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Abstract
Recursive algorithms for real-time digital pulse shaping in pulse height measurements have been developed. The

differentiated signal from the preamplifier (exponential pulse) is amplified and then digitized . Digital data are deconvolved
so that the response of the high-pass network is eliminated. The deconvolved pulse is processed by a time-invariant digital
filter which allows trapezoidal/ triangular or cusp-like shapes to be synthesized . A prototype of a digital trapezoidal
processor was built which is capable of sampling and processing digital data in real time at clock rates up to 50 MHz.

In our previous work [1] we described recursive algo-
rithms for real time pulse processing in high resolution
spectroscopy . In that paper we also proposed a hardware
configuration for a trapezoidal/ triangular pulse shaper .
Although we presented some initial results obtained using
a quasi-real time system, our further work has now re-
sulted in the assembly and testing of a prototype that
operates in true real time .

In the discussion that follows, it is assumed that an
exponential pulse is digitized. This signal can be obtained
by CR differentiation of the signal from a reset type charge
sensitive preamplifier or by differentiation with a pole-zero
cancellation network of the signal from a resistive feed-
back preamplifier . This approach allows elimination of the
do offset of the preamplifier signal and sufficient amplifi-
cation of the short exponential pulses so that maximum
utilization of the resolution of the sampling ADC can be
achieved . We also include processing algorithms assuming
a digitized step input signal . This situations holds when the
output of a reset type preamplifier is directly digitized . In
this case, the digital resolution of the processor depends on
the noise characteristics of the signal and the number of
samples per convolution window [2] .

The practical realization of digital processors depends
on the complexity of the algorithms they implement. Be-
cause of their suitability for real-time implementation, our
initial efforts have concentrated on the use of two digital
shaping algorithms [1]. The first allows symmetrical trape-
zoidal/triangular pulse shapes to be synthesized. The
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second algorithm transforms an exponential or step pulse
to a symmetrical pulse shape with the leading edge propor-
tional to t2+ t. We call this shape "cusp-like ."

2. Trapezoidal digital pulse-shaper

The recursive algorithm [1] that converts a digitized
exponential pulse v(n) into a symmetrical trapezoidal pulse
s(n) is given as
d"t(n) = v(n) - v(n -k) - v(n - l) + v(n -k- 1),

(1)

where vi(n), p(n), and s(n) are equal to zero for n < 0.
The parameter M depends only on the decay time constant
T of the exponential pulse and the sampling period Tctk of
the digitizer, and is given by

M-
exp(Tctk/T) - 1

For values of T/Tctk > 5, Eq . (5) can be approximated as
M- T/Tctk - 0.5 .

Eq. (1) can be expressed as a consequence of two

The unit that implements the algorithm of Eq . (6) or Eq .
(7) is depicted in Fig. 1 . We call this building block a
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identical procedures given by the set of equations

dk(n) = v(n) - v(n - k), (6)

dk,r(n) =dk(n) - dk(n - 1) . (7)

p(n) =p(n - 1) + dk.l (n), n >- 0, (2)

r(n) =p(n) +Mdk,l(n), (3)
s(n) = s(n - 1) + r(n), n >- 0, (4)
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Fig. 1 . Block diagram of the delay-subtract unit

delay-subtract unit (DS), and it consists of two functional
elements : a programmable delay pipeline and a subtracter .
It is clear that the algorithm given by Eq . (1) can be
realized by connecting two DS units in series . The delay
pipeline of one of the units has a depth of k while the
depth of the pipeline of the other is 1 . Since each of these
units represents a linear time-invariant system, the order of
connection of the units is insignificant . Under such circum-
stances, the duration of the rising (falling) edge of the
trapezoidal shape is given by the smaller value of k and 1
(min(k, 1)) and the duration of the flat part of the trapezoid

M~ i/T~ik - 0 5

Fig . 3 . Digital pole-zero cancellation configuration .
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Fig. 2 . Block diagram of the high-pass network digital decon-
volver .
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is given by the absolute value of the difference between k
and 1 (abs(1- k)).

One of the most important components of the digital
trapezoidal shaper is the unit which performs the opera-
tions given by Eqs. (2) and (3) . The algorithm determined
by these equations deconvolves the response of CR high-
pass filter . In other words, if a sampled exponential pulse
with decay time constant T is applied to the input of such a
unit, the response is a step signal . Fig. 2 shows a block
diagram of the high-pass filter deconvolver (HPD). The
multiplication parameter M is again given by Eq . (5) . It is
important to note that the HPD unit can be placed any-
where along the processing chain of the time-invariant
trapezoidal shaper. However, if it is connected before the
delay-subtract units, the output data accumulate for each
processed pulse and eventually will cause an overflow in
the arithmetic circuit .

The HPD unit can also be used as a digital pole-zero
cancellation circuit. Since both the HPD and CR differenti-
ation networks are linear time-invariant systems the com-
bined response of both units connected in series is inde-
pendent of the order of connection . Thus, the effect of the
input exponential pulse can be eliminated by setting the
parameter M as a function of the decay time constant of
the input signal (Eq. (5)). An example of a digital pole-zero
cancellation circuit is shown in Fig. 3.

The last building block of the trapezoidal/ triangular
shaper is an accumulator which implements the algorithm
given by Eq. (4) . This unit is placed last in the processing
chain. The digital resolution of the accumulator should be
sufficient to accommodate the maximum possible digital
value of the output data .

Using the building blocks described above, we have
built a prototype of the trapezoidal/ triangular digital
shaper . The prototype was assembled as two printed circuit
boards, approximately 10 X 10 cm. The power consump-
tion of the processor (excluding sampling ADC) is about 5
W. The maximum clock speed of the circuit is 50 MHz.
All the parameters of the shaped signal are digitally con-
trolled .
A block diagram of the digital trapezoidal shaper is

shown in Fig. 4. When the input signal is a step function,
the HPD unit is bypassed . In this case, the digital data after

Acc 1

E3 ACC2
Output

s(n)

Fig. 4. Block diagram of the digital trapezoidal/ triangular shaper The elements are - DELAY- a delay pipeline, E� - an adder/ subtracter,
ACC� - an accumulator, X� - a multiplier.
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Fig . 5 . Oscillograms of triangular and trapezoidal shapes at the
output of a DAC connected to the digital pulse shaper. The upper
trace in each of the oscillograms is the input exponential pulse .
The time base is set to 2 p,s per division.

two operations of delay-subtract are directly applied to the
output accumulator. In order to allow the processor to
accept either exponential or step input signals, a modified
version of the HPD unit was used. The accumulator in Fig .
2 was replaced with a multiplier-accumulator as in Fig . 4.
The input data of the multiplier and the multiplier accumu-
lator are multiplied by two coefficients ml and m2 respec-
tively .

When the input signal is an exponential pulse, the
relationship between the multiplier coefficients ml and m 2
is given by

MI/M2=MI

3 . Cusp-like digital pulse shaper

where v(n) is the digitized input signal and s(n)
response of the shaper . It is again assumed that
p(n), and s(n) are equal to zero for n < 0. The

Fig . 6. Block diagram of the digital cusp-like shaper .
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where m2 is a parameter that determines the digital gain of
the shaper and M is given by Eq . (5). When the input
signal is a step function, the coefficient m2 is zero and the
digital gain is determined by the multiplier coefficient mt.
The adjustable digital gain is an important feature that
allows matching of the range of the shaper output data to
the range of the multichannel memory .

In order to display the real-time operation of the digital
shaper, a digital-to-analog converter (DAC) was connected
at the output of the shaper. The output data were truncated
so that the upper 12 bits of the shaped signal were used .
The processor was tested using a 12 bit ADC operating at
20 MHz. The input exponential signal and the recon-
structed analog signal from the DAC were displayed on
the screen of an analog oscilloscope . Fig . 5 shows exam-
ples of the response of the shaper to an exponential pulse .

Two algorithms for cusp-like digital pulse shaping us-
ing a step input signal were presented in Ref. [1]. The first
recursive algorithm allows only a pulse with a sharp peak
to be synthesized. The second algorithm is more complex,
allowing adjustment of the duration of a flat top on a
truncated cusp-like pulse. Due to its relative simplicity, the
first algorithm can easily be implemented in hardware .
We have developed a model of the hardware configura-

tion which operates according to the recursive algorithm
given as

is the
v(n),
delay

parameter l determines the duration of rising and falling
edges while the parameter k depends on 1 as k= 21 + 1 .
An additional equation, which describes the response of an

111 . INFORMATION PROCESSING

d'( n) = v(n) - v(n - k), (9)

p(n) =p(n - 1) + dk(n), n >_ 0, (10)
s(n) =s(n-1)+p(n)-v(n-1)k, n Z0, (11)
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HPD unit, can be attached to this algorithm so that the
shaper can process exponential pulses .

The major problem associated with the algorithm given
by Eqs. (9)-(11) is that p(n) gradually increases after
each processed pulse . Thus, after certain number of pro-
cessed pulses the accumulator performing the algorithm of
Eq . (10) saturates . To avoid numerical overflow at any one
of the building modules of the cusp-like shaper a modified
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set of equations can be used. This modified algorithm,
including the response of an HPD unit, can be written as

ô

The parameters in, and m2 relate to each other according
to Eq . (8) : Ml/M2 =M. As in the case of the trapezoidal
shaper, the digital gain can be controlled using these two
parameters .
A block diagram of a cusp-like digital shaper is de-

picted in Fig. 6. Most of the building blocks are similar to
those used in the trapezoidal shaper . A digital differentia-
tor is built using the one-clock delay register and an
arithmetic unit Y2 . The input signal can be either a step or
exponential pulse. Multiplier coefficients in, and m2 serve
the same function as described for the trapezoidal shaper.

The function of the circuit was tested using a computer
generated exponential signal . The response of the cusp-like
shaper and the signal shape at different points of the
configuration are presented in Fig. 7 . Note that the signal
is bipolar at the intermediate points of the circuit . Hence,
the possibility for an overflow is eliminated .

4. Conclusion

Efficient algorithms for real-time digital pulse-shaping
have been developed. Based on these algorithms two con-
figurations of linear time-invariant shapers have been in-
vestigated and tested . The first allows trapezoidal/
triangular pulse shapes to be synthesized . The prototype
operates at clock rates up to 50 MHz and allows full
digital control of the shape parameters . The second config-
uration generates cusp-like, finite duration pulses . Both
digital shapers can accept either step or exponential input
pulses, and the selection is digitally (software) controlled .
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dk (n) = u(n) - a(n - k), (12)

dt(n) = u(n) - u(n- 1), (13)

p(n) =p(n-1)+dk(n)-kd'(n-1), n z0, (14)

q(n) =q(n-1)+m2p(n), n>>-0, (15)

s(n) = s(n - 1) + q(n) + mt p(n), n >- 0. (16)


