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A B S T R A C T

Since the baseline of the unipolar pulse shaper have the direct-current (DC) offset and drift, an additional
baseline estimator is need to obtain baseline values in real-time. The bipolar zero-area (BZA) pulse shapers can
be used for baseline restoration, but they cannot restrain the baseline drift due to their asymmetrical shape. In
this study, three trapezoids are synthesized as a symmetrical zero-area (SZA) shape, which can remove the DC
offset and restrain the baseline drift. This baseline restoration technique can be easily implemented in digital
pulse processing (DPP) systems base on the recursive algorithm. To strengthen our approach, the iron's
characteristic x-ray was detected using a Si-PIN diode detector. Compared with traditional trapezoidal pulse
shapers, the SZA trapezoidal pulse shaper improved the energy resolution from 237 eV to 216 eV for the
6.403 keV Kα peak.

1. Introduction

Many pulse shaping methods are used to improve the energy
resolution and the stability of radiation measurement systems, such
as the Gaussian shaper, trapezoid shaper, cusp-like shaper and 1/f
shaper [1–3]. Since these methods are unipolar in shape and are not
zero-area, The DC offset and drift exist in the baseline of the pulse
shaping. Therefore, a baseline restorer should be designed to accurately
extract the peak location of the pulse signals. The optimum baseline
filter theory have been discussed in some literatures [4,5]. Some digital
baseline restorers are also already implemented in the digital systems
and even can be used in high count rates systems [6–9]. But these
baseline restoration approach may be more complex than their pulse
shaping.

The baseline filter and restoration method of the zero-area pulse
shaping have been mentioned have been mentioned in the reference
[10]. But it cannot be easily implemented in the digital systems. Ref.
[11] studied the bipolar triangular shaper for pile-up correction. Since
the triangular shape is not a zero-area, its baseline would have serious
undershoot at the pulse pile-up. The BZA trapezoidal shaper for
neutron-gamma discrimination was studied in Ref. [12], which used
the flat-top to determine the neutron and gamma signals. Due to its
zero-area shape, the BZA trapezoidal shaper can be used for baseline
restoration, but cannot restrain the baseline drift. The BZA cusp-like

shaper, which is also not a symmetrical shape, was studied in Ref. [13].
In this work, we use an simplest SZA trapezoidal shape based on the
extensively applied trapezoidal shaper. Its zero-area shape can be used
for baseline restoration, and its symmetrical shape can automatically
eliminate the baseline drift. Most of all, It can be easily implemented in
field programmable gate array (FPGA) and only need a little logic
element by the recursive algorithm.

2. Method of the baseline restoration

The exponential signal is a typical output of a nuclear detector. The
digital signal processing method of the exponential signal using a
traditional trapezoidal pulse shaper is shown in Fig. 1 [14]. The analog
pulse signal is digitized by the high-speed ADC, and then the digital
pulse signal is deconvoluted to remove the exponential tails in order to
obtain a unit impulse signal. Finally, the unit impulse signal is put into
the synthesis system of the pulse shaping. Since the input of the
synthesis system is the unit impulse signal, δ[n], the output of the
trapezoidal shaper is merely the transfer function hX[n] of synthesis
system.

The function fitting of the nuclear pulse signal frequently uses the
uni-exponential and bi-exponential models [15]. In this work, the
original pulse signals are characterized by the uni-exponential model
and the discrete expression to perform the characterization is shown in
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Eq. (1).

s n Aa u n n B Cn u n[ ] = [ − ] + ( + ) [ ]n n−
00 (1)

Where a=exp(-TS/τ0), TS is the ADC sampling period, n0 is the initial
position of the pulse signal, and u[n] is the discrete step signal. In order
to facilitate the analysis of the baseline restoration technique, Eq. (1)
contains an initial DC offset, B, and a baseline shift, Cn, at a particular
rate. The baseline shift sections have led to an imbalance of the
bilateral baseline, which can be used to analyze the baseline drift. First,
an analysis must be performed on the influence of the deconvolution
system on the baseline of the original pulse signal. Eq. (2) shows the
recursive difference equation of the deconvolution system.

v n s n as n[ ] = [ ]− [ −1] (2)

Eq. (1) is substituted into Eq. (2) to derive the output, v[n], of the
deconvolution system.

v n Aδ n n Bδ n a B Cn u n[ ] = [ − ]+ [ ]+(1 − )( + ) [ −1]0 (3)

Eq. (3) show that v[n] still contains a baseline DC offset and a
baseline drift. As a result, the deconvolution system cannot restore the
baseline, and the baseline is only reduced. In addition, v[n] also
includes two unit impulse signals. The Aδ[n-n0] is from the deconvolu-
tion of the pulse signal, and the Bδ[n] is from the deconvolution of the
step signal (DC offset). The unit impulse signals are synthesized to the
expected shape through the pulse synthesis system, but the baseline DC
offset and the baseline drift are not clearly identified. Thus, the analysis
of the convolution of v[n] and the transfer function, hX[n], is shown in
Eq.(4).
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Where N is the number of points used for the pulse shaping. The
convolution is divided into four parts. The two parts on the left are the
impulse responses hX[n-n0] and hX[n]. The third part is equivalent to
a single integral of hX[n], and the fourth part is equivalent to double
integral of hX[n]. The last two parts directly determine the change of
the baseline through the pulse shaping. Selecting a=0.988, B=0.2 and
C=0.001 to analyze the integral of the pulse shaper's transfer functions,
such as the trapezoidal shaper, the BZA trapezoidal shaper and the SZA
trapezoidal shaper. The shaping time is 15μsec and the corresponding
flat-top time is 1μsec.

Fig. 2 shows the integral of the trapezoidal shaper's transfer
function, which generates a stable baseline DC offset through a single
integral of its transfer function while the double integral of its transfer
function generates a baseline drift. The baseline variations of the input
pulse signal have the same influence on the baseline of the trapezoidal
shaper. The baseline of the BZA trapezoidal shaper is stable and has no
DC offset through the single integral, but the double integral of its
transfer function generates a stable baseline DC offset. Thus, the BZA
trapezoidal shaper cannot restrain the baseline drift. However, the
baseline of the SZA trapezoidal shaper is stable through both single
integral and double integral, so it effectively can both restore the

baseline and restrain the baseline DC drift. In addition, Fig. 2 shows
the normalized amplitude, and it can be observed that the baseline
fluctuations of the SZA trapezoidal shaper are the smallest among these
shapers.

3. Recursive algorithm of the SZA trapezoidal shaper

The algorithm of the SZA trapezoidal shaper is based on the
recursive difference equations in the time domain [16], as shown in
Eqs. (5)–(11). Since the recursive algorithm is beneficial to reduce the
multiplication operations, it can output the results in real-time.

v n s n a s n[ ] = [ ]− ∙ [ −1] (5)

p n v n v n l[ ] = [ ]− [ − ] (6)

q n p n p n l m[ ] = [ ]− [ − − ] (7)

r n r n q n[ ] = [ −1]+ [ ] (8)

x n x n r n[ ] = [ −1]+ [ ] (9)

y n x n x n l m[ ] = [ ]− [ −2 − ] (10)

z n y n l m y n[ ] = [ −2 − ]− [ ] (11)

Where l is the hypotenuse points of the isosceles trapezoid and m is the
flat-top's points. When m=0, the shapebecomes an SZA triangle. Fig. 3
shows the recursive method of the SZA trapezoidal shaper, which can

Fig. 1. Functional block diagram of a trapezoidal pulse shaping system using the
unfolding-synthesis technique.

Fig. 2. The integral of the transfer functions (a)the results of the trapezoidal shaper, (b)
the results of the BZA trapezoidal shaper, and (c)the results of the SZA trapezoidal
shaper.

Fig. 3. The recursive method of the SZA trapezoidal shaper.
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also be applied to the similar pulse shapers, such as the SZAcusp-like
shaper.

The diagram of the recursive method can be used to analyze the
balance technique of the baseline drift in the SZA trapezoidal shaper.
The trapezoid's flat-top (FT), left baseline (LBL) and right baseline
(RBL) are marked in Fig. 4. The unipolar trapezoid shaper need a
baseline estimator to accurately extract the height of the trapezoid's
flat-top. However, the baseline of the BZA pulse shaping can be
restored automatically. The height of its left positive trapezoid is
equivalent to FT-LBL, and the height of its right negative trapezoid is
equivalent to RBL-FT. But if the differences of the bilateral baselines
are large due to the baseline drift, the baseline deduction of the positive
and negative trapezoids are not equal so that the amplitude of the two
trapezoids would be significantly different. The SZA trapezoid is
equivalent to a BZA trapezoid subtracting its delay of one trapezoidal
width. The height of the middle flat-top of the SZA trapezoid is
equivalent to the flat-top of the original trapezoid subtracting the
average of the bilateral baseline, namely, FT-(LBL+RBL)/2. Even if the
difference of the bilateral baseline is large, it can reduce the middle
trapezoid's baseline fluctuations by the balance of the bilateral trape-
zoids.

4. Implementation in FPGA

The recursive difference equations of the SZA trapezoidal shaper
can be easily implemented in FPGA. The shift registers are used to
realize the signal delay and the adders are used to achieve the integral
operations. This method avoids excessive multiplication in the con-
volution and can output the result in real-time. The nuclear pulse
signal of the detector must be preprocessed through the signal
conditioning circuits and then digitized by the high-speed ADC for
digital signal processing in the FPGA. High-speed ADC selects the 8-
Bit, 32 MSPS sampling, AD9280, and the FPGA selects the Altera's low-

cost EP4CE series. The logic diagram of the algorithm in the FPGA is
shown in Fig. 5.

The parameter a=exp(-TS/τ0) in the difference equations is a
constant float-point type. Float-point operations in the FPGA should
be avoided in order to improve the operating speed. This parameter can
be converted into a fraction, which can have integer multiplication and
integer division operations. In addition, a suitable time constant, τ0,
should be selected to guarantee that the baseline has no undershoot or
trails. The optimal time constant can be determined by observing
whether the flat-top is parallel to the baseline [16,17]. However, the
flat-top judging method is not readily performed in the case of serious
ballistic deficits [1], since the flat-top is a gradually rising and then
stable process. Since the poor time constant would cause the different
amplitudes of two symmetrical trapezoids at the bottom of SZA
trapezoidal shape, an optimal time constant can be determined by
judging whether the amplitudes of the two trapezoids are equal.

Fig. 4. The method of the balance technique of the SZA trapezoidal shaper.

Fig. 5. The logic diagram of the SZA trapezoidal shaper algorithm in the FPGA.

Fig. 6. The actual test results using the three pulse shaping methods.

Fig. 7. The measured energy spectrums of iron's characteristic X-ray at low count rates
and the photon count rates is 10 kcps.
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5. Experiments and discussion

In this experiment, the pulse signals are obtained through the X-
Ray irradiation of iron. And the X-Ray are generated by the MOXTEK's
50 kV Monoblock X-ray Source (TUB00083-AG1). The energy of the
iron's characteristic X-ray was detected by a MOXTEK's XPIN-XT Si-

PIN detector (diode active area: 13 mm2), and this Si-PIN detector can
achieve a full width at half maximum (FWHM)≤230 eV (Fe55, 5.9 keV
@−35 °C, 8 μ s shaping time). The output of the Si-PIN detector is
preprocessed through a differential amplifier, and then a CR (C=6.8uF
and R=470 Ω) circuit is used to generate the exponential pulse signals.
In order to verify the effect of this algorithm in the FPGA hardware, the
SignalTap logic analyzer is used to obtain the data in the FPGA memory
through the joint test action group (JTAG) hardware debugger in real-
time.

Fig. 6 shows the original pulse signals with 20 MSPS sampling rates
and the corresponding pulse shaping when the high voltage of the X-
Ray tube is 30 kV, and its current is 5 μA. The amplitude of the original
pulse signals is approximately 550 mV, the pulse width is approxi-
mately 10 μ s, and the ripple of baseline is approximately 50 mV. The
shaping time is 15μsec and the corresponding flat-top time is 1μsec.
The trapezoidal shaper and the BZA trapezoidal shaper were unable to
distinguish the pile-up of the first two pulse signals since their
respective methods to perform pile-up rejection are complex.
However, the two pulse signals can be correctly distinguished with
the SZA trapezoidal shape since the pile-up rejection and amplitude
extraction are simplified. A triggered threshold, being greater than
zero, is set up to capture the pulse. All signals, being greater than this

Fig. 8. The actual test results using the different pulse shaping methods at high count rates.

Fig. 9. The measured energy spectrums of iron's characteristic X-ray at high count rates
and the photon count rates is 94 kcps.
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threshold, can be directly used for peak extraction without the need for
baseline extraction. This method is similar with the three zero-area
digital filters for peak recognition in spectral data analysis [18]. The
dead signals are discarded, which are the peak intervals that are less
than half of the shaping time constant.

As shown in Fig. 7, the corresponding energy spectrums of iron's
characteristic X-ray are respectively obtained from the tests of the
trapezoidal shaper with a baseline restoration technique (a moving
average, 20 sampling points window), the BZA trapezoidal shaper and
the SZA trapezoidal shaper using the same data. Compared to the
traditional trapezoidal shaper, the SZA trapezoidal shaper improved
the FWHM of the Kα characteristic peak at 6.403KeV from 237 eV to
216 eV. In addition, the FWHM after the BZA trapezoidal pulse
shaping is 235 eV, and it is almost the same as trapezoidal shaper at
the low count rates.

In order to test the performance of the SZA trapezoidal shaper at
high count rates, we increase the current of the X-Ray tube from 5 μA
to 50 μA and reduce the shaping time from 15 μ s to 5 μ s. As can be
seen in the Fig. 8, the baseline also have a great fluctuation due to the
serious pulse pile-up. Since the traditional trapezoidal shaper cannot
eliminate this drift instead of amplifying the baseline DC offset, so the
baseline after the trapezoid pulse shaping is also fluctuant remarkable.
In this case, the baseline extraction of the trapezoid pulse shaping is
not accurate, especially the subsequent baseline fluctuation in multiple
pulse pile-up. Even if using the baseline filter, the flat-baseline can only
be detected in a small time interval. Although the BZA trapezoidal
shaper can restore the baseline, the baseline drift probably cause
different amplitudes for its positive and negative trapezoid. In addition,
the biggest drawback of the bipolar pulse shaper is that the negative
trapezoid of the previous pulse easily overlaps the positive trapezoid of
the latter pulse, causing to the latter shape's amplitude to change, so
the dead time of the BZA shaper is very small, so its pile-up rejection
approach is very complex when the pulse pile-up is serious. For the
SZA trapezoidal shaper, the baseline restoration has been carried out in
the pulse shaping algorithm. It is no need for baseline extraction, and
the peak can be extracted directly and the dead time are only judged by
the peak's time interval. Furthermore, the SZA trapezoidal shape can
also restrain the baseline drift through the bilateral trapezoids balan-
cing the middle trapezoid's baseline.

For the three pulse shaping approach at the high count rates, the
measured energy spectrums are shown in Fig. 9. After using the
unipolar trapezoidal pulse shaping, the Kα and Kβ characteristic peaks
shift to the right and the peaks are asymmetric. Meanwhile, the FWHM
of the Kα characteristic peak is widened from 237 eV to 257 eV. For the
BZA trapezoidal shaper, its count rates of the characteristic peak is the
lowest due to its large dead time, as well as its worst FWHM, 262 eV.
However, the SZA trapezoidal shaper maintains the characteristic peak
position. Although its energy resolution deteriorated, its FWHM of the
Kα characteristic peak being 225 eV, it can still obtain optimal energy
resolution and the remarkable count rates of the characteristic peak.

As can be seen from the energy spectrums, in the case of the low
count rates, the signal-to-noise ratio (SNR) of the SZA trapezoidal
pulse shaping is improved by using a long shaping time to achieve a
better baseline filtering effect and a higher energy resolution than the
traditional trapezoidal pulse shaping. In the case of high count rates,
this shaper's clear pile-up rejection approach and baseline restoration
technique guarantee the symmetrical photoelectric peak and its
accurate position, as well as a great energy resolution. Although the

SZA trapezoidal shaper can restrain the baseline shift effectively
especially a large baseline fluctuation, its SNR is not better than the
trapezoidal shaper in the same shaping time, especially the small
shaping time at higher count rates. In order to show the advanced
performance of the SZA shaper in this case, the smaller width of the
bilateral trapezoid of the SZA shaper as well as a the better SZA cusp-
like shaper can be used to improve their SNR.

6. Conclusions

This study presents an SZA trapezoidal pulse shaping algorithm
based on the recursive difference equations in the time domain. The
zero-area method of the SZA trapezoidal pulse shaper can be used for
baseline restoration, which can eliminate the baseline DC offset of the
pulse signals, while the symmetrical method can restrain the baseline
drift. This algorithm is implemented in a real-time hardware system
based on high speed ADC and FPGA. Lastly, a low SNR signals of iron's
characteristic X-ray are detected with a Si-PIN detector. The test
results show that the SZA trapezoidal shaper reduces the influence of
the baseline drift on the amplitude extraction to improve the energy
resolution. In addition, it simplifies the methods of pileup rejection and
amplitude extraction. This baseline restoration technique also reduces
the influence of noises and temperature on the pulse baseline, and
improves the accuracy and stability of the long-term operation in
nuclear spectrometry systems. In future work, the sampling rates
should be improved to increase the number of points for the pulse
shaping in order to improve the pulse throughput. A greater resolution
of the ADC is also needed to improve the energy resolution further.
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