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Letter to the Editor

Deconvolution of pulses from a detector-amplifier configuration

Abstract
A technique for deconvolution of pulses from a detector-amplifier configuration is presented. The method also allows

deconvolution of the pulses obtained using CR-RC shaping networks . Analog and digital realizations of the technique are
described.

Interest in using deconvolution technique in radiation
measurements has recently increased, especially in the area
of digital pulse processing. Deconvolution algorithms have
been employed in high energy physics experiments [1] and
nuclear spectroscopy [2] . Restoration of the original pulse
shape (or its approximation) can be used for pileup detec-
tion and can provide a basis for new pulse-shaping tech-
niques .

In common spectroscopy systems, the detector-pre-
amplifier configuration is followed by a high-pass filter
(pole-zero cancellation, CR differentiation) that produces a
pulse with a short rise time followed by an exponential
tail . The shortened pulses are then amplified. An idealized
block diagram of a charge-integration configuration is
depicted in Fig. la. The detector signal is assumed to be a
delta function and the impulse response of the system is
shown. The amplifiers Al and A2 are considered ideal
elements which do not affect the pulse shapes . The config-
uration in Fig. la can also be represented as an ideal
current-to-voltage converter followed by an RC low-pass
network. This idealized configuration is shown in Fig. lb.
In both cases in Fig. 1 the time constant of the high-pass
and the low-pass filter is T =RC.

It is obvious that the voltage signal at the output of the
current-to-voltage converter has the same shape as the
input current signal . Therefore, the problem of deconvolu-
tion of the signal from the detector-amplifier-differentia-
tor configuration can be solved by finding the inverse
transfer function of the low-pass RC network. Fig. 2 shows
a block diagram of the low-pass filter followed by the
desired deconvolver. The purpose of the deconvolver is to
cancel the effect of convolution of the input signal with the
impulse response of the RC network. The deconvolver can
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be considered as a time-invariant linear system having an
impulse response which when convolved with the impulse
response of the low-pass filter will give a delta function .
Instead of finding the desired impulse response of the
deconvolver, we can easily find a deconvolver transfer
function which will convert the impulse response of the
low-pass filter into a delta function .

It is well known [3] that the impulse response h(t) of a
low-pass filter can be found by solving the differential
equation

dh(t)
h(t) + T

	

dt

	

= S(t),

	

t > 0,

	

(1)

with initial condition h(0) = 0.
The impulse response of the low-pass filter h(t) must

satisfy Eq. (1) . Thus, intuitively, the relationship between
the input signal and the output signal of the desired
deconvolver can be written as
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The impulse response h'(t) of the deconvolver can be
expressed in terms of unit impulse and unit doublet func-
tions

h'(t) = S(t) + T8(t) .

	

(3)

Note that the convolution of h(t) and h'(t) gives a delta
function -h(t) * h'(t) = S(t) . If the signal from the output
of the configuration in Fig. la is followed by one or more
RC shaping networks it is possible to fully deconvolve the
shaped signal by using deconvolvers connected in series.
Each of these deconvolvers should cancel the convolution
effect of one of the low-pass shaping networks .

Eq. (2) has a more practical meaning, because it defines
a direct algorithm to deconvolve pulses from the detector-
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Fig. 1. Idealized detector-amplifier configuration .

amplifier configuration . In the discrete time domain Eq .
(2) can be expressed in terms of the sampled signal as

vout(n) = °m(n) + [ vin(n) - Um(n - 1)IM,

	

(4)
where M is a measure of the time constant T in units of
the sampling period t. given as M= [exp(t,/T) - 1]-' .
For T/t, >5, M can be approximated as M = T/t, - 0.5 .

The deconvolution method can be implemented in ana-
log or digital circuits . The analog approach is shown in
Fig. 3. The circuit in Fig. 3a is an ideal analog decon-
volver in which the time constant RC is equal to the time
constant of the low-pass network which is subject to
deconvolution. The resistor Rg determines the gain of the
circuit and does not affect the shape of the output pulse.
The analog solution of Fig. 3a, however, is impractical and
in reality the circuit in Fig. 3b can be used instead. Due to
the resistor R, the circuit in Fig. 3b is equivalent to the
ideal deconvolver of Fig. 3a followed by a low-pass filter
with time constant R,C. Shown in Fig. 4 is an example of
an analog deconvolution circuit (a) and an oscillogram (b)
representing the response of the circuit to an exponential
pulse.

Fig. 5 shows the digital realization of the deconvolver.
The sampled signal is delayed one clock cycle in the
register (REG) and then is subtracted from the prompt
signal . The difference is multiplied by the digital equiva-

V.T Jordanou/Nucl. Instr. and Meth . in Phys. Res. A 351 (1994) 592-594

T ö(y

Fig. 2. Deconvolution ofthe signal from a low-pass network.
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Fig. 3. Analog deconvolving circuits : (a) ideal and (b) practical
(R,C << RC).

Fig. 4. Analog deconvolver (a) and oscillogram of the input and
output signals (b). Trace 1 shows the input exponential pulse with
decay time constant of 500 ns and trace 2 represents the decon-
volver response.

Fig. 5. Block diagram of the digital deconvolver . REG - one
clock delay register, 11, Y2 - arithmetic units, X - multiplier.



594 V T Jordanou /Nucl. Instr. and Meth . in Phys. Res . A 351 (1994) 592-594

Time [Ws]

Fig . 6 . Sampled exponential pulse (a) and digitally deconvolved
signal (b) .

lent of the decay-time constant M of the low-pass network
(see Fig. 2). Finally, the result of multiplication is added to
the prompt digital sample . The result is a digital represen-
tation of the signal at the input of the low-pass network
(Fig . 2) undergoing deconvolution .

The digital technique was applied to sampled data
obtained by digitizing the exponential pulse from the fast
amplifier of an Ortec 673 spectroscopy pulse shaper [4] .
The sampled data are shown in Fig. 6a. This pulse origi-
nated from an HPGe detector . The decay-time constant of
the sampled pulse is 1.5 Rs . Fig. 6b shows the decon-
volved pulse. Two important observations can be made .
First, restoration of the original signal will inevitably cause
restoration of the noise related to the input of the preampli-
fier. Second, due to imperfections in the real amplifiers
and the connecting networks, the deconvolved signal does
not exactly represent the original shape of the detector
pulse. The pulse obtained in this case is a result of
convolution of the original detector pulse with the impulse
response of a system which accounts for all effects due to
imperfections of the real amplifiers and the connecting
networks .

The tests performed using prototypes of the convolvers
indicate the potential of using these circuits for shortening
the pulses from the detectors. The deconvolved pulses can
be used for pile-up detection and for pulse shaping in
nuclear spectroscopy .
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