.

4.2. Wigner densities

Definitions. We want to study the time evolution of a nucleus—nucleus collision. This can be achieved
by solving the n-body Schrodinger equation. However, even if we succeed, the result would remain
rather unclear. We are used to understanding the motion of particles in the coordinates of the phase
space (P, r, t) but the Schrédinger equation would yield observables which depend on coordinate space
or momentum space only. One can overcome this lack of intuitive understanding by introducing Wigner
densities [92]. They are defined as Fourier transforms of the density operator p(r, r') and depend on the
phase space coordinates P and (r+r’)/2. The Wigner densities allow us to formulate quantum
mechanics in a language very close to classical transport theory, and therefore give a quite intuitive
understanding of the time evolution of the reaction.

The Wigner transform of the Schrodinger equation has the same form as the classical continuity
equation. In the classical limit it is formally identical to the Vlasov equation, which describes the time
evolution of the single particle phase space density in an external potential. One of the major
advantages of this formalism is the possibility of writing the time evolution equations as a Taylor series
expansion in #. Therefore a smooth transition to the classical limit exists. Furthermore, as a full
quantum theory formulated in classical phase space, this approach provides much insight into quantum
phenomena and how they can be understood in terms of phase space observables.

We start by quoting the basic relations. The Wigner transform O™ of an operator O is defined by

En
2m)’

3
OW(P,R)=f e (R—r/2|O|R + r/2) =f(—:% e **(P-pl2|O|P +pi2) . (4.29)

Consequently, the Wigner transform of a commutator [O, R] is given by

d’r

7 e" (R -ri2|[0, A]IR + ri2) = =2i0™(P, R) sin(A/2) A¥(P, R), (4.30)

[0, A]" =

where AAB is defined as
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AAB=V,A-V,B~V.B-V,A. (4.31)
The expectation value of the operator O is given by

(R|O|R) =f oY(P,R)d’P, (4.32)

(P|O|P) = f O“(P,R)dR. (4.33)
This is the connection to measurable quantities. If we identify O with the density operator, we see that

its Wigner density has just the properties of the classical phase space density. Identifying O with the
density operator we obtain for its Wigner transform, usually called the Wigner density,

@ P.0) = [ 25 &P+ pr2l(0) (w0)IP - p12)

(z#)’
= (Zd—;‘f e TR+ r12|(0)) (Y()|R - ri2) . (4.34)
For later purposes we define
f(P, p, )= (P +pl2{y()) (¥(®)|P - p/2) , (4.35)

the density matrix in momentum space representation. By integration over the coordinate and
momentum space we obtain the density in momentum and coordinate space, respectively,

[ @R . 2.0 = (Pla) (w(01P) = o, 0 (4.36)

| @ iR, .1y = (RIsO) ((OIR) = ok, O (4.37)

However, whereas a classical phase space density can never be negative, the Wigner density is not
positive definite. For further details we refer to the review article of Carruthers and Zachariasen [99].

The equation for the time evolution of the one-body Wigner density of a particle moving in a
potential V(r) can be obtained by employing the Schrodinger equation,

9 . d3p iR p (P +p/2)2 (P _ p/2)2
5 R P 1)= —lf @ (_ e )f(P, o)
1 d3 —iP-r
o (27-;)3 e "R+ r12|[V, [W(0) () 1IR ~ r/2)
P d3r d3P,

e ' EEYTIVR + r/2) - V(R - r12)]f(P', R, t) .
(4.38)

-_——;' Rf(P,R,t)—i W

Formally we can write the time evolution equation of the Wigner density as
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P
(% e -vR) f(P,R,1)= f d’P' K, (P- P, R)f(P",R, ). (4.39)
So far we have not gained anything. The solution of this equation is completely equivalent to the
solution of the Schrodinger equation.

Before we proceed to scattering processes we take a closer look at the function K, defined in eq.
(4.39),

K,(P-P,R)= L[ dr e PPTRYVR + 112) - VR - 1/2)]. (4.40)
1 4 lﬁ (2‘77'ﬁ)3

We have restored # here for reasons which will soon become obvious. This function can be evaluated in
two different ways. Either we can write it as the Fourier transform of the potential,

K,(P—P',R)= ;—f sin(2(P — P')- RIE) V(P - P")) , (4.41)
with
1 ip-r 3
V(p)= s | €7 VI8,

or one can expand the potential into a Taylor series around R,
K,(P-P,R)= % sin(AV, - V,/2) V(R)6(P — P') . (4.42)

The last form is especially suitable for the semiclassical limit. We see that K, can be viewed as a series
with the expansion coefficient £V, - V,. Hence the Schrodinger equation is equivalent to the classical
Vlasov equation,

(% L -VR) (PR, 1) =[V,V(R)]-V, f(P, R, £) (4.43)
provided AV, -V, is small compared to 1, i.e., if the potential and the momentum distribution are
smooth. The Vlasov equation describes the time evolution of the phase space density of particles which
move on classical orbits specified by the Hamilton equations dR/dt = P/m and aP/at = ~V,V.

We see that in the Wigner formalism the quantum equation is just a Taylor expansion around the
classical equation in the parameter #. The validity of the classical approximation depends on the
gradients of the potential and the phase space density, which are correlated. The classical limit is valid
when the potential is slowly changing. Hence the range of validity is determined by the same parameter
as that of the impulse approximation.

The relation between Wigner densities and time dependent perturbation theory. To demonstrate the
close connection between the Schrédinger equation and eq. (4.39) and in order to see how the Wigner
transformation helps to understand quantum mechanics, we solve both in parallel using the Green’s
function method. The Green’s functions are the solutions of the following equations:

P
(% tom 'VR)GW(P,R—R', t~1)=8R-R)S(t~1), (4.44)
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2p2

: d hv’ + ' ’ ' '
1ﬁ5+ o >G0(r—r,t—t)=6(r—r)6(t—t). (4.45)

These equations have the solutions

GYP,R-R',t—1t')=0(— )8R~ R - (PIm)t—1')), (4.46)

+ d ke(r—r :
Gitr=r -0y =0-1) 71 [ kel ()]

=01 %‘ = = )m exp(i;’ﬁi(’t_ 'l) ) (4.47)

The solution of the time evolution equations is given by

f(P,R, )=f,(P,R, 1)+ f dr’ f d’P' K(P - P',R — (P/m)(t — ' ))f(P',R— (PIm)(t — 1'), ('),
- (4.48)
&k

(2 — R exp[(~i flz—]r%z - 8)(): - t')]V(r’)lp*(r" 0.

(4.49)

b(r, )= o(r, 1) - ﬁfd jdt

Here f,(P, r, t) and ¢(r, t) are the solutions of the homogeneous equations.

If we assume that the potential is time independent but disappears for r— « and ¢(¢) and ¢(t) thus
have a trivial time dependence, ¢(t)= ¢ e™ and ¥(t) =y, e'™, the time dependence drops out
completely and we end up with the Lippmann-Schwinger equation,

Ur =g+ Gy (E)Wy = dp + G (E)T(E) oy . (4.50)

This equation is the quantum description of the scattering of a particle in a potential V and contains
exactly the same information as eq. (4.48).

Of course a similar simplification does not show up in the Wigner density formalism, since this
approach describes the space-time structure of the reaction. So scattering does not take place between
different quantum states but at different points in phase space. How quantum mechanics works in phase
space can best be discussed if we expand to second order:

f(P,R, t)=f(P,R, 1)+ f dr f d’P' K(P - P',R— (P/m)(t — t'))f,(P', R — (PIm)(t — t'), 1)
+ f dr’ f dr’ f d’p f d’P'K(P—P',R— (PIm)(t—1"))

X K(P' =P R—(Pm)(t—1t')—(P'/m)t — 1))
Xfo(P",R—(Pim)(t —t')— (P'Im)(t' — 1), 1"). (4.51)
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Now the Wigner density approach allows a very intuitive interpretation [72, 99]: The time evolution
of the quantum particle interacting with a potential proceeds by alternating quantum and classical steps.
In the classical step the particle moves on the classical trajectory determined by Hamilton’s equations.
The quantum step K(P, R) makes the particle jump in momentum space at a given space-time point.
This jump transfers a point in momentum space into a momentum space distribution, i.e., it acts as a
random force. Thus the higher order terms neglected in eq. (4.43) act as a random force. Since they are
proportional to # we see that the Wigner formalism displays quite nicely the quantum fluctuations
around the classical path, which cannot be neglected if the gradients of the potential are strong, as they
are for the nucleon potentials which have a hard or soft core. Thus stronger gradients not only yield
stronger forces but also larger fluctuations around the mean trajectories. This is one of the reasons why
classical molecular dynamics fails in describing heavy ion collisions. We will see in the next section that
there also exists a closed solution of the time evolution equation of the Wigner density. This equation
will have exactly the structure discussed above.

4.3. Scattering in the Wigner density formalism

General discussion. We are now prepared to calculate the scattering of particles in the Wigner
formalism. Being interested in the time evolution of the scattering event, we would like to be able to
define the beginning and the end of the scattering. Hence we have to give up the plane wave
approximation, which we used for simplicity in section 4.1, and have to return to the formulation of the
scattering in terms of wave packets. These we define for the scattered and the incoming waves as

32 g(l’)‘/’ (r,9),

.= | 2 st 0= [ b

(4.52)

ip-r—iE_t

&(r, 1) = f ——75 8(p)e ,

(2m)

where E, equals pI2m. A very convenient choice, which we will use later, are the Gaussian wave
packets known under the name coherent states,

g(P)= (2LIm)"* e ®FIL g7il R0 (4.53)

The Wigner density of coherent states can easily be calculated,

3
PR, )= | s v e+ qia)ge(p - ai2)
1 —(P-Py)2L _—(R-Ry-vpt)¥2L

=—e e . (4.54)

k)

v, is defined as P/m. We start now to derive the time evolution equation of the Wigner density for

potential scattering. We begin by recalling the solution of the Schrodinger equation in the Wigner
formalism (eq. 4.38),
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2oy & P a2V IBONWOIP = 072)

— (P +q/204()) ($()[VIP - q/2)} . (4.55)

(%+%-VR)f(P,R,t)=—

f(P, R, t) denotes the Wigner transform of |i(¢)) (¥(?)].

Potential scattering. We now discuss how to apply the Wigner density formalism to scattering events.
Due to causality the wavefunction |, ) obeys the well known relation

1 +

b = b+ E,_H +ic Vi, . (4.56)

We now insert this relation in the above eq. (4.55) and replace ¢(t) by eq. (4.56) whenever V is not
acting directly on ¢. Performing the time integration over d¢’ we obtain

3 P 1 d&’p I’k &k’ DR i(E—Eu
(24 L ominrg= 1 [ SLEETE quygrieyemrenven e
><[(P+p/2IVP¢k><¢kr|P—p/2>—<P+p/2|t//k><¢k/|V|P—p/2>

1 1
PPV VPP~ ) | (457)
+p ’ -p

We now make use of the relation between the potential and the transition matrix T|¢) = V|¢) and
define

gk)g* (k') = fy(k + k', (k— k') /2) = f e “TRA(R k+ k) AR, (4.58)

and obtain finally

5+ mem)rrn-t [ LLELILarg 0.

X [(P +pl2|T|Q+ q/2)8(P—pi2—Q + q/2)— (P —p/2|T"'|Q — q/2)8(P + p/2— Q — q/2)

+(P+pl2|T|Q+ q/2){Q — q/2|T'|P - p/2)

1 1
§ <(Q +q/2)12m— (P +p/2)2m +ic  (Q-— q/2)2m— (P— p/2)¥2m - ie)] . (459)

f, is the time evolved free wave packet, corresponding to @ in the Lippmann-Schwinger equation
(4.50).



J. Aichelin, “Quantum” molecular dynamics 275

This is our seminal equation. Its structure will not change when we proceed to two-body scattering of
bound scattering partners in the impulse approximation. As we have seen in section 4.1, in the impulse
approximation the free particle transition matrix is used, and only the wavefunction contains the
information that the particle is bound. For the above equation this means that only the Wigner density
f, carries this information.

Unfortunately eq. (4.59) is far from being transparent. Therefore we will discuss now the meaning of
the different terms. If we set the right hand side equal to zero we have just the time evolution equation
for free particles. The right hand side contains the description of the scattering. It consists of two terms
linear in T, and a term which is quadratic in T (Z;). The linear terms are proportional to the real (I,)
and the imaginary part (/,) of the transition matrix, respectively. We start with the interpretation of the
linear terms. For this purpose we perform the integrations and make use of the relation (4.58). For I,
we arrive at

L(P,R,1)=16 f d*P'sin(2(P — P')- R)Re T(Q2(P — P")) f,(P', R, 1) . (4.60)

The physics of the first term is revealed by comparing (4.60) with eq. (4.42). Both expressions have
exactly the same structure. In our case the potential is replaced by the real part of the transition matrix,
which acts on the Wigner transform of the freely propagated wave packet f and not on that of the full f.
Thus the real part of the transition matrix acts as an effective potential. If the effective potential is
sufficiently smooth, we can expand the expression in terms of £ analogously to the discussion following
eq. (4.42), and obtain

L(P, R, 1)= [V, T(R)]-V, (P, R, 1). (4.61)

Thus in the quasiclassical limit, which is also the limit where the impulse approximation is valid, the real
part of the transition matrix acts as a force.

To discuss the term which is proportional to the imaginary part of the transition matrix it is best to
assume a specific from of the transition matrix. Since we ultimately want to deal with nucleon—nucleon
collisions we choose a Gaussian form,

(p|T|q)=(A+iB)c P (4.62)

which fits nuclear scattering data for beam energies larger than 100 MeV [100]. Using eq. (4.62) the
second term can now be cast into the form

8v .
L(P,R,t)=— —:‘3 f d*P' cos(2(P — P')-R) e **~"V4f.(P' R, t)o,,, . (4.63)

Here we have made use of relation (3.34). The meaning of the term becomes even more evident if we
perform the integration over d’R. Then L (P, t) is proportional to the product of the total nucleon—
nucleon cross section for point particles and the form factor, i.e. the Fourier transform of the spatial
distribution of the particle. Having an overall minus sign it describes the scattering of particles out of
the phase space cell at (P, R).
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Now we come to I,. The Gaussian form of the scattering amplitude allows us to express the square of
the transition matrix in eq. (4.59) in the form

(P+pI2ITIQ + 12)(@ - g/2IT'|P - pi2) = |(PITIQ) e 70" ~ ST (P @) 700
(4.64)

For P-g<p’ and Q-¢<Q’ the difference of the propagators is just equivalent to the energy
conserving §-function 8(E, — E,). Substituting these expressions in I, we find

L(P,R, 1)~ dpdody eRH(Q, 4, 0)e " VH(E,  Eg) SZ (0 P) (4.65)
R v e O r~ R 4q : :

We see that the term quadratic in T describes the scattering of particles into the phase space cell at
(P, R).

Thus the equation which describes the time evolution of a quantum particle which traverses a
potential has the same formal structure as the classical Boltzmann equation. Besides terms which
describe the free streaming of particles, we have in the semiclassical limit an effective potential as well
as a gain and a loss term, which describe the scattering into and out of the considered phase space cell.
This is a remarkable result because in classical physics this situation would be described by the Vlasov
equation, which has a quite different structure. This result teaches us two things:

(1) The analogy between the classical Boltzmann equation and the time evolution equation of
quantum wave packets can only be formal. Obviously collisions can be quantum features without any
classical analogs.

(2) In a quantum equation strong potential gradients, such as those caused by the hard core in
nucleon-nucleon potentials, do not cause a strong force as in a classical equation. Rather they show up
as a random force or, what amounts to the same, as a cross section. Thus classical molecular dynamics
with two-body nucleon-nucleon potentials is conceptually wrong if applied to a system which is
dominated by quantum effects.

Two-body scattering. To deepen the understanding of our seminal eq. (4.59), we proceed now by
treating the scattering of two wave packets in the same formalism. In classical physics this situation is
described by the Boltzmann equation with vanishing potential term. Here we start from the two-body
Schrodinger equation, which reads after a Wigner transformation

s P P,
ot + ’Z'E'VR,'*'E'VRZ f(R\,R,, P\, Py, 1)
= | PP (P, - P, P~ Py R B[R, R, PP ), (4.66)

where K,(P, — P;,P,— P, R, R,) is completely analogous to K,

3 3
Cr dr, ipi-pyr+ies-py)er,
@m° °
o

X[VQR, +r /2, R, +1r,/2)—V(R, —1,/2, R, — 1,/2)].  (4.67)

iKz(P1_P;’P2_P£’R1’R2)=f
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Evaluating the transition matrix on the momentum shell, we can integrate over the centre of mass
coordinates of the scattering partners and obtain an equation which is formally completely equivalent to
eq. (4.59). All phase space variables, however, now refer to the relative coordinates, and m has to be
replaced by the reduced mass. The equation describes the time evolution of the system in these
variables. The centre of mass streams freely.

Equation (4.59), with (4.67), describes the time evolution of two colliding quantum particles. If we
compare with the classical counterpart, the Boltzmann equation, we see a striking similarity in their
formal structure.

Both have a potential term and a gain-loss structure in the collision term, which depend on the
differential and the total cross section, respectively. This similarity justifies the use of these classical
equations as a starting point to describe heavy ion collisions as has been done in the BUU approach.

More important, however, are the differences: Whereas the Boltzmann equation is an integro-
differential equation, the quantum counterpart is only a differential equation, which makes the solution
much easier. The T matrices act on the Wigner density of the freely propagating wavepacket. Both the
classical and the quantum equations have a potential term. Its meaning, however, is completely
different. Following the derivation of the Boltzmann equation in the framework of the BBGKY
hierarchy, one sees that all two-body potentials have to be accommodated in the collision term. The
force term contains only gradients of external potentials. In the quantum equations the effective
potential is a two-body potential. Of course, one can argue that the two-body potential can be
expressed by an average potential and a residual interaction, where the average potential can be treated
like an external field. But this argument misses the essential point, namely that without any
approximation a potential term is present and uniquely determined in the quantum equation.
Furthermore, the effective quantum potential is not the potential which enters the Schrodinger
equation, but the real part of the transition matrix. Hence for vanishing collisions (e.g. due to Pauli
blocking at low beam energy) the Hartree-Fock equation with nucleon—nucleon potentials (whose
Wigner transform is the Vlasov equation) is not the right limit. Rather one has to employ the real part
of the transition matrix (or —if one wants to take care of the Pauli blocking of the intermediate
states — Briickner’s g-matrix) as is done in TDHF calculations. Besides that, a transition matrix or a
scattering amplitude is more easily obtained from experiment than a potential, which requires us to
solve an inverse scattering problem. In the nuclear case, the nucleon-nucleon potential has a hard core
whereas the transition matrix is rather smooth. Hence solving this equation is feasible.

Finally we want to mention that a straightforward calculation yields the well known form for the
optical potential [1]

Ve © T(0)p(r) . (4.68)

In order to obtain this result one has to assume that the target nucleon does not recoil and that the
target radius is large compared to the range of the transition matrix.

Scattering of two Gaussian wave packets. Before we proceed to investigate how the formalism
changes if at least one of the scattering partners is bound, we would like to make the physics contained
in eq. (4.59) still more transparent. For this purpose we solve eq. (4.59) for the case that initially the
relative motion of the scattering partners is described by the wave packet (4.54). This calculation can be
done analytically under the assumption that the increase of the width of the wave packet is small during
the collision,
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L(t) = L(O)V1 + (At/m)L*(0) = L(0) . (4.69)

If this is valid we can replace v, by v, 1n eq. (4.54). Thus the motion of the centroid of the distribution
is approximated by

Ry(1)=R,+v,1. (4.70)

By a shift of the time axis we can choose R, to be the minimal distance between the scattering partners
R, . R, is then equivalent to the impact parameter (with respect to the centroids) and is perpendicular
to P,. The calculation is lengthy but straightforward, and finally, after integration over d’R and dt, we
obtain

f(P, t=20)= f(P, t = —) + I"(P) + [**'(P) (4.71)
with
L*? ( 4L(L + a)) < R} )
lin " —(P — Z, _p: == 7 oL
1 (P)— \/_ T exp[—(P PO)|| 4L]expl — P L 72 exp 3l + 42
M. 2L > ( 2L )]
X[Asm(P R, T + Bcos|P-R,, T +al (4.72)
. 4u’m (A’ + B?) <4L>“ ( 2La ) ( R} )
quad — e 2 _ 0L
o B)="arvar, \7) &P\ Piarsy) ™\ "5+
d3m 2 2 2
ol - [—2a(P —m)" + a(P — m) | exp[—4L(m — P,)]
. 2
X exp[—(2L + a)ym ] cos(( ny; P- m) R, ) . (4.73)

w is the reduced mass of the scattering partners, and we recall that the A, B, a and L are defined in eqgs.
(4.62) and (4.54).

This equation displays quite nicely how one can visualize quantum scattering in the familiar phase
space coordinates, and we will discuss this in a moment. Before that it is useful to investigate the limit
L— .

In this limit the particles are in momentum eigenstates and described by plane waves. We recall

2 2y - (P-m)?2a _ * 1 Qg
(A’ +B)e TT Gl 40 (4.74)

P
B=-—t o (4.75)
227) 1

lin

We notice that in this limit the sine term of I does not contribute and the cosine term yields
1"(P) = — 7 3(P — P,)0,,,. (4.76)

The quadratic part gives
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1
4rLP?

Hence as the final result we have, with f(P, t = —%) = 6(P — P,),

1Py = 8(P-P,) g% . (4.77)

[Pt =%)= —— &(P- P)SQ (1 4‘°‘L)5(P P,). (4.78)

We still have to clarify the meaning of the term 1/4+ L. It turns out to be the time integrated current,

- 1
fJ-PO di= 7 exp[~(R — R,)1 /4L, (4.79)

where j is defined as

3/2
j= (ﬁ) 0 expl(R ~ R, - Pyflu)I4L]. (4.80)
The last expression is easy to interpret. As t— «, f(P) is finite at the surface of a sphere with radius P,,.
The value of f is proportional to do/d{2, the probability of scattering into a momentum space cell
around (P, £2). Hence the first term describes the scattering out of the initial state P, into the p0551ble
final states. The second term takes care of particle number conservation. Since the 1ntegral | fd’P has
to be constant, the initial population of 6(P — P,;) has to be reduced by the number of scattered
particles. When we compare our final eq. (4.78) with (4.69) we notice that in the plane wave limit the
term proportional to sin((P — P,)-R,) has completely disappeared. Consequently, only localized
particles feel an effective potential, which acts in the semiclassical limit as a force. The scattering of
asymptotically free particles is completely described by cross sections as we expect from the solution of
the Lippmann~Schwinger equation. The force term will become very important when we investigate the
motion of particles in a bound system.

Going back to egs. (4.69) and (4.73) we now see how a phase space picture of quantum scattering
can emerge which fully takes care of the uncertainty relation; for large relative distances between the
scattering partners collisions are exponentially suppressed. As one would assume intuitively, particles
which are far apart do not scatter. The range in which scattering takes place is given by the sum of the
widths of the Gaussian plus the width of the interaction. The exponential suppression is modulated by a
cosine term, which can make the terms negative for some values of P and R, . Integrated over all
impact parameters R,, the result is positive, of course. The energy is conserved because the time
integration was performed from —o to +. If there are many particles present this has to be modified.
This topic will be discussed in section 4.6.

Scattering on a bound particle in impulse approximation. At the end of section 4.1 we saw that the
scattering of a beam particle on a bound particle can be described by

<kkT|T|pTP><PTIX0>
pi2m+ p’l2m — K2m — K2/2m + ie

o(k+ kr—p—pr) dsp'r ,
(4.81)

(o ) = (ke k) +

provided the impulse approximation is valid.
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When we compare this result with |(¢)) obtained for free particle scattering we observe that the
only difference is in the term | pp;){ p;|x,) d’pr, Which would be equal to | pp,) in the case of free
particles which asymptotically have the momenta p, p,. Thus for the actual scattering the particles are
treated as free in the impulse approximation. The only place where the binding becomes apparent is in
the term ( p,|x,). We have a distribution of momenta which we have to integrate over. In the Wigner
density approach this is especially advantageous. We only have to replace the Gaussian form of the
wave packet by the Wigner density of the bound state. The rest of eq. (4.59) remains unaltered.

Projection onto a definite final target state. In eq. (4.81) it is not specified into which final state the
target particle is scattered. If we are interested in the time evolution of the beam particle under the
condition that the target particle is finally in the excited state n, we have to project onto the phase space
of the final state. We quote only the final result here,

o P .
(& + ’n—l ) VR1)f(P1a Rla t) - -ljd3R2 d3P2 Xn(RZ» PZ)[V’ P(Z)]w ’ (482)
1

where p‘* is the two-particle density operator, y, is the Wigner density of the final state of the target
particle and the subscript W stands for the Wigner transform integrated over the initial phase space
coordinates of both particles. In deriving this equation we have made use of the fact that

f d*rd’p (AB)y, = f d’rd’p Ay B, . (4.83)

The evaluation of this expression follows the same lines as we have discussed in deriving eq. (4.59).
Thus, as far as the impulse approximation is valid, the results are close to what one expects from
intuition.

4.4. Scattering on a system of bound particles

The scattering of a beam particle on complex bound target systems which consist of many
constituents is described by the Lippmann-Schwinger equation,

b =x.+G Vi, , (4.84)
where V contains the scattering of the incident particle i with target particles m,

V=2V, (4.85)

and y, is the initial state wave function, i.e., the product of the plane wave of the projectile and the
target ground state wave function,

iP-R
[

gO=W¢O(r1""’rn)‘

The first term describes the centre of mass motion. g is the solution of the target Schrédinger equation,
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HTgn = (2 - % Vf, + U) gn = ann ’ (4'86)
where W, = PY/2M,, + w, is the sum of centre of mass and internal energy and U is the interaction
amongst the target particles. The propagator

1
T E,-T,-H;+ie

G* (4.87)
contains in the denominator the total target Hamiltonian and the kinetic energy operator of the
projectile. E, is the initial energy.

We define the transition matrix ¢°,, which describes the scattering of the beam particle on the target
particle m,

1
b _y . V. =V_+V. Gt . 4.88

The superscript b stands for scattering on a bound particle. Watson [101] has shown that eq. (4.84) can
be solved by a set of coupled equations,

ﬁMz

N
G+ttt')m(//m’ lpm = Xa + 2_:1 G+tibn¢n . (4-89)

m#n

Y, =x,t
1

For the purpose of understanding the structure of these equations we display the first terms of the
expansion,

Ui =X, * 2 G+ 2 GGy, (4.90)

m¥#n

The scattered wave has contributions from previously unscattered particles, as well as from those which
have already undergone collisions with other target particles. Thus this generalized Lippmann-
Schwinger equation has for the incoming wave not y,, but an effective ¢,,, which describes possible
previous scatterings.

If the impulse approximation is valid we can proceed along the same lines as in section 4.1. We can
replace the bound transition matrix ,, by the free particle transition matrix ¢,,,

tim :‘/im + Vim 2 2 ! : tim
p2m+pi/2m—T, — Ty +ie

, (4.91)

where p*/2m is the kinetic energy of the beam particle, p>/2m is the expectation value of the kinetic
energy of the target particle [see eq. (4.10)]. To adapt our present problem to the discussion in section
4.1 we recall

E =W,+p’2m, (4.92)

and define
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AR=E, - p’2m - pi/2m. (4.93)

In analogy to eq. (4.13) we can expand the propagator in the transition matrix T,

1 1

pl2m+pi2m—T,— T+ AR- U +ie - pl2m+ pi/2m — T,—T;+ie

1
x(l—AR—U - ) :
( )p2/2m +pi2m—Ty— T, +AR- U +i¢ (4.94)

U represents the interaction of the target particle m with the other target nucleons. If this potential is
sufficiently smooth [cf. eq. (4.26)] we can terminate the expansion after the first term, which means that
we can replace the bound state transition matrix ¢ by the free transition matrix ¢.

We proceed now to the evaluation of ¢, which is the wave function of the projectile particle prior to
scattering with the target particle m. We denote the initial momentum of the projectile by p,, its final
momentum by p,, and the momentum it has prior to scattering with the target particle m by p’. The
wave function of the incoming projectile can be expanded in plane waves,

d3p/
pii2m - pll2m— Hy + W, +ie

(pdw) = (pdx) + | (ol |p0) (p10,) (4.95)

0 and n are the initial and final states of the target. If the wave length is small compared to the mean
free path, we can evaluate the propagator by its asymptotic value, on the energy shell, and obtain, if the
target nucleon had initially the momentum (p; + p. — p’),

(piprltial PP+ P — ) (P'1Y,)
T pi2m - pil2m— pil2m+ (p,+ pr — p')/2m — AE +ie
(4.96)

(plw) = (plx) + | @' &

AE is the energy shift of the projectile due to previous scatterings. If the target nucleon initially is not in
a momentum eigenstate we have to integrate over its initial momentum distribution. In this limit each
scattering is an isolated event, which can be evaluated with the free scattering cross section. The
incoming wave has a quite narrow distribution in momentum space around a value p; which is specific
for a sequence of previous scatterings. In order to come from one to the next scattering centre only
momenta in a narrow range around r,,, the relative vector of the scattering partners, are allowed.
Otherwise the particle would miss the potential range of the next collision partner. For details of this
approximation and the first-order correction term we refer to ref. [93].

We have seen now that in the short wave length limit A > 1/k (A is the mean free path, k is the wave
number of the particle) the scattering of a projectile on a bound system can be approximated by single
scatterings between projectile and target constituents. Provided the binding potential is sufficiently
smooth we are entitled to use the free scattering 7 matrices. However, even in this approach we are still
faced with the full complexity of the (n + 1)-body problem. The bound state wave function of the target
nucleon, over which we have to integrate in order to obtain { p;|¥, ), is a solution of the n-body target
Schrodinger equation. We will not be able to solve this equation. Rather we have to make an ansatz for
the n-body wave function.
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The equation of the quantum molecular dynamics model. We now have all the ingredients to
formulate the time evolution equation for proton—-nucleus interactions in the impulse approximation. It
is straightforward to extend eq. (4.59) from two to N + 1 nucleons. Then the time evolution equation is
given as

0 P, n
(&*'ZE.VRt)f( )(Pl’-"’PN+1’R1""’RN+l’t)

i

B f H d’p, 4’0, d%q; ™ (@1 s Cuars Gir - -+ Ay DIL(T) + L(T) + I(T)].

(4.97)
T is the sum of all possible transition matrix combinations,
T=2ty+ 2 2tGoty (4.98)
m k#*m m

i.e., all possible scattering sequences which may occur when the projectile i travels through the target.
The terms I, to I, are defined as follows:

I = <P1 +p/2, . Py +PN+1/2QT|Q1 +q/2,... .0yt qN+1/2>
N+1

x [1 8P, —p/2-0Q,+412),

I,= <P1 =p/2,... Py, _PN+1/2|TT|Q1 —q/2, ..., Oni — ‘IN+1/2>
N+1

x [1 6P, +p/2-Q,—q/2),

I,= <P1 +p/2, . Py +PN+1/2|G;T'Q1 +q,/2,.. ., @y +QN+1/2>
X <P1 -p/2, . Py "PN+1/2|G;T|Q1 —q/2,. .., Oniy _qN+]/2>*'

t,, are the free scattering transition matrices and G, are the on shell propagators. If the potential
gradients are sufficiently small to employ the impulse approximation for scattering amongst target (or
projectile) nucleons as well, the extension to the equation which describes the nucleus-nucleus collision
is again straightforward. The index for the momentum and coordinate space variables runs now from 1
to N; + N, instead of N + 1, and T has to be replaced by the sum over all possible scattering sequences
of all projectile and target nucleons.

In the quantum molecular dynamics approach this equation is solved in an approximate way by
means of a Monte Carlo procedure. The details of this procedure will be discussed in the next chapter.
Here we only mention the essential approximations. The real part of I, + I,, which, as we have seen,
acts as an effective potential, has been replaced by a much easier to handle two-body potential, which
in nuclear matter can be easily related to the nuclear equation of state. It is a parametrization of the
g-matrix (instead of the transition matrix), which additionally takes into account the fact that nucleons
are fermions and therefore cannot scatter into phase space regions which are already occupied by other
nucleons.
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The propagator which describes the time evolution of the particles in between the scattering events is
taken on the energy shell. Thus each two-body scattering event conserves energy and momentum.

If the particles are in momentum eigenstates, as is approximately the case for smooth potentials,
terms with different sequences of transition matrix elements in G, T and T'G, do not contribute to /,.
These terms describe the interference between different paths. In this limit the paths are distinguishable
and therefore do not interfere. Assume a projectile nucleon scatters with quasi-free target nucleons
1,...,N. In order to proceed from nucleon i to nucleon i + 1 it has to have a definite momentum K|,
which points in the direction of the relative distance vector between the target particles i and i + 1. The
absolute value is given by requiring energy conservation for each nucleon-nucleon scattering event.
Due to momentum conservation the recoil of the target particle is fixed and unique for this sequence of
scatterings. A different sequence means a different momentum transfer to target particle i. Thus the
final state of the (N;+ N,)-body system is different and interference cannot take place. We will
substantiate this statement in section 4.6. In this limit /, reduces to a sum of terms which contains only
absolute squares of transition matrices |Ti,.Gg T.|> In the actual calculation it is assumed that these
terms are proportional to products of the cross sections. The limit of validity of this assumption is also
discussed in section 4.6.

The term proportional to the imaginary part of I, + I, serves to conserve the norm, as we have seen
eq. (4.78). Instead of calculating this term explicitly, it is much easier to replace it by norm
conservation in a Monte Carlo calculation.

As an initial condition we still have to choose the initial Wigner density fy(R,... Ry ,n.,
P, ..., Py y,)- We will discuss our choice in the next section. We initialize the nuclei according to our
choice of the initial distribution. Then we follow the space-time evolution of all the particles, and
perform the scattering whenever the particles are sufficiently close [cf. eq. (4.69)]. The scattering angle
is chosen randomly from a distribution which reproduces the measured free scattering cross section.
Thus in each calculation one specific summand of T (eq. 4.98) is chosen. For the same f, but a different
sequence of random numbers we obtain a different scattering sequence. Performing very many
calculations we obtain a distribution of different paths, where each path is represented with a weight
factor which corresponds to the probability that it occurs. Thus the Monte Carlo procedure is a very
convenient way of integrating out the 12" integration variables, where N is the number of collisions and
the 12 is due to the 12 phase space coordinates of the scattering partners.

4.5. Initial Wigner density

In the foregoing sections we have seen that under approximations which can be justified for
nucleus—nucleus collisions the time evolution equation for the n-body Wigner density requires three
inputs:

(a) the free nucleon—nucleon cross section;

(b) the effective potential between the nucleons given by the real part of the transition matrix;

(c) the initial n-body Wigner density.

Whereas the first two inputs can be inferred from experiments, the last input is not at all
experimentally accessible. The most we can learn from experiments are one- or, in a few cases,
two-body observables. The calculations of the n-body Wigner density from first principles is also far
outside the range of possibilities of present day nuclear matter calculations, as we have seen in chapter
2. Thus one has to start with an educated guess. The most one can do is to make a choice which is in
agreement with experimentally measured observables and generally accepted theoretical predictions.



J. Aichelin, *“ Quantum” molecular dynamics 285

Especially our choice should reproduce:

(a) a one-body density distribution which coincides with observed density profiles;

(b) the uncertainty principle;

(c) the relative wave function between two nucleons as calculated in the g-matrix approach; this
relative wave function approaches zero for small relative distances, as we have discussed in section 3.3;
in a cold nucleus this is rather independent of the relative momentum of the nucleons; thus the nucleus
is similar to a lattice with wave function located around the sites.

One, but certainly not the only, ansatz which can fulfill these requirements is the assumption that the
n-body Wigner density is a product of n Gaussians,

(n)

SN |
0 (rl,...,rn,pl,...,p,,,t)=_Ij[l—3

m

exp{—[r, = ro()12L} exp{~[p, = p,,(1))’ - 2L} .
(4.99)

For a fixed time " is the Wigner transform of the product of n coherent states. The possible values of
L are quite limited due to conditions (a) and (b). If we choose L too large, we cannot reproduce the
nuclear surface; if L is too small, we are faced with unreasonably high momenta due to the uncertainty
principle. In this limited range we checked that the calculated observables are robust against a change
of L. As we have seen in section 4.3, the width of a coherent state increases as a function of time if
propagated with the free Schrodinger equation. In our approach we keep the width constant, i.e., we
do not allow the spreading of the wave function. This is motivated by the observation that otherwise the
nucleus as a whole would spread in coordinate space as a function of time. Thus keeping the width
constant imitates in a crude way the influence of the potential on the wavefunction.

4.6. Interference between subsequent collisions

Formation time and formation distance. We have seen in section 4.4 that the time evolution equation
for the N-body system requires as input only the real part of the transition matrix and the
experimentally measured nucleon—nucleon cross sections, provided we are in the short wave length
limit AK >1 (A is the mean free path and K is the wave number of the particle). In this section we
investigate in detail how large this product has to be in order to justify the approximation of
independent collisions. We will derive the exact result, and discuss the correction terms for AK not
being large. We find that the cross section vanishes if the distance between the scattering centres
approaches zero, independent of the wave number K. Hence we can talk about a “formation distance”
below which the scattered particle is not able to interact again. In this calculation it is assumed that we
can integrate over all possible time differences = between the two subsequent collisions. Then we
proceed by allowing only a finite 7 between the collisions in a manner similar to that of the kinetic
theories. For small 7 we observe a strong suppression of the cross section. Even if 7= R/v,,, (R is the
distance between scattering centres, v, is the relative velocity of the particles prior to the first
collision), the total cross section has not reached its asymptotic value for parameters suited for a
nucleus—nucleus collision. Thus there exists also a “formation time”. This is the time a particle needs
after a collision before it can collide again with its full (asymptotic) cross section.

We will perform our calculation in the frozen target approximation because it allows for almost
analytical results without giving up the essential physics. Extending our calculation to three moving
particles described by Wigner densities is straightforward but the results are quite lengthy.
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Consider an incoming nucleon approaching two potentials located at R/2 and —R/2. There are two
possibilities for double scattering. Either it scatters first with the potential at —R/2 and then with that at
R/2. The amplitude for this process we will denote by A,,. Or we have the opposite sequence of
scatterings with the amplitude A,,. The incoming nucleon is described by the Fourier transform of the
Wigner density, eq. (4.54), with the approximated width (4.69),

f()(Q, q, t) — (2L/7T)3/2 e~(Q_Q0)2.2L e_qZL/Z eiq-(RO—Qot/m) i (4100)

We calculate the total cross section with the help of our Wigner density formalism. The total cross
section is contained in the terms linear in the transition matrix I"(T) [cf. eq. (4.76)]. In the limit L — o
the real part of I""(T) vanishes and we obtain

A
f(P, t=20)= f(P, 1= —) — ﬁ 8(P - Q,) + ["™Y(TT*) . (4.101)

I9*(TT*) refers to the term quadratic in the transition matrix (eq. 4.77) and @, is the initial

momentum. Omitting the terms ~7T7T* the time evolution equation of the Wigner density of the
incoming nucleon reads as [see eq. (4.59)]

4 TUJ'QTHTGJPT‘J* ip-R
Y, f(P,t)y=-i () e

X{(P+pl2|A,+ A,|Q+q/2)8(P—p/2—-Q+ql2)
= (P—p/2|A},+ A},|Q — q/2)8(P+p/2—- Q- ¢/2)} f(Q. ¢, 1) . (4.102)

The operators for the different scattering sequences is given by

D o

"PFPR = Fie ¢ P (P+pl2)-1Ptie

(4.103)

A12+A21=2mfd3lT

The transition matrix for scattering on a scattering centre located at R/2 is obtained by a translation
from scattering on a particle located at r =0,

(m|T\[n) = """ %(m|T|n), (m|T,|n)=e"""™"**(m|T|n) . (4.104)

We replace T, and T, by these expressions and perform the integrations over d’q, d’p and d°R,

d . 3 3 2L 32 ) )2~2L —(Q—P)2~2L
o fB=-i32m | £Q (=) e @ e

N ((P|T|l><l|T|2Q—P>
PP — P +is

A(PIT'IHIT'2Q - P)
— P - —i¢

cos[(I — Q) - R] @ ~F) ®o=2ur/m)

cos[(I— Q) - R] e‘“(Q"”'(RO‘Qo"'"’) : (4.105)
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We proceed by integrating over the time. Then we perform the limit L — o, substitute (m|T|n) =
(A+iB)e ™ "’ and obtain

f dt f(P, 1) = Zilomm ””’ 1 ’ 4 e 2®D cos[(1 — P) - R] 8(P - Q)
(A+iB)’  (A-iB)’
X(_Fﬂ:;Tis Pz—lz—is)' (4.106)

Comparing this result with eq. (4.78) we see that the total cross section of scattering on two potentials is
given by

(A+iB) (A-iB) )
- . (4107
PP—F~+ie (PP -1*—ie) (4.107)
The term 2 cos[(I — P) - R] can easily be identified as being proportional to the Fourier transform of the

spatial distribution of the two scattering centres. This allows a straightforward generalization of the
above expression. Defining

Ao

tot

P (m 47y fd:’le_z"(" 2 cos[(I - P)- R](

F(q)=Re f e“®*o(R) 'R, (4.108)

where Re refers to the real part of the complex function, we obtain as the general result

Ag,, = (m 47y f &l e TV FP - 1) (A“B),s [f;“'ziB),z ). (4.109)

In order to appreciate our result, and to make contact with the well known high energy limit, we
calculate the cross section in the high energy (Glauber) limit. In this limit the propagator G, is replaced
by

2m 2m
P -P+ie P-(P-D+ie’

G, = (4.110)

This implies that the projectile does not change its longitudinal momentum.
Backward scattering is impossible in this limit, and therefore only one of the amplitudes A, and 4,
has a finite value. Consequently, we have to replace in our expression

2 cos{(P - l)-R]—>Re( f E=DRo(R) d3R) (4.111)

Furthermore we assume that the imaginary part of the scattering amplitude is large compared to the
real part, A<B. We can now perform the integrations. Recalling the definition of the scattering
amplitude,

fl-gq) =4=’m(l|T|q), (4.112)
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we obtain

800 =2 [ g -0 R~ @) [Fa ). (8.113)

To derive the last expression we have assumed that we can replace f( q) by f(0) under the integral. This
is justified if (R*)'’*> a, where R is the distance between the scattering centres and a is the range of
the potential. Using [ F(q) dg=27(R™) we finally arrive at the well known résult [1]

e = —(000 V(R ?) 14, (4.114)

We come back now to our question about how the total cross section is modified due to double
scattering. To investigate its dependence on the relative distance it is best to assume a Gaussian
distribution of the relative distance between the scattering centres in coordinate space,

p(R) ~e RI4K (4.115)

Consequently we have to replace 2 cos[(P — I) - R] by 2¢ ¢ DPaR Again we assume the imaginary part
of the scattering amplitude to be large compared to the real part. Then we can perform the integrations
and obtain

Aa' i (o-t()t :

- _ %0t/ 1 -(4AR+8a)P?
o= "7 ga AR e ]. (4.116)

First of all we see that the cross section due to double scattering has a negative sign. Therefore it lowers
the value of the cross section obtained from single scattering. This would be different if A > B.
Secondly, double scattering does not take place if the scattering centres are close to each other. There
exists a formation distance below which the projectile can only react with a reduced cross section. This
distance depends on the sum of the range of the effective potential and the distance between the
scattering centres. For large AR the expression approaches a limit which is easy to interpret. Assuming
an isotropic cross section (a =0) we have
2
Ao = (R )

tot ( T o1

(4.117)

(R*)'"? 1s the average distance of the scattering centres in the reaction plane and a, (R™")/
47 =(R7?)do/df is just the probability that the scattering angle is such that the projectile hits the
second scattering centre.

Still more insight into the quantum mechanics of double scattering can be obtained by inspecting the
dependence of the double scattering on the time the projectile travels between the scattering centres.
We recall that the propagators in eq. (4.105) are obtained by assuming that the time between the
subsequent scatterings can vary between 0 and infinity,

{

i ip2(t—t) —ilk(e-r') _~e(t—1t') 3,1
S —— O e ) gyt (4.118)
P +ie f
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If we allow a finite time difference only, the difference of the propagators in eq. (4.106) has to be
replaced by

2m m _ 4im sin((P> — I*)r/2m)

_— , 4.119
P +*+ie P*+1°—ie PP-P? ( )

where 7 is the maximal allowed time between the scatterings. For 7— o the left and right hand sides of
eq. (4.119) become identical. In order to calculate the dependence of the double scattering term on the
temporal distance we replace in eq. (4.106) the difference of the propagators by the right hand side of
the above expression. We integrate over the angles and obtain finally

NN\2 < ] 2 2
. — )2
a(f)=—("""2 ARiZa f e~ @RV 2P Gob 0 AR +24) PI) 2" S“‘((}’: 2_12)7 ™ .
’ (4.120)

In fig. 5 we display o(r) for different values of (R®) as a function of time. o(r) is normalized to
o(t—»). Thus the suppression due to the finite distance between the scattering centres has been
divided out. The time is displayed in units of 7, = (R”)"’m/P, the time it would take for a classical
particle to travel from the first to the second scattering centre. We see that only for a very large distance
(R~6fm) is the asymptotic value obtained around 7,. At smaller distances the cross section is
considerably reduced there. If the distance between the scattering centres decreases further we find an
oscillatory form, which only at very large times approaches its asymptotic value.
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Fig. 5. On the formation time. Allowing only a finite time difference 7 between subsequent scatterings we observe a reduction of the asymptotic
cross section for double scattering o(r— ). This reduction o(r)/o(r— ) is displayed as a function of r for different distances between the
scattering centres. 7 is presented in units of the time it would take for a classical particle to travel from one to the other scattering centre.
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We can conclude that the double scattering term has a negative sign if the imaginary part of the
scattering amplitude is large compared to the real part, and therefore lowers the total cross section,
which is a sum of single, double, etc. scattering. The double scattering is strongly reduced if the wave
length of the particles is not small compared to the distance R between the scattering centres. If we
furthermore limit the time the particle is allowed to spend between the scatterings, a further reduction
occurs for values of R around the nuclear mean free path.

Hence, for values of R and 7 which are typical for nuclear collisions, the independent scattering
approximation can hardly be rigorously justified, although the long mean free path at low energies due
to the Pauli principle works in our favour. The corrections, however, may be of the order of 50% and
yield a decrease in the effective number of collisions. At higher energies the mean free path is large
enough compared to the particle’s wave length to justify the independent collision approach. The only
excuse for using the independent scattering approach for practical calculations lies in the fact that
calculation of the correction terms is beyond what is at present numerically feasible, and that careful
investigations have shown that the dynamics of the reactions considered here are not influenced by
quite different treatments of the collisions of nucleons with a centre of mass energy of around 50 MeV
[102].

Interference in the quasi-free limit. In section 4.4 we mentioned that in the quasi-free limit the
interference term vanishes. In the quasi-free limit the knocked on target nucleon recoils as a free
particle. The recoil energy equals g7/2m, where q is the momentum transfer. Although we are not quite
in the quasi-free limit, the smoothness of the potential keeps the width of the wave function in
momentum space small. Thus the quasi-free limit can be considered as a first-order approach, whose
corrections have to be calculated. The disappearance of the interference term is caused by different
scattering sequences leading to distinguishable final states. Thus the scattering sequence can be
determined by measuring the momenta of all nucleons which are involved in the collisions, and there
are no indistinguishable alternatives which could interfere. In this section we will substantiate this
finding. We reduce this problem to its easiest version: the scattering of a beam particle at two scattering
centres which are located at R/2 and —R/2, respectively. We take the simplification that the range of
the potential is small compared to the mean free path, so that the width of the coordinate and
momentum distribution of the scattering centres can be neglected. This is true for a wide range of
nuclear reactions. It allows us to approximate the propagator of the projectile between the subsequent
scatterings in a way which avoids the otherwise necessary integrations over angles. As we have seen,
there are two possible scattering sequences. Either the beam particle scatters first with particle 1
(described by the transition operator 7,) and then with particle 2 (described by T, ), or vice versa. The
amplitude for these processes are denoted by A, and A,,,

A, =f (KP||T|K'P,)G, (K'P}|T|KP,) K" (4.121)

K., K' and K, describe the momenta of the beam particles before, in between and at the end of the two
collisions, respectively, and P, and P| are the initial and final momenta of particle i. G, is the
propagator of the beam particle between the collisions,

_ 2m
K!+P;-P’-K"*+i¢"

G, (4.122)
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In order to make use of the above-mentioned approximations we Fourier transform A,

A= Erar (8-, (4.123)
with
i 1 —iK'-r" ’ ’ 311
L) =——=z ¢ <KfP2|T2|KP2>dK )
(2m) (4.124)
1 iK"r' np! " .
)= " JCK (K'P}|T\|KP,) K",
iKlr'—r"|

m ¢

8 )= 5 T

We denote the range of the potential by a. f,(r") and f,(r') are only different from zero in a region of
radius a around R/2 and —R/2, respectively. If a is small compared to R, we can replace |r' — 7| in the
denominator by R and approximate

(4.125)

K
|r—"

Performing the integration over 7’ and r’ we obtain

Klr/ _ rl/l ~

r—r)-(r - r)= % R-(r—r)=K,-(r-7r). (4.126)

2
d7°m

Ay = R

(KP3|T|K,,P,) (K, P} TIKP,) . (4.127)

Thus we have replaced the propagator

o L drm 5K' - \KZ+ P = PP RIR)= -1 L K'-K
K}+P-P’+K+ie R oot ) R ( 2)
(4.128)

Particles which do not have about this momentum after the first scattering would miss scattering centre
2 and hence A,, would be zero. Thus this result is as expected by intuition. For A, we can proceed in
the same way, but of course we have to replace P, by P, and R by —R in eq. (4.128). In this case we
denote the momentum of the beam particle between the collisions as K.

In our normalization the differential cross section is given by

do/dQ =[(2m)1v,)|A, + Ayl (E) . (4.129)

p(E) is the density of final states for a given energy E and v,/(2w)’ is the incoming flux. For evaluation
of the cross section we have to take the transition matrix on the momentum shell,

(KI|T|mn) = 8(K + 1~ m — n){KI|T|mn) . (4.130)



292 J. Aichelin, “Quantum” molecular dynamics

The square of the delta function which appears when evaluating eq. (4.129) is treated in the standard
way,

(8(m — n))* = 8(0)8(m — n) = f R $°R 8(m — n) = z v s 8(m—n)=58m—n). (4.131)

1
@y @y
The last relation is due to our normalization.

We begin with the calculation of the cross section for the direct terms |A,,|* and |A4,,’,

do  (47°m)* o Qm)' o5
o QEIL |k piIT: kP, = (PR T K o) D(E)
0
|2(

= If(Ki’ P —K,,, Py) .R.z 1<P2Kf|T2|K12P2>| p(E) . (4.132)

f is the scattering amplitude for elastic scattering and p(E) is given by

p(E)=2md(P>+ K>+ P} - P~ K} — P*)6(P, + K,— K, — P})
x 8(P, + K,, — K, — P;) &P, d°P; K dK,
=2md(P; + K3, — K; — P;")o(K,, + P,— K, — P}) K} dK, d’P, . (4.133)
Thus p(E) is the phase space for the last two-body collision for a given initial momentum K,.

Finally we obtain for the quasi-free cross section, with v, as relative velocity between the partners in
the second collision,

dogr

_do o do o0 v
dn - dn (191) dn (192) UOR2 ’ (4134)

which is the expected result. 3, denotes the scattering angle in the first collision, which directs the beam
particle to the second scattering centre, and ¥, is the scattering angle in the second collision in order to
be finally observed in df2. The calculation of the term | A ,|* is completely analogous.

Now we proceed to the interference term. Performing the same steps as before we obtain

(Ale; QF ~ 5(P1 +Ki "Klz _P{)S(P2+K12 _Pé_Kf)‘s(Pz +K, - K, _Pé)
X 8(P, + K,, — P, — K)|T,T,|"(m - 47" )IR* . (4.135)

This product of 8-functions can only be fulfilled if K, = K,,. Since K,, points from target particle 1 to
target particle 2, and thus in the opposite direction to K,,, this requires K, = K,, = 0, a condition under
which the collisions do not occur.

If we give up the quasi-free limit, but assume that the target particles are represented by wave
functions ¢, which have a finite width in momentum space, we can investigate under which conditions
the interference term becomes finite. To investigate this point we assume that we are still in the range
of validity of the impulse approximation. Then we can continue to use free transition matrices and can
neglect the potential energy terms in the propagators.

In section 4.3 we have investigated how to describe the scattering into a specific final target state in
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the impulse approximation. Here we make use of these results and calculate the interference term for
the case that the target particles 1 and 2 are scattered into final target states ¢, and ¢,. If the target
particles initially have the momenta P, and P,, we obtain for A, A7,

A21AT2 = (¢2|P;)(KfP§|T2|K12P2>(¢1|P;)(K,ZP”T1|KiP1)(KiP2|T;|K21P;)<P'2'|¢2>
X (K, P,|Ti|KP}) (P}l @) d°P; d°Py d°Py d°P) (47°m)’IR?
= o3 (K, + P, — K)o (K; + P, — K)o (K +P —K,)
X @,(P, + K,, — K,)(4w’m/R)’ X product of T matrix elements . (4.136)

Thus the final cross section reads as

do
E = [(277)4/U0R2]f(P1’ Ki—-)Pl + Ki - K12’ KlZ)f(PZ’ KIZ_)P2 + K12 - Kf’ Kf)

Xf*(P,, K,—P,+ K, — K,,, K, )f*(P,, K,,—> K, P, + K, — K,)
X @ (K;+ P — K12) ‘PT(P1 + K, — Kf)%(Klz +P, - Kf)GD;(Ki +P, - K,)
x2m8(P+ P5+ K} - K} —2m(E, + E,))K: dK, . (4.137)

E, and E, are the final energies of the bound particles. The contribution of the interference term to the
cross section is determined by the products ¢, ¢} and ¢,¢3. If the states ¢, and ¢, are sufficiently sharp
in momentum space this product approaches zero, as we have seen. If they are broad, i.e., if vastly
different arguments of ¢ and ¢* do not cause the product to disappear, then the interference terms
cannot be neglected. Unfortunately, in order to estimate the size of these terms, one has to know the
target wave function.

We can conclude that in the quasi-free limit interference terms do not contribute to the cross section.
Since all available kinetic models are based on the assumption of quasi-free scattering, they do not offer
the possibility of estimating this contribution. A reliable calculation requires the nuclear wave function
as an input, and hence is far beyond the present status of kinetic theories. From a practical point of
view two arguments can be given in favour of neglecting the interference term in a first approach. First
of all, inside the nucleus potential gradients are presumably small, and hence the wave function is
narrow in momentum space. Hence the condition for neglecting the interference terms coincides with
that for justifying the impulse approximation, which was seminal for deriving any kinetic theory.
Secondly, in addition to what we have discussed so far, there are strong kinematical correlations. In the
laboratory system the scattering angle of the projectile is smaller than 3J,,, = 90° if the target nucleon is
at rest initially. Thus only one of the two possible sequences of scatterings is kinematically possible. The
Fermi motion of the nucleons also allows scattering into larger angles. The probability for this is small,
however, even for an isotropic cross section in the nucleon—nucleon centre of mass system. Thus one of
the sequences always has a much higher probability.

These rather qualitative arguments have not yet been extended to quantitative calculations. This will
certainly be one of the future tasks in the development of kinetic theories.

4.7. Attempts to treat nucleons as fermions

Nucleons are fermions. Hence a nucleus behaves quite differently from a system of distinguishable
particles, and a reliable description of any nuclear system requires us to take these effects into account.
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Nobody, however, has yet succeeded in solving a properly antisymmetrized n-body system in which the
constituents can scatter. This is not only a matter of principle. Due to the n-body correlations the time
evolution equations for a properly antisymmetrized n-body wave function contain n! terms as compared
to one term for a direct product ansatz. Thus presently, even if the time evolution equations were
formally known, an exact calculation would not be feasible. What one can hope, however, is to find a
systematic expansion in which higher order correlations are proven to be small. Such an expansion is
not available yet although in principle it is known how to proceed [106].

Up to now one had to mimic those fermionic effects which are believed to be essential for a
reasonable treatment of the dynamics. These include the Pauli blocking of scatterings into already
occupied states, as well as the description of the ground state, which is — for a given Hamiltonian — quite
different from that of distinguishable particles. This mimicry has quite a long history. Already in the
classical molecular dynamics approach Wilets et al. [57] tried to mimic the Pauli principle by a
momentum dependent potential which keeps two particles apart from each other in phase space if their
distance becomes smaller than h. In the meantime Dorso [103] showed that indeed a Fermi distribution
can be obtained as the ground state of a system of distinguishable particles which interact by a properly
chosen momentum dependent two-body interaction. Also the influence of the Pauli potential on the
time evolution of the quantum molecular dynamics approach has been investigated recently [104, 136].
All these approaches have in common that they neglect all higher than two-body correlations and even
these are introduced ad hoc, i.e. not derived from antisymmetrization. In principle, on the level of
two-body correlations the effect of the antisymmetrization was believed to be expressible as an effective
potential.

This common belief that quantal effects can be mimicked, at least in principle, has recently been
questioned by Feldmeier [105]. He claimed that the dynamics of fermions cannot be described by
Hamilton’s equations. This would invalidate of course all the above mentioned approaches, as well as
all kinetic theories applied so far to heavy ion reactions. We will therefore present his arguments, and
discuss the generality of his approach. His claim is based on the application of a variational principle
originally suggested by Kerman and Koonin [106]. This variational principle is applicable to a system
whose wave function ¢ depends on time only via parameters. For these systems a generalized Lagrange
density can be defined,

A1), pol0). o), 5o(0) = [ &'r (i ~ sy (4.13%)

where ¢ is a parametrized trial wave function. The true motion will be obtained if the trial wave
function has sufficient freedom to reproduce the true solution. The main purpose, however, is to apply
this principle to restricted basis states. The time evolution equations for the parameters can be obtained
by requiring ¥ to be stationary with respect to variations of |/) and (| between fixed end points ¢, and

t)

d 9 6)

— 2 _ % )y= 4.139
(dt ap, ap, £=0, ( )
d 4 8)

e 4.140
(dt ar, ar, +£=0. ( )

These equations are quite similar to the Euler-Lagrange equations, and probably this similarity led to
eq. (4.138) being called a Lagrange density, although it depends on (r,, p,, 7, P,) and not on (r, r,).
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It has been shown that for a number of nonfermionic systems the correct time evolution of the system
can be obtained by applying this variational principle.

Feldmeier now applied this method to two freely moving fermions. As trial wave function he chose
an antisymmetrized product of states of the form

i[pio-(r—rio)—plzot/Zm]

—(r—rig—pigt/m)¥AL(s) (4 141)

Yi(r, Pigs Tip) = [\/m' 2L(t)]3/2 ¢ ’

with a constant width L(f)= L. With L(¢) defined as L +it/2m, eq. (4.141) is a solution of the
Schrodinger equation for a free particle. The time evolution equation of the parameters are the same
for a constant as well as for a time dependent width of the above-mentioned form as long as the total
wave function is a direct product of coherent states. This is not true, however, for antisymmetrized
coherent states. The calculation of Z for the product of two antisymmetrized coherent states is quite
lengthy but straightforward, and we obtain finally (after separation of the free centre of mass motion)

_ (3B . Py po—|ry po+2Bp. —2B(r, — 4Bp ) /16L°]Y
£ = <i+RO P0+"*2“—L6—““—£“—L“—m—]ﬁl_y : (4.142)

Y = g Pi4L—(rg=4Bpy)Y 4L , (4.143)
3 P*  pi+|(r,—4Bp)/16L*]Y
H=—_ 2 _ (4.144)

4ALm " dm = ——m—Y)

po and r, refer to (p,, — py)/2 and ry, — r,,, respectively. Feldmeier now proved that there exists no
Hamilton function H which satisfies Hamilton’s equations, i.e., for which p, = ~oH/ dry and 7, = 3aH/
dp,, with 7, and p, given by eq. (4.140) and (4.139), respectively.

One can, however, take a different approach to the fermionic motion. Starting from the time
evolution equation of the Wigner density for two free particles,

et

P,
a ml.Vrl+_.Vr2>f(r1ap15r21p27t)=0’ (4145)

m,
we obtain immediately the solutions
firiry, p, Py t) = % exp[—(r, — r,y — pit/m,)I12L) exp[—(r, — 1,y — pot/m,)/2L]
X exp[—(p, = P1o) 2L — (P — Poy)’ - 2L]. (4.146)
As can be easily seen, f is the product of two Wigner transforms of time dependent coherent states,

W(ry, Pios 1) = C'exp[—(r, —r,,— plt/m)z/(4L +2it/m) +ir, - p,o] - (4.147)

After a lengthy calculation we obtain for the antisymmetrized Wigner density of the relative coordinates
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fir, p, o, Py, 1) = C{exp[—(r = ry— pt/n)’/4L ~ (p — p,)’ - 4L]
+exp[—(r+ry—pt/p)’ /4L — (p + p,)* - 4L]
—2exp[—r*/4L — p* -4L] cos(2r- p,—2p - (ry + pot/p))} . (4.148)

We have separated out the free motion of the centre of mass. p and r refer to the relative coordinates
and p is the reduced mass. For discussing the time evolution of the fermionic system, we neglect the
time dependence of the width of the coherent states, which corresponds to a replacement of pt/u by
Pot/w. This can always be done by choosing the width at ¢ = 0 sufficiently large or the mass sufficiently
heavy. This yields

fa(r, P, Ty, Pos )= C{exp[—(r— r, _Pot/ﬂ)2/4L —(p "Po)2 “4L]
+exp[—(r+ry+ pot/p)14L — (p + p,)* - 4L]
—2exp[—r*/4L — p* -4L) cos(2r- p,— 2p - (ry + pot/n))} - (4.149)

The time evolution of the Wigner density in coordinate and momentum space is obtained by
integration over the complementary variable, and is displayed for the one-dimensional case in fig. 6.
There we have chosen the initial condition r, = 2(fm) and p, =0.1(1/fm). We display in this figure the
direct term, the exchange term and the sum of both. For large distances (¢t = 0) we see two separate
Gaussians in coordinate space and the exchange term has little influence there. In momentum space,
however, the exchange term acts strongly and generates two Gaussians out of the one peak made by the
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Fig. 6. Time evolution of two approaching antisymmetrized Gaussian wave packets in coordinate and momentum space. We display the density and
momentum space density as a function of the relative coordinates at three times: () before the wave packets overlap in coordinate space, (b) during
an intermediate step and (c) at the point of maximal overlap. In the last row the sum of direct and exchange terms is multiplied by a factor 100 in

order to be visible.
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direct term. At 10 fm/c the direct term also overlaps strongly in coordinate space. The exchange term
separates the peaks in coordinate space. The widths of both peaks have decreased, and the width in
momentum space has to compensate for this in order to fulfill the uncertainty relation. Finally, when
the direct terms merge into one Gaussian, both the direct and the exchange terms increase in magnitude
tremendously. The peaks generated by the exchange term are still quite separated, and the width of the
peaks in momentum space has increased once more.

Inspecting eq. (4.149), we see that the centroids of the Gaussians obey Hamilton’s equations with
H = p’/2m, obviously in contradiction to Feldmeier’s results.

How can this happen? The answer lies in the fact that both the antisymmetrized product of coherent
states of the form (4.141) with a constant width L, as well as its Wigner transform (4.149), are not
solutions of the free particle Schrédinger equation. Equation (4.149) was obtained under the assump-
tion L(t)= L(0). We also see that in the same limit, Y, defined in (4.143), approaches zero. It is a
drawback of the variational approach, however, that a condition for justifying the replacement of Y by
zero cannot be given. One can conclude that, if the trial wave function does not have enough freedom
to reproduce the true solution, the variational principle can yield equations of motion for the
parameters which cannot be formulated as Hamilton’s equations of motion. If one allows sufficient
freedom in the parameter space, in this case by allowing also the width to be a function of time, eq.
(4.148), one has to recover Hamilton’s equations of motion. The non-Hamiltonian dynamics is hence a
result of a specific choice of the parameters, and is not due to the fermionic nature of the particles
under consideration. As shown, it may yield quite unrealistic equations of motion.

Comparing the time evolution of the approximate solution, eqgs. (4.142), (4.139) and (4.140), with
that of the full solution, we observe some quite unpleasant features of the former. At large relative
distances, when the fermions have passed each other, the interference term approaches zero and we
observe two spreading Wigner densities. There is no information that the fermions have passed each
other. The momentum distribution is as it was before the encounter. The approximate solution
accelerates the approaching fermions, followed by deceleration. There is a net momentum transfer. At
finite impact parameters we observe in addition an unphysical transverse momentum transfer [105].
These unpleasant results question the usefulness of the variational principle for fermionic systems if one
does not know the full solution beforehand. Thus one has not really made a step forward since the
introduction of the effective two-body Pauli potentials. Although they are at least partially successful,
they have a lot of drawbacks: they also produce artificial transverse momentum transfer when two
fermions pass each other, they yield effective masses which do not agree with nuclear matter
calculations, they modify the equation of state, and, last but not least, they convert a nucleus into a
lattice if they really aim at a complete hindrance of overoccupation of phase space cells; this is because
the motion of one nucleon always leads to an overoccupation if all other nucleons do not give way
collectively.

5. The model

In this chapter we describe the details of the quantum molecular dynamics model (QMD) and its
numerical realization [11-19]. We give an account of the tests performed and show how different
potentials change the stability of the nuclei.

The typical time for a heavy ion reaction, as we will see, is around 200 fm/c. For this time
noninteracting nuclei have to be stable. Otherwise one cannot be sure that the results really reveal the
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physics and are not just numerical artifacts. The stability, and hence the successful simulation of heavy
ion collisions, depends on the solution of two critical problems: how the initial configuration is to be
made and how one has to evolve the A; + A, system in time. We start with the first topic.

5.1. Initialization

When we compared quantal (TDHF) and classical (Vlasov) mean field systems [63, 107] we found an
almost identical time evolution of the nuclear density for beam energies larger than 25 MeV/n. This
means, first of all, a justification for terminating the £ expansion of the potential term in the time
evolution equation (eq. 4.42). Nevertheless, this is surprising because the initializations are quite
different. The initial density of the first calculation is given by a Slater determinant whereas the Vlasov
equation starts out from point-like particles randomly distributed in a sphere of radius r =1.124""
This corresponds to a normal nuclear matter density of 0.17 nucleons/fm’. From these results we have
concluded that, at the energies considered in this work, the detailed form of the wave functions has only
a minor influence on the time evolution of the bulk properties of the system, especially on the single
particle observables, if they fulfill the minimal requirements listed in section 4.5. They are determined
by the single particle density and rather independent of the way the single particle density is generated
by the density distributions of the individual nucleons. We cannot expect to learn from these different
theories much about two-nucleon correlations. Therefore, as discussed in section 4.5, one has to start
with an educated guess for the n-body Wigner density. As we have seen there, the description of the
nuclear wave function as a product of n coherent states,

eXD{ifp;n ° (r _ r;n) - p.znt/zm]}
G(r, Pigs iy 1) = Va2l 2L(t)]3/2

exp{—[r = r,, = pt/m]14L(0)} , (5.1)

allows one to satisfy most of the experimental and theoretical demands on single particle distributions
and two-body correlations. L(¢) is defined as L +it/2m.

The Wigner transforms of the coherent states are Gaussians in momentum and coordinate space. In
the calculation we keep the width constant, L(t) = L. Then the Wigner density reads

1
Qm)’

r,p,t)= e P (r 1, /2, DY H(r—r,/2, 1) dr,
i 12 i

= % exp[—(r—r,— piot/m)z/ZL ~-(p— pio)2 -2L], (5.2)
o

where L = 1.08 fm’, corresponding to a root mean square radius of the nucleons of 1.8 fm. The Wigner
representation of our Gaussian wave packets obeys the uncertainty relation Ar_Ap =#/2.

As discussed in section 4.5 the n-body Wigner density is the direct product of the Wigner densities of
n coherent states. As we discussed there we keep the width fixed.

The one-body densities in coordinate and in momentum space are

N
P(’J):E B(r_ri)ff(N)(r]v-~~7vap1,"-apN’t)d3pl.”d3de3rl“.d3rN
i=1

1 ~(r—r;g—p;pt! m)*
:2 (wLy"” I (5.3)
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and equivalently

N
g(p, t)=§5(p_pi)jf(1v)(rl"‘"rN’ Pl’“-’PNat)d3p1"'d3de3r1"'d3rN- (5.4)

A random choice of the centres of the A, + A, Gaussians in coordinate and momentum space,
where the momentum is chosen between zero and the local Fermi momentum, is not sufficient to
maintain the stability of the nuclei for a sufficiently long time span. Due to fluctuations, a limited
sequence of random numbers does not create the ground state of a nucleus but rather a metastable
excited state, which decays by emission of nucleons. The time span for which the nucleus has to be
stable implies an upper limit to the excitation energy which can be tolerated.

Eigenstates of a Hamiltonian have to fulfill the uncertainty relation. The varlance Ar_Ap, of two
neighbouring eigenfunctions is separated by #, i.c., each level fills a volume of 4” in phase space. If a
system is in the ground state, the phase space is densely filled up to a maximum value in coordinate and
momentum space. Loosely speaking, there is no hole in the phase space. It is this property of the
ground state which we employ to initialize the nuclei.

First we determine the position of the nucleons in a sphere of the radius r=1.124"". We draw
random numbers but reject those which would position the centres of two nucleons closer than

r.., = 1.5 fm. The next step is to determine the local potential U(r) generated by all the other nucleons
at the centres of the Gaussians. The local Fermi momentum is determined by the relation pg(r,) =
V2mU(r,,), where U(r,,) is the potential energy of particle i. Finally the momenta of all particles are
chosen randomly between zero and the local Fermi momentum. We then reject all random numbers
which yield two particles closer in phase space than (r;, — r,.[,)z( Pio— pjo)2 =d_;,. Typically only 1 out
of 50000 initializations is accepted under the present criteria. The computer time required for the
initialization is short compared to the time needed for the propagation.

The accepted configurations are quite stable: usually no nucleon escapes from a heavy nucleus in
300 fm/c, as we will see in section 5.5. This procedure also ensures that the nuclei have the proper root
mean square radii in coordinate and momentum space. Light nuclei are somewhat less stable. One or
two out of ten nuclei lose a nucleon in the required time span. To avoid the initialization of unstable
nuclei the following procedure can be applied: We select a sample of nuclei which have the required
stability. We then choose randomly two Euler angles and rotate the positions of all nucleons of one
nucleus around its centre of mass. The rotated nuclei are then boosted towards each other along the old
z-axis. Each set of Euler angles yields a completely different reaction without changing the stability.

5.2. Propagation in the effective potential

Successtully initialized nuclei are boosted towards each other with the proper centre of mass velocity
using relativistic kinematics. The centres of projectile and target move along Coulomb trajectories up to
a distance of 2 fm between the surface of projectile and target. From then on we employ a generalized

version of the Ritz variational principle [106] to determine the further time evolution of the system.
For that purpose we define a generalized Lagrange function,

§f=f¢/[ —1——12(,0 ar, pio-%ﬂ)>]wd3rl~-d3r". (5.9)

 is the direct product of n coherent state wave functions and H is the total n-body Hamiltonian
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H=XYT,+V, with V, and T, being the potential and kinetic energy of particle i. The Lagrange function

can depend on all parameters p,, ..., p,o, Fyos - - - » I'yo and the time derivatives of these parameters.
For a direct product of coherent states £ is given by

2= pat (V)4 ). (5.6)

The time evolution of the centroids p,, and 7, = r,, + p,,t/m is given by the Euler-Lagrange equations,

d o 0% + _ P

dr dp,, 9Py =0 r= m * VpUi ’ (.7
d & o9& .

T —a;io - ————a;io =0— p,=-VU,. (5.8)

Here we have defined the potential U, as (I V,). Thus the Ritz variational principle yields the same
time evolution of the parameters as one would obtain if one moves the centroids of the wave function
(eq. 5.1) according to the classical equations of motion given by the Poisson brackets,

P‘m:{Pio’ZHj}z{Pio’ T, +U}, (5.9)
j

;o= {r,.(,,ZH]}: {Fo T, + U} . (5.10)
]

This is remarkable because due to the fixed width the underlying wave function is not a solution of the
Schrodinger equation for a free particle. These differential equations are solved using an Eulerian
integration routine with a fixed timestep At,

Pio(n+1)=py(n) =V, U(n+1/2) A, (5.11)

_ Pio(n) _ A 512

rio(n+1/2)—ri0(n—1/2)+mAt+Vpi0Ui(n 1/2) t. ( . )
i0 i

Static interactions. Following the discussion of chapters 2 and 4 we replace the real part of the
transition or the g-matrix by a local Skyrme-type interaction supplemented by a long range Yukawa
interaction, which is necessary to reproduce the surface, and an effective charge Coulomb interaction,
where all particles of projectile and target have a charge Z,/A, and Z/A, respectively.

Our total static interaction reads

V!ot - Vloc + VYuk + VCoul , (513)
where the different terms are

V10C=t15(r1 —r2)+125(r1_r2)5("1 —r3)a (514)
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Yuk ~|ry=ry{/
VY= e ™ (p — | im), (5.15)

with m=1.5fm and t, = —6.66 MeV. These parameters give the best preservation of the nuclear
surface, as we will see in section 5.5.
The total energy H, of particle i is the sum of kinetic and potential energies,

H=T+V,=T,+ % 2UP+ % U (5.16)
i Ik

T, refers to the kinetic energy of particle i and the potentials are defined as
U = f £(Pos 7oy OF (B 10 VO, — 1) &, &r, dp, (5.17)

Uf;i)zfﬁ(Pi’ri’t)fj(Pja t)fk(pk’rk’t)v(3)(rz’ ]’rk)d3ri d3r].d3rk d’ id3pjd3pk' (5.18)

V® and V® are the two- and three-body parts of the interaction defined in eq. (5.13).
Performing the integration one sees immediately that the local part of £ U Ef) can be written as

2UP =1,5(r,) (5.19)

I

where the interaction density p(r,,) is

1 U r;
3/22 RS (5.20)

p(r rio) = (47L)

The interaction density has twice the width of the single particle density. We can approximate the
three-body part of V as a function of p(r,),

2 uQ=1, X V® &R, &’P, &°R, d°P, d°R, &P, f(R,, P,, )f (R, Py, )f(Ry, Py, 1)

Jkij k& AR

t
B (2wL)23 37, 2 _ exp{{(rio = r)* + (rig = 70)” + (70 = 7o) 6L}
5K LEFL )

t23 372 2 exp{[(r,, — "jo)2 +(ro— ’ko)Z]/4L}

- (2wL) - kA Ak

t (47TL)3V/2 .
= (217L)23("_1)/2(V+ 1)3/2 P (ro) (5.21)

with » =2. In spin saturated nuclear matter the three-body interaction can either be viewed as a
genuine three-body interaction or as the density dependence of the two-body interaction due to the
hard core, since we find

,8(r, —r))8(r, —ry) = %t25(r1 —r)p((r,+1,)/2). (5.22)



302 J. Aichelin, ** Quantum™ molecular dynamics

Therefore this effective three-body term is not in disagreement with the calculation by Kiimmel [44],
who found a very small genuine three-body contribution to the binding energy.
The Yukawa part of the potential energy is given by

Lim
€

DU =Y — {e™""[1= ®(VLIm—r2VL)]-e"[1- ®(VLim+r,2VL)]},
j i#]
(5.23)

if

where @(x) is the error function and r; is the distance between the centres of the ith and the jth
particle.

Next we have to determine the parameters ¢, and ¢,. We start from the observation that in nuclear
matter, where the density is constant, the interaction density coincides with the single particle density,
and U'?), as well as U$),, is directly proportional to p/p,. The three-body part U of the interaction is

proportional to (p/p,). If we adopt for U the approximation (5.21) we can directly relate our
parameters to nuclear matter properties. In nuclear matter our potential has the form

U™ = a(plp,) + B(plp,) - (5.24)

This potential has two free parameters, which can be fixed by the requirement that at normal nuclear
matter density the averaging binding energy is —15.75 MeV and the total energy has a minimum at p,.
The adjustment of the two parameters fixes the compressibility as well. In order to investigate the
influence of different compressibilities one can generalize the potential to

U™ = a(plpy) + B(plp,)” - (5.25)

We now have an additional third parameter, which allows us to fix the compressibility independently of
the other quantities. This generalization can be translated back to the nucleon—nucleon potential in a
unique way by identifying v in eq. (5.21) with y. By varying these three parameters we can investigate
how different compressibilities, i.e. different equations of state (EOS), influence the observables.

The parameter « contains contributions from the local two-body potential as well as from the
Yukawa potential. In nuclear matter there is no difference between local and nonlocal potentials. We
can always expand nonlocal interactions like the Yukawa interaction,

—lr=r'|/m
u 12 € !
Ul =1y, f d’r f d’r r—rlim p(Np(r') = 4mm’s, f d’r p(N)p;(r) + O(V?p)

Ui -

477""’[3[3 2
_ (rig—rip) /4L 2

=——=5€ 10" +0(V). 5.26
(47 L )3/2 (V'p) ( )
Thus in nuclear matter any combination of ¢,, t; and m is equivalent as long as we keep

a=t —4wm’t, (5.27)

constant. This is not the case with finite nuclei. It turns out that (5.16) in the approximation (5.21) with
the values for ¢, and ¢, obtained for the desired nuclear matter properties gives about the right binding
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energy for finite nuclei also. Consequently, if we want to employ a Yukawa potential with parameters ,
and m we calculate its contribution to the potential energy of particle i. This energy is then subtracted
from the local two-body term by changing the coefficient ¢, to ¢,;. It is defined by the relation

t:P(ro) = t,p(r;o) = E U;m( : (5.28)
j

Thus the total potential energy remains constant independent of the parameters of the Yukawa term we
choose. The forces which determine the time evolution, however, depend strongly on the choice of the
parameters.

For the actual propagation, as we would like to stress, the explicit two- and three-body interactions
(eq. 5.13) are used and not the nuclear matter potentials (eq. 5.25). This is important since the
equivalence of both is only true in nuclear matter, not in finite nuclei.

The parameters of the static potential employed are displayed in table 1.

Momentum dependent interactions. It has recently been emphasized [13, 32, 33, 35] that nonequilib-
rium effects can play an important role in a realistic treatment of heavy ion collisions. The most
pronounced effect can be expected from the momentum dependence of the nuclear interaction, which
leads to an additional repulsion [53] between the nucleons when boosted as in heavy ion collisions.
However, as far as multifragmentation is concerned, the influence is small [18].

For the computation of momentum dependent interactions (MDI), we parametrize the momentum
dependence of the real part of the optical potential in the following way [13]:

UMP =t In’(ts(p, — p,)° +1) 8(r, — 1), (5.29)

with the parameters f, = 1.57 MeV, t,=5x 10"*MeV ™. This term is substituted for the term propor-
tional to (p, —p,)’ in the Skyrme interaction, which is in striking contrast with the data above
E,,, =150 MeV/n. The parametrization of the real part of the optical potential together with the data
[53] is shown in fig. 7. The present expression for the MDI reproduces the experimental data up to
energies E~1GeV/n.

In order to reproduce the ground state properties of nuclear matter with MDI one has to readjust the

parameters a, B, y of eq. (5.25). In nuclear matter at zero temperature our potential now reads as
follows:

U=a(plp,) + B(plp,)” + 8 In’(e(plp) +1) plpy , (5.30)

where the parameters are given in table 2. With these parameters we obtain for MDI the same
compressibilities K in the ground state as for the static potentials (see table 1). From now on we refer to
the soft (hard) EOS plus MDI as SM (HM), respectively.

The equation of state for all four sets of parameters displayed in tables 1 and 2 is shown in fig. 8.

Table 1
Parameters of the static potentials

K(MeV) a(MeV) B(MeV) v EOS

200 —356 303 7/6 S
380 -124 70.5 2 H
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Fig. 7. Real part of the optical potential as compared with experimental data. The line is our parametrization (eq. 5.29), the points are experimental
values from ref. [53].

Table 2
Parameters of the momentum dependent potentials
K(MeV) a(MeV) B(MeV) vy 5 (MeV) ¢ EOS
200 -390 320 1.14  1.57 21.54 SM
380 -130 59 209 157 2154 HM

160
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|
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100

80

60

E/A <MeV>

40

Q/Qo

Fig. 8. The equations of state in our calculations. The density dependence of the energy per particle in nuclear matter at temperature 7=0 is
displayed for the four different sets of parameters shown in tables 1 and 2.
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Note that all four equations of state give the same ground state binding energy (E/A = —16 MeV at
p = p,), but differ drastically for higher densities. Here the hard EOS leads to much more compression-
al energy than the soft EOS at the same density. For infinite nuclear matter at rest the inclusion of the
momentum dependent interactions does not change the compressional energy. We see no difference
between the cases S and SM or between the cases H and HM. This changes drastically if one considers
heavy ion collisions: the additional repulsion due to the initial separation of projectile and target in
momentum space shifts the curve for the SM and HM interactions to higher energies.

5.3. Collisions

The scattering of nucleons in nuclear matter in the low density expansion should be described in
terms of the Briickner g-matrix (eq. 3.20),

Q0

SE)=V+V it

g(E), (5.31)

where the Pauli operator Q projects on unoccupied states only and e is the energy of the intermediate
state, e =p>/2m+ p/2m + U(p,) + U(p,). At high energies the influence of the Pauli blocking is
small and the kinetic energy is large compared to the potential U. Then the g-matrix becomes identical
to the transition matrix which describes the scattering between two free nucleons, and which we
discussed in the preceding chapter. We assume for the time being that above E,,, =200 MeV/n we can
neglect the Pauli blocking of the intermediate states and include the Pauli blocking of the final state
only. Of course it would be highly desirable to have true in-medium corrected scattering amplitudes. At
high energies these are only available for an equilibrated environment and amount to a 30% reduction
of the free cross section o;,, [36,37]. Recently, however, also an increase of the in-medium cross
section compared to the free one has been put forward [38, 39]. Thus presently it is hard to judge the
direction of in-medium corrections to the nucleon-nucleon cross section on the basis of nuclear matter
calculations. The influence of the Pauli blocking of the intermediate states in a highly nonthermal
environment at the beginning of a heavy ion collision has never been investigated in detail. From a
simple calculation of the blocked region in momentum space one would estimate that the size of the
effect would be less than 30%. For a detailed discussion of these in-medium effects we refer the reader
to ref. [17].

For the calculations presented in the next two chapters we neglect the blocking of the intermediate
states and the influence of the pion polarization and use the measured free elastic and inelastic
nucleon—nucleon scattering cross section. Unfortunately it was recognized only recently that the widely
used parametrization of the nucleon—nucleon cross section which is discussed in detail in appendix B of
ref. [89] is only a fit to the pp cross section and not a weighted sum of the pp and pn cross sections.
Because in the energy regime of interest the pn cross section is (about 30%) larger than the pp cross
section, this parametrization underestimates the number of collisions. We use the comparison between
calculations employing o,, and o, 0, to estimate the influence of changes in the cross sections. All
cross sections were parametrized by Cugnon [66]. The effective cross section, however, is smaller due to
the Pauli blocking of the final state.

Table 3 shows the combinations of cross sections and equations of state we employed for the
calculations presented in the next two chapters.
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Table 3
Survey of cross sections and equation of states. Note that Pauli blocking in the final
state is always applied

Compressibility

(MeV) Velocity dependence  Cross section ~ Name Table
200 no Ty S (SO) 1
380 no Too H(HC) 1
200 yes (~p) T SM 2
200 no Tops e SF 1
380 no Tppr Ton HF 1

For low energy reactions, below E, = 100 MeV/n, we employ an isotropic hard core cross section
already used in BUU calculations [63, 64] as well as a Briickner g-matrix approach. This topic will be
discussed in section 5.5.

In section 4.3 we have discussed the detailed form of the final state of two scattering nucleons. This
form, however, is too complicated for actual calculations. Instead of calculating the final Wigner
densities for a given impact parameter, which yields negative values of the Wigner densities in certain
phase space regions, we employ an impact parameter averaged transition matrix which yields only
positive values. Furthermore we assume that all particles coming closer than r = Vo/# scatter with
probability 1, whereas those passing at a larger distance do not scatter. This last condition was checked
quite extensively by Hartnack [102], who found that other possible prescriptions do not influence the
final observables in a way not hidden by statistical fluctuations.

The scattering angles of the single nucleon-nucleon collisions are randomly chosen in such a way
that the distribution of the scattering angles of all collisions agrees with the measured or calculated
angular distribution for elastic and inelastic collisions.

Inelastic collisions lead to the formation of delta particles, which can be reabsorbed by the inverse
reaction. We do not incorporate free (s-wave) pions here, unlike the VUU approach [64].

5.4. Pauli blocking

Whenever a collision occurs, we check the phase space around the final states of the scattering
partners. For simplicity we assume that each nucleon occupies a sphere in coordinate and momentum
space. This trick yields the same Pauli blocking ratio as an exact calculation of the overlap of the
Gaussians, but is much less time consuming to calculate. We determine which fractions P, and P, of the
final phase spaces for each of the two scattering partners are already occupied by other nucleons. The
collision is then blocked with a probability

Pyiog =1 —[1—min(P,, 1)][1 — min(P,, 1)], (5.32)

and, correspondingly, is allowed with probability (1 — P,, ). Whenever a collision is blocked, we
replace the momenta of the scattering partners by the values they had prior to scattering. Care is taken
for nucleons which are close to the surface of the many nucleon system, where the above description
includes also portions of phase space which are classically forbidden as a consequence of energy
conservation. For a nucleus in its ground state, where all collisions should be blocked, we obtain an
averaged blocking probability (P, ) =0.96. This determines the low energy limit of our theory:
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aiming at no more than 25% artificial collisions, i.e. collisions which are due to an insufficient Pauli
blocking, we can only admit beam energies at which no more than 84% of the collisions are blocked.
Therefore E,,, =20 MeV/n is at the moment the lower bound of the validity of our approach.

5.5. Numerical tests

Stability. One basic requirement that the model has to fulfill is the stability of nuclei on a time scale
comparable with the time span needed for a nucleus—nucleus collision. High energy collisions
(E,,, > 500 MeV/n) require less than 80fm/c as far as single particle properties are concerned.
However, it turns out that in order to investigate the fragmentation process in heavy ion collisions we
have to follow the reaction for a considerably longer time. Unstable fragments are formed which have
an excitation energy near the particle emission threshold and hence the time for particle emission is
quite long, i.e. of the order of a compound nucleus lifetime.

Figure 9 shows how a single nucleon moves in the potential generated by all its fellow nucleons in a
gold nucleus. For clarity we also show a circle of the radius of 7 = 1.34"". One has to keep in mind that
in the QMD approach the surface is a consequence of the strength of the mutual interactions and it is
not automatically a constant as a function of time. We see that the nucleon moves quite a distance
during 200 fm/c. Whenever it comes close to the “surface” it is pulled back by the other nucleons. Thus
the nucleons remain confined in a sphere.

Figure 10 shows the time evolution of the root mean square radius of five nuclei ranging in mass from
Li to Au.

In each row the time evolution of the radii of 12 differently initialized nuclei is displayed. For the
heavy nuclei we see oscillations around the mean value, but no nucleons are emitted. Light nuclei are a
little less stable. One or two of the nuclei emit one nucleon in the time span of 200 fm/c because the
local density approximation is not very good for these light nuclei. Nevertheless, we see that the
majority of the nuclei remain stable. As described in section 4.1 we can eliminate the unstable light
nuclei.

20 t 1 I 1

Time evolution of a single nucleon

z [fm] in the field of the other nucleons
10 .
0 - -
10+ 4

R=13(197"3 [im]

_20 1 | ISP S T A N RS |
=20 =10 0 10 20

x [fm]

Fig. 9. The trajectory of a single nucleon in the ficld of 196 others is displayed for a time span of 200 fm/c. To visualize the size of the system we
show also a sphere of radius r=1.3x 197"
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Fig. 10. Root mean square radii of different nuclei as a function of Fig. 11. Binding energy per nucleon as a function of time for the 12
time. For each nucleus we display this radius for 12 different initializa- simulations of the different nuclei displayed in fig. 10.

tions.

Figure 11 displays the binding energy per nucleon averaged over all nucleons for the same sample of
12 nuclei.

First of all we see that the binding energy fluctuates around a mean value. So we have energy
conservation on the average. However, the fluctuations reach 2 MeV/n, a large value compared to the
average binding energy of 8 MeV/n. In order to appreciate the size of the fluctuations one has to realize
that the potential energy is just the difference between the two large quantities, the attractive two-body
part (=—350MeV at p = p,) and the repulsive three-body part (=300 MeV at p = p,). Hence a 1 MeV/n
fluctuation means that we determine these potentials to an accuracy of one part in 10°. The light nuclei
show more fluctuations than the heavier ones. The many nucleons which have to be initialized in the
case of heavy nuclei give a longer series of random numbers. This averages out some of the fluctuations.
Thus energy conservation is here much better than in the BUU calculations, where the use of a grid for
the determination of the potential energy makes energy conservation quite difficult. Employing a
fourth-order Runge-Kutta method for the time evolution the energy fluctuations can be substantially
reduced; however, the CPU time then increases by a factor of five.

The least bound configurations in the cases of lithium and oxygen are those which emit particles
earliest (fig. 10). Discarding these initial configurations, which have a low binding energy, allows a
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Fig. 12. Average binding energy of the nuclei as a function of the mass number A. The binding energy is obtained by averaging the binding energy
for each individual simulation over the first 100 fm/c. Then we average over the 12 simulations. The values are compared with the Weizsicker mass
formula without symmetry energy.

further reduction in the number of unstable nuclei. This cut can be applied when it is important to keep
light nuclei stable for a long time.

In fig. 12 we show the average binding energy per nuleon of our nuclei. These numbers are average
values over the first 100 fm/c and over all simulations. For low masses not only the trend but also the
absolute values are reproduced. At large masses the binding energy becomes constant and the nuclei
are overbound by 1 MeV/n. We do not see a maximum in the binding energy in the region of iron as we
did not include the symmetrization energy.

More important than the reproduction of the root mean square radius is the requirement that the
nucleus keeps its radial distribution. In fig. 13 we investigate the radial distribution of a gold nucleus in
detail. We display the density profiles in timesteps of 30 fm/c for two different Yukawa potentials: In
the upper figure we see the distribution with the Yukawa parameters chosen in our calculations. We
observe that the nuclear surface is preserved for almost 300 fm/c. To understand the large fluctuations
in the interior, one has to recall that there are very few (about four) nucleons in this region. We will see
that these fluctuations average out as a function of time. In the lower figure with different Yukawa
parameters, we see that the nuclear surface is much less well preserved, although the root mean square
radius as well as the nuclear binding energy are very close to those of the upper frame.

If we average the density over the 12 nuclei and over the first 100 fm/c we find a quite smooth
density distribution. It is displayed in fig. 14.

Our surface thickness is slightly too large as compared to that extracted from electron scattering
experiments; however, the overall features are quite nicely reproduced. Due to the few nucleons
present we are not able to avoid fluctuations of the central density. In order to make the density profile
as accurate as possible we take care that between 15 and 40 fm/c, when colliding nuclei reach their
maximal density and the transverse momentum is built up, the central density of a single nucleus agrees
with the values obtained in Hartree—Fock calculations [108]. In these calculations the central density of
a static nucleus is around 0.155 nucleon/fm® and thus around 10% lower than the central densities of
the BUU simulations. This is probably the reason that in BUU calculations a higher maximal central
density is obtained compared with QMD calculations.

g-matrix approach versus isotropic cross section. One of the shortcomings of the BUU approach for
low energy heavy ion reactions, 25 MeV/n < E|,, <400 MeV/n, is the lack of realistic cross sections. At
high energies the replacement of the g-matrix with the transition matrix is a reasonable choice. At low
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Fig. 13. Radial density distribution for a gold nucleus as a function of
time in steps of 30 fm/c. The upper figure shows this distribution for
the Yukawa parameters applied in the calculations. The lower figure
shows this distribution for a different choice of these parameters in
order to demonstrate the dependence of the surface fluctuation on the
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Fig. 14. Radial density distribution of the nuclei. We have averaged
the local density over the first 100 fm/c. We display the mean value as
well as the standard deviation.

energies the free cross section gets very large, but Pauli blocking in the intermediate steps of the
Bethe-Goldstone equation reduces the observed cross section considerably. Due to the lack of any
calculation a 40 mb isotropic cross section was employed in the BUU calculations. Its size was inspired
by the hard core radius of the nucleon—nucleon potential but never confirmed by calculations.
Recently a nonrelativistic g-matrix calculation became available [109] which could be employed to
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calculate the required cross section as a function of five different parameters (the relative momentum of
the collision partners and the Fermi seas, the density of projectile and target at the point of collision
and the isospin). We obtain cross sections with a high anisotropy [110] which range between 30 and
200 mb.

Figue 15 shows a comparison of the longitudinal and transverse momentum transfer, the number of
emitted nucleons and the number of collisions for two different cross sections. The dots are the results
of an isotropic o, = 40 mb, the circles those of a calculation where a g-matrix calculation was employed
to calculate the in-medium scattering cross section. The results are displayed for two different reactions,
84 MeV/n C + C and 400 MeV/n Nb + Nb. As far as observables are concerned the differences between
the two cross sections are of the order of 15%. Thus these calculations confirm recent results obtained
by Bertsch et al. [111], who fitted the absolute value of an isotropic cross section to experimental data
and found that o =40 mb was a good choice. The only major difference is the average number of
collisions. This difference can easily be explained: nucleons which escape from the system have the free
nucleon-nucleon scattering cross section, which is very large if the scattering partners have a small
relative momentum. So most of these additional collisions occur during the later stages of the reaction
and hence do not influence the dynamics of the reaction.

In is astonishing that these different cross sections yield the same momentum transfer. However, a
closer inspection shows that the key quantity for the dynamics, the average momentum transfer in a
nucleon~nucleon collision, is very similar for both cross sections. So we observe that a large cross
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Fig. 15. Comparison of global variables (number of emitted particles, final longitudinal and transverse momentum of all projectile-like fragments
and the number of collisions) for two different calculations. The dots mark the results of a calculation using an isotropic 40 mb cross section, the
circles are the result of a calculation where a g-matrix was employed to calculate the scattering cross section.



312 J. Aichelin, * Quantum” molecular dynamics

section which is more forward peaked yields the same result as a smaller more isotropic cross section.
The momentum transfer is almost complete only in the case of Nb + Nb for the most central collisions,
b <1.5fm. We will discuss the longitudinal momentum transfer in more detail in chapter 7.

Comparison with one-body theories. How do the results of the n-body theory differ from those of
one-body theories? In fig. 16 we display the time evolution of the density profile of the reaction
84 MeV/n C + C (b = 1 fm) for three different theories [16]: the quantum time dependent Hartree—Fock
(TDHF), the classical Vlasov equation and the QMD, in which we have blocked all collisions
artificially.

The TDHF and the QMD calculations are displayed in lines of constant densities, where the density
changes from line to line by a factor of two. The asymmetry between projectile and target in the QMD
calculation is due to the finite number of simulations (100). For the Vlasov calculation we have
projected the coordinates of 100 simulations onto the reaction plane. We observe a striking similarity
between all three calculations. The longitudinal momentum transfers, as well as the momentum
transfers in the transverse direction, are very similar in all three approaches. Only the densities between
the two remnants are slightly different. The TDHF calculation finds, in the region around the origin, a
density of about p,/2° = p,/64. On this level the fluctuations become important, and furthermore we
should not expect agreement between these theories on the one-percent level.
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Fig. 16. Comparison of the different mean field calculations of the reaction 84 MeV/n C + C (b =11fm) [16]. We display results for the density
profile for the TDHF, the Vlasov and the QMD approach for four time steps. The TDHF and the QMD calculations are displayed in lines of
constant density which are separated by a factor of 2. For the Vlasov calculation each nucleon of 100 simulations is marked by a circle and the
coordinates of all nucleons are projected onto the reaction plane.
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Let us recall the different initializations of these theories. The TDHF calculation starts out from a
Slater determinant, which is a solution of the static Hartree-Fock equation. The Vlasov equation starts
out from randomly drawn positions inside a sphere of radius r =1.124"> and random momenta
between zero and the local Fermi momentum. The QMD starts from a biased choice of positions and
momenta as explained in section 4.1. These initializations share the common feature that the density in
the interior of the nucleus is almost constant. Since the potentials are most sensitive to the density and
not as sensitive to the finer details, we can expect a similar time evolution for a common initial
configuration in all three approaches. The similarity of the results indicates that finer details of the
initial configuration, i.e. the detailed form of the wavefunction of the nucleons inside the nucleus, are of
minor importance for the time evolution of the system compared to the average initial density, at the
energy considered.

The time evolution changes completely if we include two-body collisions, as done in fig. 17. Here we
display the time evolution of BUU and QMD calculations and, for comparison, that of the Vlasov
approach (a BUU calculation in which all collisions are blocked). We see a close similarity between
those calculations which include collisions, in contrast to the mean field calculation. The lack of
two-body collisions results in a strongly forward peaked angular distribution of the few emitted
nucleons (about one per nucleus—nucleus collision), which is in sharp contrast to the experimental data.
The collision term creates a mid-rapidity source which emits particles almost isotropically. There are
two remnants left which contain on the average half of the projectile and target nucleons.
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Fig. 17. Comparison between the one-body (BUU) and the n-body (QMD) theory and, for comparison, the classical mean field theory for the
reaction 84 MeV/n C+ C (b =11m) [16]. We display the density profile for four time steps. For each time step 100 simulations are plotted and each
nucleon is marked by a square or a circle. The coordinates of all nucleons are projected onto the reaction plane.
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A quantitative comparison between BUU and QMD is shown in fig. 18. Here a comparison of
different characteristic observables is displayed as a function of the impact parameter. We have
averaged over all target and projectile nucleons since the definition of which particles have to be
considered as emitted is different in both approaches and would otherwise generate uncertainties. The
linear momentum transfer in both approaches is very similar. Even in the most central collisions the
linear momentum transfer is far from being complete. At b =1 fm we still observe a final momentum of

fnal = p"%!/3, The final transverse momentum is also very similar at low impact parameters. At large
impact parameters the different surfaces and the finite range of the potential in the QMD as compared
with the BUU yield a larger net attractive force. The descriptions used to determine the number of
emitted particles also yield a very similar result, which represents a later justification of the method
applied in the BUU approach [63]. Only the number of collisions differs between the two approaches.
The additional collisions most occur between nucleons in the projectile and target remnants during the
later stages of the interaction. For such light nuclei, with A =6, the prescription of the Pauli blocking is
not very satisfying. However, note that these additional collisions do not lead to an artificial emission of
nucleons from these light clusters, as can be seen from the number of emitted nucleons. Looking at the
observables one can easily see that the additional collisions do not influence the dynamics of the
reaction.

An even more extensive comparison between one-body BUU-type calculations and the QMD
approach was recently performed [112] at a much higher beam energy (800 MeV/n La + La). As can be
seen in fig. 19, all employed theories agree in their prediction of the differential cross section E d’o/dp’
for protons.

o T T T
o C+C 84 MeV/nucl
oy
3 200 * BUU v
ﬁN 4 QMD . 1 L
3— 100 ; : 2 + T ]
@ 0 P + + + + 105 4
@ 40 4, _ ]
= . e o _
s 2 ! ] 2]
ﬁ 2 . g
g 0 g
2 . 1
3 or B i ‘-":01 4
= A L 10" 7
§ 5t ‘. - & ]
z . : A LE ]
3 2F . . N
[= -
~ A
3 1r a I
- * . 3
L P eed 4| 10
0 3 5 0 :
b [tm] p (GeV/c)
Fig. 18. Comparison of some global variables obtained in the one- Fig. 19. The differential cross section E d'o/dp’ for the reaction
body (BUU) and the n-body (QMD) approach [16]. We display the 800 MeV/n La + La obtained in the one-body approaches (BUU [32],
number of emitted particles, the average final momenta of all target VUU [64], RVUU [114]) as compared to the n-body (QMD) ap-
nucleons and the number of collisions for two different calculations. proach [11]. We display the results of the four different theories {112]

and compare them with data of Hayashi et al. [113}.
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Fig. 20. The double differential cross section dg/df2 dE obtained in the one-body approach (BUU) [63] as compared to the n-body (QMD)
approach [16]. We compare the results with data of Brummund [115].

In view of the vastly different inputs [112] this is an astonishing result, which shows that single
particle observables are rather robust against the change of potentials, density profiles and scattering
prescriptions. Not only at this high energy but also at 84 MeV/n is the agreement of the QMD approach
with the results of the one-body BUU theory and with experiment very good, as can be seen from fig.
20. Here the double differential cross section do/df2 dE for protons is displayed and compared with
data of ref. [115]. At backward angles the BUU calculation suffers from the problem how to determine
the target remnant.

We can conclude that the QMD approach reproduces the observables obtained with the BUU
approach quite well. In addition, the mean field version produces the same time evolution as the Vlasov
and TDHF calculations. The 40 mb isotropic cross section was a good choice, and yields the same
results for the investigated observables as the much more refined, but also numerically more expensive,
g-matrix approach. However, if one wants to look into specific exit channels such as subthreshold pion
production, the g-matrix approach should be employed. Having seen that on the one-body level QMD
agrees with the one-body theory we can proceed and take advantage of the n-body nature of the QMD
approach.

All calculations presented here with the exception of the reaction 1050 MeV/n Ne + Au were
performed with the QMD version 102 [19]. For the Ne reaction an older QMD version (version 100)
was employed, which had a different initialization of the nuclei. The older initialization had a slightly
higher initial central density and produced a slightly larger transverse momentum. All other observables
agree in both versions.

6. Multifragmentation

One of the most challenging tasks for an n-body theory in nuclear physics is the description of the
multifragmentation of heavy nuclei. In emulsion experiments, up to seven medium or large mass
fragments A >4 of a gold nucleus have been found. The description of such a process certainly exceeds
the limits of any one-body theory.
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In section 6.1 we review the basic experimental results as well as the phenomenological and
microscopic models which were used up to now to study multifragmentation. We then proceed in
section 6.2 to a detailed comparison between the results of our approach and the experimental data.
The QMD approach, which is a theory that follows the space—time evolution of the reaction, provides
much more information than experiments, which can only measure the momentum space distribution.
In section 6.3 we take advantage of this fact and investigate in detail the multifragmentation reaction
and, in section 6.4, the cause of fragment formation. What we can learn about the nuclear equation of
state from the fragments is presented in section 6.5.

6.1. Experimental facts and review of the theories

The first multifragmentation events, or more precisely, medium mass clusters 5< A <30, were
observed in high energy proton induced reactions [116]. They were quite unexpected and a straightfor-
ward physical explanation of the production mechanism was not at hand. The fragments received the
name ‘‘deep spallation products”, but it has never been proven that they are actually the remnants of a
decay chain. The most prominent feature was the power law dependence of the inclusive mass yield
[o(A)= A""], a functional form which is expected for a system close to the transition between the
liquid and vapour phases [116, 117].

The same form of mass yield curve was also found in heavy ion induced reactions [118], where the
threshold for the production of the deep spallation products is much lower (E,,, =25MeV/n). The
similarity triggered the suggestion that the observed shape of the inclusive mass yield curve indeed
presents evidence for the occurrence of this phase transition in nuclear collisions [118,123]. This
conjecture raised a lot of opposition. Firstly, the objection was made that it is quite improbable that the
system — independently of the impact parameter — exactly hits the critical point. Above and below the
critical point the mass yield falls exponentially and much more steeply as a function of A. The second
objection was that most of the observables could be reconciled with the assumption of thermal
equilibrium, albeit, with vastly different temperatures. The slope of the fragment momentum distribu-
tion was Maxwellian but the slope parameter — which should be the temperature — depends on the
fragment mass [116] and is of the order of 15 MeV [116, 119, 120]. The isotopic distribution, which was
measured with an admirable accuracy over seven orders of magnitude [121], revealed a temperature of
3MeV [9, 122]. Finally, whereas the fragments from proton induced reactions showed an isotropic
emission pattern, those produced in heavy ion reactions cannot be described by a single thermal source
{120].

Further theoretical investigations have demonstrated that the mass yield curve is rather insensitive to
the different reaction mechanisms proposed: statistical or thermodynamical models without Coulomb
interaction [123-125] or including it [126, 127] describe the observed mass yield equally as well as
models in which the system does not come to a global [128] or at least to a local equilibrium prior to
fragmentation. The latter class of phenomenological models contains approaches in which the fragmen-
tation is assumed to be similar to the percolation on a finite lattice [129, 130] or to the shattering of glass
[131, 132]. For details of these phenomenological models we refer to a recent review [9].

The first dynamical models treated the nucleus—nucleus collision as a two-step process. Firstly an
early compression phase which leads to a global thermodynamical equilibrium of the whole system,
which can be described completely by two variables: a temperature T and a density p. This serves as the
initial condition for the subsequent expansion phase, which is treated microscopically, either by using
the TDHF [133] equations or by applying classical molecular dynamics [73]. The essential result of these
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calculations was the observation that fluctuations of the phase space density at the beginning of the
expansion are reflected in the distribution of the observed clusters.

Cluster formation was first treated in a model which described the complete time evolution of the
reaction by applying a potential model to the final phase space distribution of a Boltzmann-Uehling-
Uhlenbeck (BUU) [63] calculation, or by applying a phase space coalescence model to the Vlasov—
Uehling—-Uhlenbeck (VUU) [64] model. Both approaches aimed at a removal of their contribution to
the primordial proton spectra and treated the cluster formation not dynamically but as a final state
interaction.

The first attempts to describe the dynamics of the clustering process were performed using modified
BUU approaches, although a one-body theory certainly is not a proper tool for the investigation of
many body correlations. Here the mean field averages out the correlations and fluctuations among the
nucleons in one single nucleus. Consequently, on top of the actual one-body collision dynamics one has
to artificially include processes which generate fluctuations. However, because of the one-body
dynamics, one cannot follow them in time. Due to this limitation these calculations did not produce
results which could be compared either with experiments or with true n-body theories.

Bauer et al. [134] reduced the nucleon-nucleon cross section by a factor of 100. For compensation,
when a collision occurs 198 nucleons in the vicinity of the actual collision partners are scattered as well.
Between collisions particles move in the ensemble averaged mean fields. This method has three
problems: first of all the result depends on how to select the 198 nucleons out of the total number
(100A +100A4;) of nucleons present and how to determine the partners in the individual nucleon—
nucleon collision. Secondly, the propagation in the mean field washes out part of the fluctuation caused
by the collisions, and thirdly the Pauli blocking is not well defined, because the whole neighbourhood of
the collision partners in phase space is changed at the same time.

Das Gupta et al. [135] divide the reaction into two steps, an initial stage, where collisions are
dominant, and an expansion, where the mean field provides the clustering of the nucleons. The initial
stage is described by a high-energy cascade calculation. It generates the input for the subsequent mean
field calculation which describes the expansion. If the clusters are made up only by those nucleons
whose time evolution is initially dominated by collisions (i.e. “fireball” nucleons), this method will be
reasonable. If the clusters are predominantly spectator nucleons, this method will fail, because the first
stage of the time evolution of the spectator nucleons is mostly governed by the mean field. As we will
see, we find that clusters predominantly contain spectator nucleons.

Recently Beauvais et al. [136] developed an approach similar to QMD, which is based on the local
density approach to the potential. They determine the potential at the centre of a Gaussian distribution
of nucleons by calculating the local density caused by the other nucleons at that point. This approach is
also a true n-body theory.

6.2. Confrontation of the model with data

Although the fragmentation of heavy nuclei is a well established phenomenon, there are only three
published experiments known to us in which more than just the inclusive mass yield of the fragmenta-
tion products was measured.

(1) The reaction Ne+ Au at several beam energies by Warwick et al. [120], where the triple
differential cross section d’o/dE d2dZ, the associated multiplicity of fast particles and correlations
between jets of light fragments and the target rapidity fragment were measured. In this way the strong
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azimuthal (anti-)correlation, which was predicted by hydrodynamical [125] models (“bounce off”) was
observed [120].

(2) The reaction Au+ emulsion at 1 GeV/n by Waddington and Freier [137], where all fragments of
the gold nucleus were recorded by each individual reaction. The primary goal of this experiment was
the search for anomalons. The results, as far as they were of interest for the multifragmentation of the
Au nucleus, were recently analyzed [138].

(3) The reaction Au+ Au at 200 MeV by Kampert et al. [6], where the fragment multiplicity, the
associated multiplicity of fast particles and the fragment flow were recorded.

Calculation of the triple differential cross section d’o/dE df2 dZ in the QMD approach is beyond
the feasibility of present day computers. We therefore have to restrict ourselves to mean values and to
the angular distribution do/d2 =%, [ dE d’o/dE d dZ.

We investigated one highly asymmetric reaction, where the participant spectator model [9] has given
a quite accurate description of the single particle distribution, as well as a symmetric system, where for
central collisions this picture cannot hold. The reactions we have chosen are Ne(1050 MeV/n) + Au and
Au(200 MeV/n) + Au. We performed calculations at five different impact parameters (b=1, 3, 5, 7 and
10fm). Larger impact parameters do not produce a significant amount of fragments in the most
interesting range 5= A =<30. For the two most central impact parameters we have calculated 360
events, whereas for the larger impact parameters we restricted ourselves to 180 simulations. One
simulation requires around 1 minute CPU time on a Cray 1 computer for the first and 5 minutes for the
second reaction.

The reactions were followed for 300 fm/c (1 X 10™*' s) for Ne + Au and 200 fm/c for Au + Au. The
latter reaction is more violent and therefore the final distribution is obtained in a shorter time. Anyway,
this is a very long time as compared to the time it takes the neon projectile to cross the target (20 fm/c)
and even longer than was required for simulating reactions at 25 MeV/n [63]. As we will see, the mass
distribution continuously changes up to this time as a consequence of the long decay time of moderately
excited heavy clusters.

Nucleons are considered to be part of a cluster if in the end at least one other nucleon is closer than
7., =3 fm. No cuts in momentum space are applied. They are not necessary, because after 200 and
300 fm/c, respectively, nucleons with large relative momenta are no longer close together in coordinate
space. In addition the Coulomb force helps to separate the clusters.

The cluster distribution is not very sensitive to the value chosen for r,,,. This can be seen from table
4, which shows the exponent 7 of the mass yield o(A) = A™" for different r_, and different fragment
mass bins for the reaction Ne(1050 MeV/n) + Au.

We start with a survey of both reactions. In fig. 21 we present the time evolution of the reaction
Ne + Au in the reaction plane for three different times: 0, 80, 300 fm/c. The arrows are proportional to
the momenta of the nucleons.

At 80 fm/c we observe particles escaping from the interaction zone with almost the beam velocity

Table 4
7 parameters for different 7., and for different
fragment mass bins A

A Fon=2fm  r =3fm . =4fm
1-10 2.86 3.07 2.99
1-20 2.68 282 2.83

1-50 2.33 2.4 2.50
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Fig. 21. Survey of the reaction Ne + Au, 1050 MeV/n, b =3fm. We display the time evolution of the density distribution in the reaction plane for
three different times.

although they have moved through the target. Behind them small clusters and less energetic nucleons
are seen. Only a few particles are emitted in the backward direction. At 300 fm/c we observe some
clusters which move with roughly the target velocity. They are separated from each other quite clearly.
In the forward hemisphere we predominantly see nucleons and very few light clusters.

In fig. 22 we present the same plot (but without arrows) for the time evolution of the symmetric
Au + Au reaction for various impact parameters at various time steps.

At central collisions no heavy cluster survives. We see quite a number of small clusters 5< A <30
which move isotropically out of the reaction zone. The single nucleons also show an almost isotropic
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Fig. 22. Survey of the reaction Au+ Au, 200 MeV/n, for four different impact parameters (1, 3, 7, 11 fm). We display the time evolution of the
density distribution in the reaction plane for five different times.

distribution. The semicentral collision (b =3 fm) still displays some intermediate mass fragments, but
their emission pattern is more elliptic than isotropic. The large axis has an angle of 45° with respect to
‘the beam axis. This is a sign of transverse flow, as we will discuss later. The more peripheral reactions
show remnants of projectile and target, which are excited and emit particles in their rest system. These
are typical peripheral reactions. At b=7fm we still find a small mid-rapidity source, which has
disappeared at b = 11 fm.

Figure 23 displays the total mass yield of the reaction Ne(1050 MeV/n) + Au as compared to the
experimental data [120]. Both the theoretical and the experimental mass yield fall off with a power law
A7, corresponding to a straight line in our double logarithmic plot. For the value of the constant r we
obtain 7 =2.44 (compare table 4). The form of the mass yield, as well as the value of 7 (2<7<3), is
consistent with the assumption that the mass yield is a signal of a liquid—gas phase transition [117]. The



Fig. 23. The inclusive mass yield as compared to the data of ref.
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Fig. 24. (Top) Angular distribution and (bottom) average velocity as
a function of the emission angle of medium mass fragments. The

calculation is compared with data of ref. [120].

calculated slope of the mass yield curve is close to the slope of the experimental data but we
underpredict the data by a factor of roughly two to three. The discrepancy is larger at low masses,
which are extracted from the experimental o(Z) under the assumption o(A) = 0.50(Z = A/2), than for
those fragments whose masses were directly measured.

This discrepancy is a consequence of the instability of clusters excited with an energy around the
particle emission threshold. Whereas — as we have seen — the clusters are stable in their ground state,
the higher the excitation, the less correct is our description. Due to an insufficient treatment of the
binding energy, weakly bound nucleons escape from the excited fragments and hence lower the average
cluster mass. Furthermore, the level density of excited nuclei may be different in our approach
compared to the known value. Our medium mass fragments emit one or two nucleons more than real
nuclei with the same excitation energy. Only a partial counteraction against this systematic problem is
possible. In order to cure this problem completely a quantum description of the final clusters is needed.

The mass yield has a minimum around A =50 and increases again for higher masses. In this
particular experiment the mass yield of heavy fragments was not measured. Experiments with similar
projectile—target combinations show a U shape for the mass yield [9], which has a minimum around
A= A,/3 (in the absence of fission).

The upper frame of fig. 24 displays the angular distribution and the lower frame the average
fragment velocity as a function of the emission angle for the reaction Ne(1050 MeV/n) + Au in the
laboratory system.

Experimentally we see a decrease in the mass yield by a factor of two from forward to backward
angles. This is nicely reproduced by the calculation. As we will see in detail later, this strong



322 J. Aichelin, ** Quantum” molecular dynamics

dependence rules out an isotropic distribution of fragments in the centre of mass frame. In fig. 24 we
observe only a weak dependence of the average fragment velocity on the emission angle. The average
velocity is a little larger than half the centre of mass velocity. Hence the linear momentum transfer to
the emitting system is far from complete. To determine the experimental average velocity we used the
fit function (2.3) and the parameters of table 1 of ref. [132]. Also for the average fragment velocities we
obtain agreement with experiment.

The upper frame in fig. 25 displays the number of fast charged particles associated with a fragment of
a given size for the reaction Ne(1050 MeV/n) + Au. We applied the experimental cuts (a minimal
energy of 25 MeV/n of the fast particles) to our calculation. For medium mass fragments our associated
multiplicity is larger than seen experimentally. We should also mention that the experimental value is
an extrapolation, because the detectors covered a small part of the total solid angle only. The lower
frame in fig. 25 shows the average velocity of fragments as a function of their size in the laboratory
system. We see a very high velocity for low mass particles, which gradually decreases for heavier ones.
Beyond mass 90 the clusters move backward in the laboratory system! The average momentum transfer
to heavy fragments is much smaller than that to the lighter fragments, which clearly shows that the
fragments of different masses do not come from a single moving source.

Figure 26 displays the multiplicity distribution of heavy clusters Z =3. The results of our calculation
for (b=3fm) are compared with data of refs. {137, 138] for Au(1 GeV/n) + emulsion. As already
mentioned, in this experiment the charges of all Au fragments were recorded on an event-by-event
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target tracks was between 5 and 8. By these cuts we want to discard
peripheral collisions and those with the heavy emulsion constituents.
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basis. To allow for a comparison, we have selected only those experimental events in which no cluster
Z =42 was observed and the number of target tracks was between 5 and 8. By these cuts we want to
discard peripheral collisions and those with the heavy emulsion constituents. Again we see reasonable
agreement with experiment, which indicates that on the average several medium mass fragments are
produced.

Not only is the impact parameter averaged multiplicity of medium mass clusters well reproduced in
our calculation, but also finer details like the impact parameter dependence of multiplicity. Experimen-
tally the impact parameter cannot be measured. Hence the comparison is done by classifying the
experimental and the theoretical events by the associated proton multiplicity. In fig. 27 we compare
calculation and experiment [6] for a given multiplicity bin.

Our calculation at b =3 fm corresponds to the multiplicity bin 4. The multiplicity distribution for that
bin was not available. Therefore we compare with the two neighbouring bins. In the Plastic Ball
experiment only the Plastic Mall, which has a threshold of 35MeV/n, can detect medium mass
fragments up to Z =10. To allow for comparison we applied the Plastic Ball filter SIMDAT [139],
which reduces the multiplicity by more than a factor of two. First of all we observe a quite high average
multiplicity in central collisions. In these collisions each of the gold nuclei is broken into about five
medium mass fragments, of which 2.4 are detected. So we can really talk about multifragmentation. No
heavy fragments survive in these collisions.

Figure 28 displays the average transverse momentum in the reaction plane as a function of the
rapidity of the particles in the reaction Au(200 MeV/n) + Au. The filter SIMDAT [139] was applied to
simulate the experimental acceptance. We observe a strong correlation: the larger the rapidity, the
larger the average transverse momentum. This collective flow of matter will be discussed later. Again
we find good agreement between theory and experiment for all mass bins.

Finally we compare the angular distribution of clusters as seen in the Plastic Ball experiment with our
calculation. In fig. 29 we display dN/d cos 8 as a function of the laboratory angle 6 for two types of
clusters, 2< A =4 and 5 < A. We observe reasonable agreement with experiment for both species. The
dip around 10° is due to the experimental acceptance hole. The filter, however, does not cut down the
cross section as much here. The theoretical angular distribution is forward peaked even in the
nucleus—-nucleus centre of mass system. Its agreement with experiment presents evidence that the
fragmentation is not a thermal process but yields a quite anisotropic angular distribution.
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Fig. 27. Muttiplicity distribution of medium mass fragments 5= A =20 as a function of the associated multiplicity of protons. We compare our
calculation for the multiplicity bin 4 with data of ref. [6].
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For the sake of comparison we also display the unfiltered angular distribution for the heavier
fragments. We see that the filter does not only cut down the cross section due to energy and angle cuts
but also changes the shape of the angular distribution quite seriously. Thus, before one can learn
something from the angular distribution a very accurate knowledge of the apparatus and the acceptance
is necessary.

6.3. Predictions and results of the calculation

Mass yield. We now proceed and take advantage of the fact that in simulations more information is
available than in an experiment. One additional piece of information is the impact parameter
dependence of the observed quantities. In fig. 30 we display the mass yield distribution for our two
reactions at different impact parameters.

We see a striking similarity between both reactions, and a clear impact parameter dependence. The
mass yield of the reaction Au+ Au is almost identical to that of the Ne + Au reaction at a somewhat
higher impact parameter. Considering the different beam energy, the vastly different energy available
in the nucleus—nucleus centre of mass frame and the different geometry, this is a surprising result,
which confirms the insensitivity of the total mass yield on the reaction parameters.

At each impact parameter the mass yield of medium mass clusters is well described by a power law;
the slope parameter, however, is vastly different. At the lowest impact parameter no heavy target
remnants survive. The gold nucleus is broken into many pieces, none of them heavier than A = 80. For
semicentral collisions we observe a plateau for 45 < A <70. The most peripheral reactions (b =7 fm)
are not violent enough to destroy the heavy nuclei completely. Here less than half of the projectile
volume overlaps geometrically with the target in the case of Ne and we have half overlap in the case of
Au. We observe a remnant of the gold nuleus around A =140. There are no clusters with masses
30=A4=90.

From these observations we can immediately draw several conclusions.

(a) The power law form of the inclusive mass yield is accidental. It does not reflect a phase
transition - which would require a mass yield independent of the impact parameter ~ but is merely a

b=3fm
Au+Au

100 20 0 10 200 A

Fig. 30. The mass yield for four different impact parameters, b =1, 3, 5, 7 fm, for the reactions 1050 MeV/n Ne + Au and 200 MeV/n Au + Au.
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parametrization of the sum of different forms of mass yields at different impact parameters. This will be
confirmed later when we investigate the momentum space distribution of the fragments.

(b) The transition from the power law form to a flat and ultimately increasing mass yield at masses
around A = 45 reflects the different origin of the clusters. Fragments larger than A =45 are target
remnants. They are producd when the collision is not violent enough to break up the target completely.
Their creation is controlled by the impact parameter. Masses around A =45 are produced in
semi-central collisions by deep spallation. The ultimate increase of the mass yield follows from the
increasing probability of peripheral reactions.

(c) The yield of the heaviest cluster provides a tool to determine the impact parameter of the reaction.
According to the calculation this method is superior in accuracy to the usual method to measure the
total multiplicity of light particles.

Figure 31 displays the multiplicity distribution of fragments A >4 for the four different impact
parameters in the reactions Ne + Au and Au+ Au. For the Au+ Au reaction we also display the
multiplicity distribution which would be observed by the Plastic Ball set up.

As expected, the Au + Au reaction yields many more clusters of A >4 than the Ne + Au reaction.
We find up to 16 clusters in one single Au + Au collision! The average values are 9.0 (3.3), 9.2 (2.6),
6.8 (1.7) and 3.5 (2.2) for Au (Ne) + Auat b =1, 3, 5, 7 fm, respectively. The minimum of the average
values in the case of Ne is caused by the survival of projectile-like fragments at the very peripheral
reactions.
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Fig. 31. The multiplicity distribution of fragments heavier than A =4 for four different impact parameters, b =1, 3, 5, 7fm, for the reactions
1050 MeV/n Ne + Au and 200 MeV/n Au + Au.
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Another point of interest is how the reaction proceeds in time. Here our conjecture that fragments
larger than A = 45 are the end product of a decay chain and that the others have a different origin, can
be substantiated. This question is addressed in fig. 32, where we display the number of fragments as a
function of time for seven mass intervals, again for both reactions in parallel.

In the case of Ne + Au we selected b =1fm, for the Au+ Au reaction b =3fm. Already in the
discussion of fig. 30 we observed that the mass yield is very similar in both these cases. We observe the
same similarity for the time evolution as well.

In the case of Ne we see that the mass yield distribution for A > 50 stabilizes not prior to 300 fm/c
(1x107*'s), while for 2< A <30 the distribution is already stable at 150 fm/c. In the case of Au the
time is a little bit shorter for both bins and we observe a stable distribution at 200 fm/c. Nevertheless,
this is a very long time for a high energy heavy ion reaction and it is in the range of the lifetime of a
compound nucleus. Let us first concentrate on the heavy clusters. At ¢ = 50 fm/c the heavy clusters with
a mass larger than 70 are not stable but decay by the subsequent emission of nucleons and light clusters.
The decay chain can be seen by the subsequent population and depopulation of the different mass bins.
Finally, the end products of the decay chain are mostly in the bin 31 < A <50. At larger impact
parameters we find the decay chain ending at larger masses. So all masses larger than A ~40 are end
products of the decay chain. Along the evaporation chain the clusters emit neutrons and protons and
therefore their number increases and saturates not prior to =300 fm/c or 200 fm/c, respectively.
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Fig. 32. Time evolution of the fragment number for seven different classes of fragments for the reactions Ne + Au and Au + Au.
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The clusters in the range 2= A =30 have a completely different history. They are formed at a very
early stage of the reaction and are not fed by the decaying remnants, nor do they decay. After 100 fm/c
practically all of them are formed. They emerge from the surface region of the combined systems, as we
will see, and measure the violence of the reaction, being produced more copiously at small impact
parameters than at large ones.

One has to keep in mind .that clusters are not counted before all of the cluster nucleons have a
minimal distance of 3 fm to all the other nucleons. This is much later than the formation time of the
clusters. Which nucleons form a cluster is determined very early in the course of the reaction (at about
t=20fm/c), as we will see later.

In peripheral reactions we see a different time structure. Here medium mass clusters are produced in
a sequential decay of heavy clusters as well. However, in absolute numbers the medium mass events
produced in a sequential decay are rare compared to those produced in central collisions. In fig. 33 we
show a peripheral event for Au(E =200 MeV/n, b =7 fm) + Au in more detail. Fragments with A =10
are depicted from ¢ =0 (bottom) to ¢ =200 fm/c (top) in steps of 10 fm/c.

Up to 50fm/c there is one blob of matter in configuration space which —for this large impact
parameter — is still separated in momentum space into a projectile- and a target-like residue [for central
collisions (b <3 fm) this is not the case; we then observe almost complete stopping of projectile and
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Fig. 33. Time evolution of a single peripheral event 200 MeV/n Au+ Au, b =7fm. Only clusters with mass A >9 are displayed.
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target in the centre of mass frame]. After 50 fm/c the system breaks up into these two residues.
Between 30 and 80 fm/c¢ single nucleons and light fragments (A < 10) are emitted. Then a rather stable
fragment with A = 105 remains in the projectile rapidity regime. In the target regime a second break up
is observed, which yields two stable fragments with A~80 and 15. At large impact parameters
(b =71fm) the intermediate mass fragments are mostly produced in the binary break up of the heavy
residues. Recently a similar conclusion was reached experimentally for asymmetric systems [141].

Correlations between initial and final state. As we have seen the impact parameter dependence of the
mass yield distribution rules out the conclusion that the inclusive data present evidence for a liquid-gas
phase transition. In this case the mass yield curve would have to be universal because the system always
has to come to the critical temperature.

However, the question remains as to whether equilibrium is reached in the course of the reaction.
Some fast projectile nucleons always emerge from the reaction zone prior to equilibration. Hence the
energy available for thermalization does not correspond to the total centre of mass energy and may
depend on the impact parameter. The different slopes at different impact parameters do not contradict
the assumption of complete equilibrium. The crucial test for the assumption of complete global
thermalization is to check whether the system loses its memory of the initial configuration. If it
equilibrates, we would expect that the final state particles do not carry any information about the initial
state, in particular about their initial positions.

The complete recording of the positions and momenta of all particles during the course of the
simulation allows us to address this question in a direct way. We can investigate correlations between
final and initial states which one would expect for a system which is not completely equilibrated. An
obvious candidate for such a correlation is the probability to find a nucleon finally in a cluster as a
function of its initial position. Those nucleons which are in the geometrical overlap of projectile and
target supposedly have a large probability to suffer violent collisions. The large momentum transfer
then suppresses the probability to find other nucleons with small relative momenta which are needed to
form a cluster. We study this correlation in fig. 34.
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Fig. 34. Correlation between initial and final state of the reaction 1050 MeV/n Ne + Au, b =3 fm. We display here the fraction P(r) = N,(r)/Z N(r),
where N,(r) denotes the number of nucleons which are initially located at a distance r from the impact point and end up finally in a fragment of class
i
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We distinguish three different classes of fragments and investigate the correlation between the initial
position of the nucleons and their probability to end up finally (at r=300fm/c) in a cluster. We
calculate the distance r in the plane perpendicular to the beam direction between the initial position of
the nucleons and the impact point b and define the fraction

PO)=NM /SN0, (6.1)

N,(r) is the number of nucleons which are initially located at r and finally belong to a cluster of class i. If
there were no correlations, this probability should be independent of r. We see strong correlations for
protons and neutrons as well as for heavy clusters. Nucleons in the overlap region between projectile
and target have a much higher probability to end up as individual protons and neutrons than to be part
of a cluster. Hence clusters mainly consist of spectator matter (those parts of projectile and target which
do not overlap). Since the fragments are excited when formed, they have to emit neutrons and protons.
Therefore, we observe also protons and neutrons which initially were located quite far from the impact
point of the projectile. Medium mass clusters, as we can see, are formed from nucleons all over the
place without a significant preference. From the observed correlations we can conclude that in the
course of the interaction the system does not reach a global equilibrium as assumed in a number of
model calculations [126, 127, 133, 73].

The correlation which we observe could be expected on the basis of the participant-spectator [142]
model, in which it is assumed that the geometrically overlapping nucleons r < R, equilibrate and form
a fireball. They are surrounded by cold spectator matter, and there is no communication between the
two regions. This model limits the initial position of nucleons which are finally observed as protons or
neutrons to r < Ry, whereas those nucleons which are finally contained in clusters are initially at
r>Ry,. However, we do not find such a clear division, and in addition these models also cannot
account for the disappearance of the correlation for the medium mass clusters.

Momentum space distribution. In principle the present theory can predict the triple differential cross
section d’o/dE d dA. However, due to computational expenditure we restrict ourselves to mean
values for the time being.

We start with the laboratory double differential cross section d’s/dy dp,, displayed in fig. 35, for
different classes of fragments and two different impact parameters for the reaction Ne + Au. Y denotes
here the rapidity and p, the transverse momentum of the particles. The contour lines are separated by a
factor of 2.

We see that light fragments have a highly anisotropic emission pattern even in central collisions.
There are many fast particles in the forward direction, which are not counterbalanced at backward
angles. These particles have a finite emission angle, whose origin will be investigated in the next
section. The emission pattern of medium mass clusters is, to 10%, not isotropic, as observed
experimentally by Warwick et al. [120], who found that the double differential cross section of medium
mass clusters cannot be described by a single thermal source which emits fragments isotropically in its
rest system. Comparing d’o/df2 dE dZ at different laboratory angles one has two possibilities for a
definition of the source velocity: (a) either one requires that the slope of the energy distribution (i.e. the
“temperature”) does not depend on the emission angle in the rest system, or (b) one assumes that the
Coulomb peak appears at the same energy in the rest system. If there were an isotropic emission of a
single source, both methods would coincide. The experiment shows differences between both methods.
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Fig. 35. Contour plot of the double differential cross section d’a/dp, dy for two impact parameters (b = 1, 5 fm) and three different mass intervals
for the reaction 1050 MeV/n Ne + Au.

Applying the second method it seems that the fragments gained additional momentum in the beam
direction, i.e., show a higher “temperature”. This gives rise to an elliptical emission pattern in the rest
frame of the source. The heavier clusters, one the contrary, exhibit an isotropic emission pattern in
their rest system, which moves with a velocity close to zero in the laboratory system. Note the different
scales of the transverse momentum.

Figure 36 presents the rapidity distribution of the different classes of fragments at two impact
parameters for Ne + Au and at four impact parameters for the Au+ Au reaction. Only for central
collisions in the reaction Au+ Au are all particles stopped, and do we observe an almost thermal
distribution, i.e., a mid-rapidity source appears which emits particles and clusters almost isotropically.
Even at small b (b=3fm) we see that the fragments can be attributed to two different sources,
although the protons and neutrons will show a rather thermal distribution and mimic a non-existent
equilibrium. This is the reason why the inclusive measurement of protons or very small clusters always
reveals a thermal distribution. For the very peripheral reaction we see the heavy fragment moving
backwards in the laboratory system (¥, =0.33). In the Ne + Au reaction we see that the gold
nucleus is not able to stop a 1 GeV/n neon projectile completely. Even in central collisions, where the
mean free path is small compared to the diameter of the target, energetic single nucleons and small
clusters escape from the interaction zone. Thus even for the single nucleons the fireball picture, i.e. the
assumption that the geometrically overlapping projectile and target nucleon form an equilibrated
source, does not hold. The spectra are always spoilt by evaporation products of the ‘“‘cold” spectator
matter. For the large impact parameter (b =7 fm) we clearly see a projectile and a target region. Here
also remnants of the projectile survive (and also demonstrate the stability of clusters in our numerical
approach).

Finally fig. 37 shows the transverse “temperature”, i.e. up to a constant the second moment of the
transverse momentum distribution,
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Fig. 36. Rapidity distribution of different mass intervals (a) for b =13, 7fm for the reaction 1050 MeV/n Ne + Au, and (b) for b=1, 3, 5, 7 fm for
the reaction 200 MeV/n Au + Au (soft EOS).
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for different fragment classes in their rest frame as a function of the emission angle. For a system which
is equilibrated longitudinally, this quantity coincides with the apparent temperature, i.e. the slope of
the momentum space distribution. Isotropic emission would result in an angle independent 7. We see,
however, a higher “temperature” for low mass fragments in the forward direction compared to the
backward direction. The ratio of the “temperature” of fragments emitted in the forward direction over
that of the fragments emitted in the backward direction is between two and six. Only fragments in the
largest mass bin, which also has the lowest statistics, can be considered as isotropically emitted. The
average T, of different clusters are different as well. We observe (T) =30.1, 27.3, 57.4 MeV for the
mass bins A=1, 5= A=15, 51= A=70, respectively. These higher temperatures in the forward
direction were also seen experimentally [120] and the values obtained for T’ by fitting the experimental
data are of the same magnitude [132].

From all these observations we conclude that the momentum space distributions of the different
cluster classes are greatly different. A single source cannot be identified, apart from the very central
Au+ Au collision. If one wants to interpret the emission pattern in terms of thermal sources, a
continuous source distribution is required.

6.4. What causes fragmentation?

There remains the question of what actually causes the fragment formation. We have seen that
clusters are not formed in a globally equilibrated environment. Hence processes other than statistical
decay have to be taken into account. We saw that the medium mass clusters are emitted from the
system quite early, long before the target evaporation chain ceases. In this section we investigate the
details of this process. Since clusters are produced by fluctuations of the system, we have to investigate
the cluster formation on an event-by-event basis, looking for the specific environment around a
prefragment, i.e., those nucleons which finally form a fragment or are emitted from a fragment, in a
given simulation of the reaction.

We start out by examining how the projectile and the target interact at the beginning of the
interaction. Figure 38 displays the velocity and the density profile for central collisions 1050 MeV/n
Ne + Au from 10 to 20 fm/c and 10 to 35 fm/c, respectively, in steps of 5 fm/c. The velocity profile is
shown separately for those nucleons initially belonging to the projecile or the target. Arrows are only
plotted if the local density is larger than 0.1p,. In this figure we have averaged over ten events, so
fluctuations are reduced, but not completely washed out.

At 10 fm/c the projectile has completely dived into the target. The projectile velocity is much faster
than the speed of sound in nuclear matter. Therefore the time scale for the transverse expansion of the
projectile is small compared to the time scale for the projectile to traverse the target. The root mean
square radius of the projectile nucleons does not increase up to 15fm/c. The peak compression
increases to 2.1p,. While the projectile nucleons travel through the target they experience strong
transverse forces due to the strong density gradient at the surface of the projectile. Therefore they pick
up transverse velocity and are deflected at finite angles. A shock profile develops, which moves inwards
into the projectile nucleus because the outer nucleons have already been carried away by the sideways
travelling compression wave. So we see the situation that the projectile causes the emission of clusters
with a velocity above the sound velocity, while the source itself decelerates gradually but still has
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Fig. 38. Velocity (rows 1 and 2) and density profile (rows 3 and 4) for the reaction 1050 MeV/n Ne + Au, b =01fm, in the reaction plane at the
beginning of the reaction. The velocity profile is separately displayed for projectile and target nucleons. The length and direction of the arrows are
proportional to the velocity in the reaction plane. An arrow is only drawn if the projectile or target density is larger than 0.1p,. The contour lines of
the density profile are separated by a factor of two, starting with p/p, =0.2.

supersonic velocity. In an infinite system this is the situation where a Mach cone would be formed, and
indeed the form of the velocity distribution at 20 fm/c resembles such a velocity profile closely.
However, one has to keep in mind that we have a system of only 217 particles and therefore we do not
obtain a sharp discontinuity in the density as occurs in macroscopic systems. Behind the cone we
observe a rarefaction region, which heals, however, because target surface nucleons stream inwards. At
35fm/c this rarefied region is filled and again has the highest density. Whereas at the beginning
projectile and target interpenetrate (the density provides a high Pauli blocking rate), towards the end of
the reaction the projectile drags along some target nucleons. At 20fm/c we see that in the forward
direction the target nucleons have the same direction of motion as the projectile nucleons, whereas in
the backward direction the target nucleons move collectively with roughly half of the centre of mass
momentum. This time evolution of the reaction is similar to that predicted by hydrodynamical
calculations [125].

How a prefragment, i.e. an excited fragment which still emits nucleons before being detected,
experiences this situation is displayed in fig. 39. The left-hand column shows the time evolution of mean
values of different quantities for a large prefragment (A =24). This prefragment emits six nucleons
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Fig. 39. Time evolution of a single prefragment produced in the reaction 1050 MeV/n Ne + Au, b =0 fm. The properties of a heavy (A = 24) (left)
and a light (A = 6) (right) prefragment are displayed. We show the average number of collisions, the mean radial force, the density, the mean radial
momentum, the mean radial distance from the centre of the target, and the “temperature” A= (m/3){v — (v} as a function of time. The values
displayed are averaged over the fragment constituents. For details we refer to the text.

before it is finally (at ¢ = 300 fm/c) registered as a fragment (A = 18). The right-hand column shows the
analogous quantities for a small fragment (A = 6). The upper figure displays the number of collisions
per fragment nucleon. Initially, i.e. before the projectile reaches nucleons of the fragment, no collisions
occur. Between the arrival of the projectile and the separation of the fragment from the remnant we
observe a quite high collision rate. When the fragment is formed there is still excitation energy, which
allows further collisions among the fragment nucleons. The next row shows the density
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Radial here means with respect to the centre of mass of the target. As already expected from the
previous figure we see a strong increase in the density when the projectile matter hits the nucleons
which will form the fragment. Initially the collective momentum of those nucleons points inwards. The
density, however, causes a strong radial repulsive force, which reverses the direction of the average
momentum

1 P-(r.—r

i j cm target)

prad = A

frag jEAfrag Irl -r

cm largel’
This is displayed in the next row.

So far it seems that collisions are not required at all to cause fragments to break off. This, however,
is not true. If the nucleon—-nucleon collisions are suppressed, we do not find fragmentation. Collisions
have a twofold influence on the fragmentation processes. Firstly, they decelerate the projecile nucleons
and hence increase the density in the projectile region. Secondly, they may provide an additional
momentum transfer to those nucleons which are going to form a fragment. To check whether the
second mechanism is important we compare the actual average radial momentum with that caused by
the average radial field only. The latter is determined by

t
P = [ Fa(t)dt 4, 1=0).
0

The difference between these two reveals the importance of the momentum transfer to the fragment
nucleons due to collisions. The results are displayed in the same row. In the case of the large cluster the
final momenta are almost identical, whereas the small cluster would not be broken off at all (it still
would have an inward directed radial momentum). So the role of collisions in the actual break up
process is ambiguous.

The last row displays the time evolution of the internal excitation of the fragment. We define a
“temperature”

1 m
A= 2 T {y-v,)t.

A frag jEAfrag

Keep in mind, however, that this is not a true temperature since it also includes the Fermi momentum.
We only see a small increase in the course of the reaction. So the prefragments are only moderately
excited and there seems to be no equilibration between the internal degrees of freedom and the
translational motion. This is in agreement with recent experiments, which show that the excitation of
prefragments corresponds to temperature of 5 MeV, independent of the beam energy [143].

The velocity profile of the same reaction at b = 6fm is displayed in fig. 40. Here the projectile is
slightly deflected, but still drags along some target nucleons. The target becomes slightly excited, and
most of the target nucleons retain their initial velocity up to 25 fm/c, where the interaction between
projectile and target is over. Only close to the interaction zone do we see a disturbance in the velocity
field, which ultimately leads to an excitation of the target. Since particles from this excited zone (hot
spot) which travel towards the centre of the target have a higher chance to transfer their momentum to
other target nucleons than those travelling towards the surface of the target, we observe a transverse
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Fig. 40. Velocity profile for b = 6 fm in the zx plane at the beginning of the reaction, ¢ = 10-20fm/c, in steps of 5 fm/c, separately displayed for
projectile and target nucleons. The length and direction of the arrows are proportional to the velocity in the zx plane.

momentum transfer to the target, which is compensated by the momentum of the emitted single
particles in the opposite direction. Hence transverse momentum transfer can also be caused by pure
geometry and not only by momentum dependent interactions and compression.

6.5. Fragments and the nuclear equation of state

What can we learn from the fragments about the nuclear equation of state? Fragments are, as we
have seen, created in the early stage of the reaction. Since the density gradient causes their break off,
they should be quite sensitive to the compression achieved in heavy ion collisions and to the transverse
momentum transfer. We would further expect that they are also sensitive to the number of nucleon-
nucleon collisions. These collisions abruptly change the momentum of the collision partners and lower
the probability to find a partner with low relative momentum in order to form a fragment. Figure 41
displays the momentum space distribution of nucleons and light clusters in the reaction plane at the end
of the reaction Au+ Au, b =3fm, for two equations of state.

Several simulations are displayed on top of each other. The distribution of unbound nucleons
appears to be isotropic, independent of the equation of state and is centred around p, =p,=0,
indicating almost complete stopping. Already clusters with mass A = 2-4, however, reveal their origin
from projectile or target and the p, and p, distributions peak at finite values (compare fig. 36). But most
important, we observe a bounce off, i.e., target- and projectile-like clusters have a finite and opposite
( p,) which depends on the equation of state. The harder the equation of state, the larger is the value
of (|p,|). (|p,]) increases with the cluster size. For 15 < A < 30 the knowlege of p_ is almost sufficient
to identify the clusters as projectile- or target-like.

These findings are expected. Nucleon—nucleon scatterings randomize the momentum distributions.
After a large momentum transfer nucleons do not find a partner with low relative momentum and are
therefore observed as single nucleons. Clusters consist mostly of nucleons which have not suffered large
momentum transfer. Their motion is governed by the density gradients which cause the bounce off. We
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Fig. 41. Survey of the reaction 200 MeV/n Au + Au, b =3 fm, for two different equations of state (SF, HF). We display the final momenta per
nucleon in the reaction plane for a couple of simulations for four different fragment classes.

see that clusters are good candidates for exploring the equation of state. To substantiate these findings
we display in fig. 42 the ratio of the transverse momentum in the reaction plane p, and the total
transverse momentum p, = (p. + pi)”2 as a function of the rapidity for a stiff and for a soft equation
of state in comparison with experimental results [6].

A filter was applied to the theoretical calculations which simulates the acceptance of the Plastic Ball
[139]. The calculations are performed at b =3 fm, where we find the largest p,, and compared with the
corresponding multiplicity bin. The absolute values of p /p, are twice as large for A =6 compared to
protons. For all four mass bins we see differences between the different equations of state. As expected
they are biggest for the largest clusters. The calculations seem to favour a stiff equation of state.
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Fig. 42. The transverse momentum per nucleon p./p, as a function of the rapidity. We display calculations for three different charge bins Z =1
(A=1,2), Z=2 (A=3,4), Z=3 (A=5,6,7), Z=6 (12=< A<20) and two equations of state (SF, HF) and compare the results with
experimental data [6]. A filter is applied to the theoretical calculations which simulates the acceptance of the Plastic Ball [139].

However, before definite conclusions can be drawn, the dependence of p,/p, on the other quantities
like in-medium cross sections has to be investigated.

Figure 43 shows the mass yield for a stiff and a soft equation of state for the Au(200 MeV/n) + Au
reaction at b =3 fm. As already mentioned we see a power law dependence of the mass yield. There is
little difference at low masses. Large mass fragments are more copiously produced if less collisions take
place, i.e., when a hard equation of state is employed. The difference is too small, however, to be of

practical importance. This confirms once more that the total mass yield is not very sensitive to the
dynamics of the reaction.
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Fig. 43. Mass yield for the reaction 200 MeV/n Au + Au for the soft (SF) and the hard (HF) equation of state at an impact parameter of b = 3 fm.

7. Probing the nuclear equation of state

In chapter 2 we discussed that presently the in-medium cross section, as well as the nuclear equation
of state, cannot be calculated reliably from the underlying nucleon-nucleon interaction. Furthermore,
we have seen that the momentum dependent part of the nucleon-nucleon interaction acts quite
differently in nuclear matter and in supernovae, as compared to nucleus—nucleus collisions. In nuclear
matter any momentum dependence of the interaction can be expressed as a density dependence since
the average relative momentum between the particles is a function of the Fermi energy and hence of the
density. In heavy ion collisions the momentum and density dependence of the potential are decoupled.
By choosing different beam energies we can probe the potential over a large dynamical range without
changing the density substantially. In the energy range of interest, 100 MeV/n< E,,, <1 GeV/n, optical
model calculations reveal a strong repulsion arising from the momentum dependent interaction. As we
have seen in section 2.5, this repulsion can mimic a stiffer equation of state in heavy ion collisions.

Before starting out to pin down the compressional energy in nuclear matter at high density and
temperatures, one has to study whether the observables are robust enough so that our lack of complete
knowledge of some dependencies does not render any conclusions we might draw obsolete. The
essential uncertainties are the momentum dependence of the optical potential at high densities, which
may be cast in an effective mass, and the in-medium corrections of the nucleon—nucleon cross section
which go beyond the Pauli suppression for the final states.

A first glimpse of the difficulties in determining the nuclear equations of state can be gotten from fig.
44. It shows the maximal density obtained in the reaction Au+ Au at b =3fm for different beam
energies. Although we have chosen one of the heaviest systems available, we observe only a very weak
dependence of the maximal density on the projectile energy.

Almost never does the density exceed twice the normal nuclear matter density p,. This is in strong
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Fig. 44. Maximal central density reached in the reaction Au + Au at b =3 fm as a function of the beam energy for three different equations of state
(see table 3).

contrast to cascade calculations, which lack the compressional energy, and achieve densities up to
Pmax = 4po. The values obtained in the QMD model are slightly lower than those obtained in BUU
calculations. The situation becomes even worse if we relate the central density to the compressional
energy, which can be inferred from fig. 8. We note that the compressional energy is almost identical for
S and H. This questions all the suggestions which rely only on different compressional energies obtained
from different equations of state. Recalling the vastly different influence of the momentum dependence
of the optical potentials at the different beam energies, one can also imagine from this figure the
difficulty of separating reliably the momentum dependent part of the optical potential from the density
dependent part.

In this section we report on the first steps towards the goal of determining the nuclear equation of
state from a comparison between theoretical calculations and experiments. We will see that many
parameters have to be measured simultaneously in order to disentangle the effects of the compressibili-
ty, the effective mass and the effective cross section on the observables.

7.1. Velocity dependence versus compressibility

We first concentrate on the interactions H, S and SM (table 3). We discuss how these reactions
proceed in time, and whether SM can yield the same results as H and thus imitate a stiffer equation of
state. In fig. 45 we give an overview of different quantities which are relevant for this question. We
denote the rows from (a) to (d). All the quantities we display are for the reaction Au+ Au, b = 3 fm, at
two different beam energies: 200 MeV/n (left) and 800 MeV/n (right).

We start with the transverse momentum
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Fig. 45. Time evolution of different observables for the reactions 200 MeV/n and 800 MeV/n Au + Au.

(") =5 3 sign(y() (), (1)

where y(i) is the rapidity of particle i and p (i) is its transverse momentum in the reaction plane. In
earlier years it was common to employ the quantity flow to discuss the transverse momentum transfer.
This, however, is not the best choice, since the flow is essentially proportional to the ratio of the
longitudinal and the transverse momenta. The excitation function of the average flow angle is almost
flat, since with increasing energy both the longitudinal and the transverse momenta increase. The
longitudinal momentum reflects the stopping, i.e. the cross section, whereas the transverse momentum
is determined by the compression and/or the momentum dependence of the interaction. Since these are
two separate physical phenomena, it is better to disentangle both and to discuss the transverse
momentum instead of the flow. The transverse momentum in the reaction plane, p,, can be obtained by
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using the transverse momentum analysis technique [144], which gives a description of how to extract the
reaction plane from the experimental data.

The transverse momentum { p") is displayed in fig. 45a. We start with the reaction at 200 MeV/n.
Initially ( pf") has to be zero. When the nuclei approach each other they feel an attractive potential
which — due to the geometry - causes a collective transverse momentum opposite to the impact
parameter. As soon as the nuclei overlap, the potential becomes repulsive and accelerates the particles
in the transverse direction (figs. 3 and 4). Finally we observe a finite collective flow of the order of some
tens of MeV/n. At 200 MeV/n the momentum dependent force is not strong enough to enhance the
collective transverse momentum transfer substantially. By contrast, in the reaction at 800 MeV/n the
momentum dependent forces enhance the transverse momentum of the soft equation of state by almost
50% so that it exceeds the value expected from a hard equation of state. One has to keep in mind,
however, that this conclusion depends strongly on the impact parameter and the mass of the
projectile—target combination. The different origin of the transverse flow of SM as compared to S or H
can be seen from the time evolution. For SM the transverse flow starts to develop as soon as the
projectile and the target overlap and hence before a high density is built up. The transverse momentum
of H and S is caused by compression and starts only after we observe a sufficiently high density.

From these results we conclude that the momentum dependence of the nuclear potential can imitate
a stiffer equation of state at high beam energies. At E,, =200 MeV/n we see little difference between S
and SM, but at E,,, =800 MeV/n the transverse momentum transfer with a soft velocity dependent
equation of state exceeds that of a hard equation of state.

Figure 45b shows the longitudinal momentum transfer and the degree of global equilibration. We
display the average final longitudinal momentum of all those nucleons which were initially in the
projectile. Due to momentum conservation { p?*”') equals —( p'*™**'). We observe that the final { p*"’')
is around 30% of its initial value. Thus there is a considerable longitudinal momentum transfer, but
there is no complete stopping. There is also no complete global equilibration, although we display here
almost central collisions of a very heavy projectile-target combination. This can be inferred from the
quantity ({p2)""* +(p3)"'"*)/2(p:) """ If the system is globally equilibrated, this ratio will be 1. The
observed ratio is around 0.7 independent of the beam energy and the equation of state. This means that
the average kinetic energy in the transverse direction is lower than that in the longitudinal one. Recent
investigations have shown that this heavy system does not even become locally equilibrated [145].

The number of collisions which the nucleons suffer is displayed in fig. 45c. Again we observe that SM
lies between S and H, as expected from our considerations in section 2.5. The average number of
collisions i1s around 4 for 200 MeV/n and 8-10 for 800 MeV/n. It is remarkable that even this high
number of collisions do not equilibrate the system.

The question as to which degree velocity dependent forces can mimic the directed transverse
momentum obtained with a much stiffer static equation of state has caused a lot of confusion recently
because different calculations yielded quite different results [14,32,35]. In some calculations SM
yielded much larger { po") than H, in other calculations the influence was quite moderate. When
comparing the different calculations one has to keep in mind that we expect

(a) a strong mass dependence of this effect; for small masses we observe almost no compression and
hence SM should yield a larger { p¢") than H; for large masses the difference should be smaller;

(b) astrong energy dependence; at low beam energy the influence of the velocity dependence should
be quite moderate, of course;

(c) that the density dependence of the velocity dependent potential, which cannot be inferred from
experiment, influences the result.
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Furthermore, even quite different forms of the velocity dependence of the equation of state which
yield quite different optical potentials for heavy ion collisions have been used and, last not least, the
calculations so far were performed at different impact parameters, which also causes different
conclusions. This is certainly a topic that has to be settled in the near future.

7.2. Particle production and the equation of state

Pions are produced copiously in high energy heavy ion collisions and are an important source of
information on the reaction mechanism. Applying a Cascade calculation, Rosenhauer et al. [146] have
shown that the number of pions is directly correlated with the number of hard nucleon-nucleon
collisions. Thus the number of pions immediately yields information on the stopping power of nuclear
matter.

Experimentally it has been observed that the pion has a nice scaling property. The number of =~ is
proportional to the number of participant nucleons, which can be inferred from the observed projectile
spectators [147], independent of the mass of the projectile-target combination. We take advantage of
this observation and compare our results with those of ref. [147]. In fig. 46 we see the total
experimental pion yield as compared with the results of Au+ Au reactions at various energies as a
function of the mean energy per participant nucleon. We find nice agreement between QMD and
experiment. This agreement was also obtained in VUU calculations [64]. Again we see that the results
of our n-body approach coincide with those of the one-body theories as far as single particle properties
are concerned.

Some while ago it was proposed [148, 149] to use the particle production as a measure of the
compressibility of nuclear matter. This suggestion was triggered by the intra-nuclear cascade results,
which always overestimated the number of pions, and was based on the idea that some of the available
energy is stored in compressional energy and hence not available for the production of pions. Applying
a thermal model, the discrepancy between data and cascade results can be converted to a compressional
energy. For a given dependence of the average density at the point of highest compression on the beam
energy we can then relate the compressional energy to the compressibility.

More refined calculations [62, 64] did not confirm this suggestion. In fig. 45d we see that for all
equations of state almost the same number of pions is obtained. This is a direct consequence of the
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Fig. 46. Number of pions as a function of the energy per participant nucleon as compared with data of ref. {147}.
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almost identical compressional energy. At 200 MeV/n, the number of produced pions is small and the
fluctuations are large. Hence the differences are not statistically significant.

Another possible candidate for testing the equations of state is the K™ (the K~ has a higher
threshold). For several reasons the K is a [86] more promising particle than the pion:

(1) At the energies of interest kaons can only be produced “‘subthreshold”, i.e., a nucleon—-nucleon
collision at the same energy is below the production threshold. In nucleus—nucleus collisions the Fermi
motion can help to create these particles in a single nucleon—nucleon collision. With increasing impact
parameter and hence lower number of collisions it becomes less probable that two nucleons with
sufficient relative momentum collide. This concentrates the production at low impact parameters.

(2) The recombination of strange particles has low probability. Hence there is no reabsorption in
contrast to the case of the pions.

(3) According to the calculations, the majority of the kaons are produced in a two-step process,
n+n—A, A+n—>n+ K" + A, because at low energies there are very few nucleons which can provide
sufficient energy in a nucleon-nucleon collision. The relative momentum required to produce a K™ in a
A +n collision is lower due to the larger mass of the A. This production mechanism favours central
collisions because central collisions produce most A’s and the probability that they interact with another
nucleon is high.

There are, however, obstacles to calculating the production of K*’s reliably. Firstly, the elementary
production cross section n + n— K" near threshold is not well known. Secondly, the above mentioned
two-step process is not established experimentally. It was pointed out recently [86, 150] that some of the
uncertainties may cancel if one concentrates on ratios of the cross sections of different symmetric
systems and does not aim at a measurement of their absolute values.

Calculations show that kaons are indeed a very good tool to disentangle the momentum dependence
of the nucleon-nucleon interaction from the static part. In fig. 47 we show the kaon yield as a function
of the impact parameter of the system La + La at 800 MeV/n. For central collisions we see a factor of
four between the yield for SM and H and still a factor of two between S and H. The difference between
S and H can be understood by inspecting fig. 45. S produces more pions (deltas) and more collisions

| 139La + 139La ]
800 MeV/n

b [fm]

Fig. 47. Production probability of a kaon in the reaction 800 MeV/n La + La for different impact parameters. The error bars display the fluctuation
of that number for different simulations.
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take place. Both work towards an enhancement of kaon production. Employing velocity dependent
forces, the kaon production suffers from the fact that the nucleons which have enough relative
momentum to create a K™ are those which feel the strongest repulsive force, which decelerates them
below threshold.

The only other elementary particle one may think of to use for probing the equation of state is the
photon. Calculations show that they are sensitive on the 10% level [85,151] only. This can be
understood easily: Each collision in which a proton is involved causes bremsstrahlung. Therefore
photons come from everywhere in the collision region and not from the compressed region only. The
total production cross sections of composite particles are not sensitive either, as we have seen already in
the last chapter.

7.3. Can we extract the nuclear equation of state from present data?

The first suggestions on how to measure the nuclear equation of state are rather old [148]. Already in
hydrodynamical calculations one observed that the compressional energy is partially released in the
transverse direction (bounce off, fig. 4). Thus in the reaction plane projectile and target gain transverse
momentum, but in opposite directions. The absolute value of the transverse momentum is related to the
equation of state (but unfortunately also to the viscosity [152]). However, there were reasons to hope
that a more careful treatment of the collisions between the nucleons, especially during the initial state
of the heavy ion reaction, where the approximation of local equilibrium cannot be justified, would allow
both effects to be disentangled. First microscopic calculations showed circumstantial evidence for a
rather stiff equation of state, but detailed theoretical investigations, as well as the analysis of a large
body of experimental data, especially from the Plastic Ball group, rendered this conclusion premature.

In recent years it has been conjectured that other observables should also carry information about
the nuclear equation of state. We have discussed in the last section whether produced particles
carry information on the nuclear equation of state. In this section we concentrate on proton obser-
vables.

Welke et al. [153] presented calculations in the BUU model which showed that the azimuthal
distribution of protons with a rapidity larger than (y/y,.;),., >0.75 showed a quite strong dependence
on the nuclear equation of state. Of course this observable is nothing but a function of the transverse
momentum transfer, but it may be a cleaner way of demonstrating the equation of state dependence. If
we assume that the particles have a thermal distribution f,, around the mean (p, ), we expect for the
ratio R the following dependence:

R N@=0) _ I fu(p) dp,
S N(@=180°)  fmSfpydp,

(7.2)

Thus if (p,) increases, this ratio increases as well, because the fraction of particles which have a
momentum lower than —( p,) decreases. Only those particles, however, are observed at ¢ = 180°.
This method has two drawbacks. Most particles are at mid-rapidity in these reactions. Hence the
effect is caused by a few particles, and consequently the fluctuations are large. Furthermore, in this
kinematical regime there are many composite particles (cf. fig. 41), which have to be treated correctly
in order to allow a quantitative comparison with the data. But nevertheless, the quoted values of R for
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different equations of state differ by more than a factor of two. Thus — if confirmed by other models — it
is certainly a good candidate for a closer inspection.

Another observable which may depend on the equation of state is the collective flow at mid-rapidity
perpendicular to the reaction plane, which has recently been observed experimentally [5]. It could be
caused by particles whose motion is deflected in the lateral direction through the action of strong
density gradients in the course of the reaction. Of course it could also be that particles are emitted
preferably perpendicularly to the reaction plane, as, after a nucleon-nucleon collision, there the
distance they have to travel in nuclear material is the shortest. In the latter case the equation of state
dependence is rather small.

A third conjecture, advanced by Bauer [154], that the quadrupole momentum tensor can be used to
determine the nuclear equation of state, did not materialize in actual calculation, neither in the BUU
nor in the QMD approach.

In this section we investigate the equation of state dependence of the above mentioned observables
in detail. Special emphasis is devoted to the question whether these observables are sufficiently robust
in order to reveal information on the equation of state. For this purpose we present calculations with
different cross sections (in the limits suggested by nuclear matter calculations) and both with and
without a momentum dependent potential. In order to substantiate our calculations we start with a
detailed comparison with experiment.

Transverse momentum transfer. The quantity { po") as defined in eq. (7.1) has been introduced to
condense the distribution { p_)(y) to one number. The value of this variable is displayed in fig. 48 for
different beam energies, different projectile target combinations and different theories.

This quantity has much smaller fluctuations than ( p,)(y) for y near the projectile rapidity. The
drawback is, however, that it is dominated by the large number of mid-rapidity particles which do not
contribute significantly to p,. This quantity also yields much higher values for the BUU calculation as
compared to the QMD calculation with the same input parameters. At 800 MeV/n the difference can be
as large as a factor of 3. At small beam energies the difference between the caiculations is small.
Looking at ( p) for a fixed beam energy as a function of the mass of the scattering partners, we see
that at 400 MeV/n a soft velocity dependent equation of state can never imitate the hard equation of
state. The opposite is the case at 800 MeV/n, where even for the heaviest system the hard equation
produces less p, than the soft velocity dependent equation of state. This conclusion, however, depends
strongly on the impact parameter. At the lowest energy considered here we see that all calculations with
a soft equation of state are below that with the hard equation of state. Thus low energy experiments
may be most promising if we want to limit the influence of the velocity dependence of the optical
potential. However, even there different cross sections influence the results considerably.

The origin of the difference in { po") between the n-body QMD and the one-body BUU calculation
is investigated in detail in fig. 49. There the transverse momentum as a function of the rapidity for
400 MeV/n Nb + Nb at b =3 fm is plotted for four different computer codes, of which three simulate
the BUU equation and one is the solution of the n-body equation. The BUU [63] and the BUU Welke
[35] model have a space fixed grid of length 1 fm (Eulerian method) to determine the local density and
hence the potential. The VUU approach [64] measures the density in a comoving sphere of radius R
around the particle under consideration (Lagrangian method). We see a striking similarity of the results
of the one-body theories. Together with the results displayed in fig. 19 this shows that the results are
independent of the quite different numerical methods employed to solve this complicated equation. The
results of the QMD calculations agree with those of the one-body theories at central rapidity but are
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smaller around the beam rapidity. There we observe very few nucleons finally, most of them bound in
clusters. We see most of the clusters finally. The reason for this difference is not completely clear so far.
It probably depends on two facts:

(a) The unphysical point particles can yield stronger density gradients than the Gaussian Wigner
densities, which smear the nucleons over larger space regions. This effect is also indicated by the
dependence of the transverse momentum at beam rapidity on the radius of the sphere, in which the
local density is determined in the VUU calculation.

(b) In this momentum space region, where many clusters are formed, the fluctuations are most
important, which are not treated correctly in the BUU/VUU model.

In fig. 50 we confront the experimental { p (y)/A) distribution for the reactions 400 MeV/n Nb + Nb
and Au + Au with our calculations. The calculations are performed at b =3 fm, which yields a proton
multiplicity corresponding to the experimental multiplicity bin 4. Therefore, we choose for comparison
the data of this multiplicity bin. The first row displays the results of the one-body BUU theory for the
reaction. From the theoretical calculation we have ignored all particles which are below the energy
threshold of the Plastic Ball. For the sake of comparison we display the results of HC as well (treated
with the same filter). Both BUU H and QMD HC (see table 3) employ exactly the same equation of
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Fig. 50. Transverse momentum transfer as a function of the centre of mass rapidity for different set ups (see table 3) for the reactions 400 MeV/n
Nb + Nb and Au + Au as compared to experiments [7]. In the second and the third rows we filtered the theoretical calculation with the Plastic Ball

filter SIMDAT [139]. In the first row only an energy and angle cut is applied. BUU refers to results of the Boltzmann-Uehling-Uhlenbeck
calculation [63].
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state and nucleon—nucleon cross section. Between —0.5<y/y_.<0.5, where almost all the particles
are finally located, the differences between BUU H and QMD HC are small. For larger values of
¥1¥or0j» hOWever, they become significant. This difference is not yet understood, and - due to the small
particle number in this rapidity regime - is hard to investigate. In the QMD calculation we observe high
fluctuations of {p /A) in this regime. The fluctuations are much smaller in the BUU approach. This
may be a hint that the mean field of the BUU calculations acts differently here compared to the
nucleon—nucleon potential of the QMD approach. In addition to that, particle identification in the
Plastic Ball leads to considerable changes (20%) in { p,/A) in this rapidity regime, as can be seen from
comparing the QMD HC calculations of rows 1 and 2. In rows 2 and 3 we have employed the full Plastic
Ball filter SIMDAT [139], which includes, in addition to the threshold, particle misidentification. The
momentum dependent equation of state is not able to yield the high ( p,/A) values of a hard equation
of state at this energy, but gives results in between those of HC and SC. If we increase the cross section,
we produce higher ( p /A) values. This can be seen from the third row, where protons and neutrons
interact with the free np cross section instead of the smaller pp cross section in SC and HC.

From this figure one can conclude that the experimental data are nicely reproduced in the QMD
approach, whereas the BUU approach yields values of {p, )/A which are too large at the beam
rapidity. The differences between the different equations of state are of the same order as the
differences due to different cross sections or due to the momentum dependence of the potential, and
amount to about 20%. Thus from the ( p ) /A distribution alone a firm conclusion on the stiffness of the
equation of state cannot be drawn.

The next figure, fig. 51, displays our calculation for 800 MeV/n La + La with H as compared to the
data of the streamer chamber group [155]. It seems to be astonishing that the very same data are also
well described in the BUU calculations [35] although we have seen (fig. 48) that the average transverse
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Fig. 51. Average transversc momentum as a function of the centre of mass rapidity for H (see table 3) for the reaction 800 MeV/n La + La as
compared to experiment [155]. We display the transverse momentum for protons, deuterons and all nucleons separately.
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momentum is larger in BUU calculations as compared with the QMD results. The reason for
this — probably accidental — agreement of both theories is a consequence of the fact that in the QMD
calculations - as in experiment — we can select the deuterons, whereas in BUU calculations one has to
sum over all nucleons because clusters are not defined in these one-body theories. As can be seen in fig.
51, the average transverse momentum of the deuterons is larger than that of the protons, as we have
already observed in the 200 MeV/n reaction (fig. 42). More important, however, is the huge difference
(about a factor of 2.5) between the average transverse momentum of the deuterons as compared to that
obtained by averaging over all nucleons. This large factor is due to large remnants of projectile and
target, which do not have a substantial transverse momentum and are present at impact parameters
larger than 4 fm. Thus we can conclude that a detailed comparison between experiment and theory
requires a separation between singles and different classes of fragments. The maximum of the function
(p,(y)) originates from central collisions. Larger impact parameters decelerate projectile and target
less and therefore the deuterons appear at larger y values.

Azimuthal distribution. The next figure, fig. 52, presents our results for the observable proposed
by Welke et al. [153]. We display the quantity R = N(¢ =10°)/N(¢$ =170°) for particles with
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Fig. 52. R=N(¢ =10°)/N(¢ = 170°) for ( YYprojhas > 0.75 [153] for different set ups (see table 3), for different beam energies and for different
projectile—target combinations at b =3 fm. BUU refers to results of the Boltzmann-Uehling-Uhlenbeck calculation [63].
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(¥1Yprojiab > 0.75. We see that the QMD calculations fall almost on top of each other, independent of
the parameters chosen, and independent of energy and projectile-target combination. The BUU
results, however, show exactly the behaviour Welke observed: a very strong dependence on the
equation of state. Thus this way of plotting p (y) can amplify the differences tremendously. These
differences between the BUU and QMD calculations have not been investigated so far. We should
mention, however, that the experiments (fig. 50) do not favour the large p (y) values at beam rapidity
which are necessary to obtain the large azimuthal anisotropies of the BUU calculation.

Particle emission perpendicular to the reaction plane. Already hydrodynamical calculations predicted
a preferred emission of mid-rapidity particles perpendicular to the reaction plane (“squeeze out). Only
recently, however, has this prediction been confirmed by experiments of the Plastic Ball group [7]. They
found not only that the number of mid-rapidity particles emitted perpendicularly to the reaction plane is
larger than that of particles emitted in the reaction plane. Also the average energy of the particles
which are emitted out of plane is larger than that of in plane emitted particles. The ratio between in
plane and out of plane emission depends on the size of projectile and target as expected for an equation
of state dependent effect. However, also shadowing can produce such a result because the distance
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Fig. 53. Azimuthal distribution of protons around projectile, mid- and target rapidity for ditferent set ups (see table 3) as compared to experiment
{7]. In the second and the third rows we filtered the theoretical calculation with the Plastic Ball filter SIMDAT [139]. In the first row only an energy
and angle cut is applied. BUU refers to results of the Boltzmann-Uehling-Uhlenbeck calculation [63].
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particles have to travel in the nuclear medium is longer if they are emitted in the reaction plane as
compared to that if they are emitted perpendicularly. If shadowing dominates we would not expect a
strong equation of state dependence.

The azimuthal distribution of particles in different kinematical regimes is displayed in fig. 53. Here
again the theoretical calculations are acceptance corrected with the Plastic Ball filter SIMDAT [139]
and, in the case of the BUU calculations, for the energy threshold. Again we observe for the BUU
calculations a quite strong dependence on the equation of state, whereas the dependence of the QMD
calculations on the equation of state is quite moderate. In the projectile and target rapidity domain we
see only a weak equation of state dependence. More pronounced are the differences at mid-rapidity.
However, even here the differences rarely exceed 15% if the variables are calculated in the laboratory
system.

The differences become more pronounced, however, if one measures the effect in a system which is
rotated by the flow angle into the principal axes system of the momentum flow ellipsoid. The results of
our calculation at 400 MeV/n for three different systems as well as the experimental results are
presented in fig. 54. The ratio of out of plane and in plane transverse energy increases almost linearly
with the mass number of the system, as expected for a collective phenomenon. We observe also a strong
dependence of this ratio on the equation of state. The harder the equation of state, the more nucleons
are squeezed out. However, a detailed knowledge of the experimental acceptance is necessary in order
to find the proper flow angle. (Thus this method relies completely on the experimental acceptance
simulation.) Nevertheless, this observable is promising for further investigations due to the relatively
large difference between the results for different equations of state and for large systems.

Rapidity distribution. The observables we have investigated so far allow no firm conclusion about the
equation of state. Thus one has to consider a different strategy: Rather than looking for one variable
which immediately allows conclusions about the equation of state, we should investigate a combination
of variables. Aiming at those variables which depend strongly on one of the input parameters and less
on the others, we may finally be able to reduce the complexity of the problem. One of the possible
candidates has already been investigated. The kaon yield showed a very strong dependence on the
velocity dependence of the nucleon-nucleon potential, but less dependence on the nucleon-nucleon
cross section. The opposite is true for the rapidity distribution of the baryons, as can be seen in fig. 55,
where we compare the filtered data [139] with experiment [8].
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in the rotated system for a hard and a soft equation of state. The predicted linear mass dependence is also observed by the data measured by the
Plastic Ball Group (7], which are presented in the inset.
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We employed the Plastic Ball filter SIMDAT to correct for acceptance [139].

Again the overall agreement between theory and experiment is quite good. We observe that the free
cross section leads to a Gaussian form of the rapidity distribution, whereas the reduced cross section
causes a plateau, or even a dip, at mid-rapidity, independent of the equation of state. The comparison
between calculation and experiment indicates a large cross section. Even the free np and pp cross
section does not equilibrate the system to a degree which is indicated by the experiment and we can
expect that an in-medium enhancement of the free cross section would yield even better agreement.

We also observe here that the differences are of such a magnitude that high precision experiments,
together with a good understanding of the acceptance of the detecting devices, are required on the
experimental side if one wants to achieve the goal of extracting the nuclear equation of state from
experiment. The theory, on the other hand, has to be accurate at least at the 20% level to allow firm
conclusions about the equation of state. Both may be within reach in the next decade, when the new
SIS accelerator allows high statistics experiments, and also the computations will no longer require
unwanted approximations due to increases in the available computer power. However, as we have seen
in chapter 4, there remains the problem of how to deal properly with a fermionic system, which has to
be solved before the nuclear equation of state can be reliably calculated.

8. Conclusions

We have presented a microscopic dynamical n-body approach to heavy ion collisions which describes
the whole time evolution of a nucleus—nucleus collision. We have discussed under which approxima-
tions the model can be derived from the Wigner density of the n-body Schrédinger equation. They
include the validity of the impulse approximation and the assumption of independent nucleon-nucleon
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collisions. Most of these approximations are reasonably fulfilled under the circumstances we expect for
medium and high energy heavy ion collisions. Heavy ion reactions can now be studied theoretically on
an event-by-event basis from the initial configuration to the final distribution of nucleons, pions, kaons
and fragments in phase space. This is achieved by following the time evolution of the n-body system,
which interacts via mutual two- and three-body potentials and a residual interaction with a Pauli
blocked nucleon—nucleon scattering cross section. As far as one-body observables are concerned, we
reproduce the results of BUU/VUU and TDHF calculations, except for the transverse momentum
transfer.

We find almost complete, to this high degree unexpected, agreement with a large variety of single
particle and fragment data. Thus we feel confident that this model allows us, for the first time, to study
the formation of fragments in a dynamical model and to make detailed comparisons with experimental
data possible by allowing one to separate clusters from single particles. This is a prerequisite for the
study of the nuclear equation of state.

We have investigated in detail the formation of fragments and have examined which conclusions
about the nuclear equation of state can presently be drawn. As we have seen, heavy ion collisions are
presently the only possibility to obtain this desired quantity. The calculations confirm qualitatively the
predictions of hydrodynamical calculations, i.e. the squeeze out and the bounce off. Hence the
potential is of importance in this energy domain beyond the formation of clusters. Detailed investiga-
tions in the QMD model, however, show that different potentials, corresponding to different equations
of state in nuclear matter, produce quantitatively almost the same effect.

We present our main results in two sets of conclusions, one for fragment formation and one for the
nuclear equation of state.

Concerning fragment production.
(@) The calculation reproduces all investigated observables,
o the fragment yield,
o the angular distribution of fragments,
® the associated multiplicity of singles,
¢ the mean velocity of fragments,
o the multiplicity distribution of fragments as a function of the associated multiplicity of fast particles,
o the average transverse momentum of fragments in the reaction plane.

(b) Of these observables only the average transverse momentum is, as expected, dependent on the
equation of state above the 30% level. On the other hand, this observable is also quite sensitive to the
in-medium corrections of the cross section. So both dependences have to be disentangled before this
observable can be used to pin down the compressibility of nuclear matter.

(c) The strong impact parameter dependence of the mass yield curve rules out the conjecture that
the power law form of the inclusive mass yield curve provides a signature that the system is close to the
critical point of a liquid-gas phase transition. The agreement of the inclusive mass yield distribution
with a form expected for a system close to its critical point is purely accidental.

(d) We observe a strong geometric correlation between the entrance and exit channels of the
reaction. Nucleons retain information about their initial position. This rules out the assumption that the
system equilibrates globally to some state similar to a compound nucleus. If that were true, any
information about the initial state would be lost. Consequently, a thermodynamical single source.
approach to multifragmentation in heavy ion reactions cannot be considered as adequate.

(¢) Fragments 2 < A =30 stem from the surface of the system. They separate from the rest system at
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a very early time, i.e., when the density is highest. They measure the violence of the reaction, i.c., the
number of these clusters strongly decreases as a function of the impact parameter. The medium mass
clusters are kicked off from the system as a result of the high density wave and its repulsive force,
caused by the interpenetrating projectile.

(f) At later times a compound-nucleus-like remnant is formed, which emits protons and neutrons.
The decay chain of these remnants yields fragments with masses down to A = 40. These heavy clusters
can be used to determine the impact parameter of the reaction. This method is superior to the method
used up to now to measure the multiplicity of singles.

Concerning the nuclear equation of state.

(g) For single nucleons we see a 30% dependence of the average transverse momentum on the
equation of state, a much lower value than the factor of two seen for fragments. About the same
difference is seen for the different cross sections employed.

(h) The pions are not at all sensitive to the equation of state.

(i) Twice as many kaons are produced with a soft equation of state as compared with a hard one.
Including the momentum dependence of the interaction we see a reduction by a factor of four.

(j) Even at almost central collisions (b =3fm) a system as heavy as Au+ Au does not come to
equilibrium. We see fragments emitted from well separated target and projectile sources. The larger the
cross section, the closer the system comes to equilibrium. Hence the rapidity distribution can be used as
a measure of the in-medium cross section.

(k) As a consequence, the observed transverse momentum depends on the exact knowledge of the
cross section. Before we can pin down the stiffness of the nuclear equation of state one has to
understand the in-medium correction of the nucleon—nucleon cross section.

To extract the nuclear equation of state from experiments a simultaneous measurement of several
variables is necessary. There one should concentrate on those variables, which are sensitive to only one
of the unknown inputs. The momentum dependence of the potential can best be investigated by the
cross section for kaon production. The ratio o (A, + A,) /o (A, + A,) with A, being light and A,
being heavy also gives information on the equation of state. This information should be supplemented
by transverse momentum measurements of singles and medium mass clusters. Finally the rapidity
distribution of the nucleons has to be measured to reduce the uncertainties of the cross section.

We have reported on the first steps towards the understanding of the equation of state. The
calculations performed so far hint at a stiffer equation of state than that obtained in astrophysics.
However, a better understanding of the in-medium effects as well as more refined experiments are
needed for further progress. Only combined efforts from the experimental and the theoretical side will
enable us to pin down the nuclear equation of state by the analysis of heavy ion collisions successfully.
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Note added in proof

After submission of the manuscript we became aware of QMD calculations at very low energies
(E/N =20 MeV/n) of a Japanese group [T. Maruyama et al., Phys. Rev. C 42 (1990) 386] and preprints
KUNS 1028 and 1033 from Kyoto University.



