
Unfolding-synthesis technique for digital pulse
processing. Part 1: Unfolding

Valentin T. Jordanov
Yantel, LLC, Los Alamos, New Mexico, USA

a r t i c l e i n f o

Available online 29 July 2015

Keywords:
Unfolding
Synthesis
Convolution
Deconvolution
Digital pulse processing
Pulse shaping

a b s t r a c t

The unfolding-synthesis technique is used in the development of digital pulse processing systems used
in radiation measurements. This technique is applied to digital signals obtained by digitization of analog
signals that represent the combined response of the radiation detectors and the associated signal
conditioning electronics. The salient features of the unfolding-synthesis technique are first the unfolding
of the digital signals into unit impulses, followed by the synthesis of digital signal processing systems
with unit impulse responses equivalent to the desired pulse shapes. Part 1 of this paper covers the
unfolding part of this technique.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

For more than two decades advancements in Digital Pulse
Processing (DPP) have made it one of the most utilized techni-
ques of pulse processing in radiation measurements today [1,2].
Early development of DPP was concentrated on direct synthesis
of pulse shapes using sampled analog signals [3–5]. Other
mathematically elaborated methods have also been considered
and published [6,7]. In this paper we describe a technique that
allows the synthesis of virtually any pulse shape, either exactly or
as a close approximation. This method has been used extensively
in creating algorithms suitable for real-time implementation. It
has been also taught as part of university courses and lecturers
[8]. However, no detailed and comprehensive description has
been published prior to this paper. The unfolding-synthesis
technique is applicable to linear signal processing systems that
are either time-invariant or time-variant. In this paper, how-
ever, we will limit the discussions and the analysis to Linear
Time-Invariant (LTI) systems. Unless explicitly noted otherwise,
discrete-time systems will be considered.

2. Basics

Real-time digital pulse processing is accomplished using LTI
systems (Fig. 1c) that are characterized and fully defined by their
discrete-time impulse response h(n) [9]. The impulse response h
(n) is the response of the system to the most fundamental digital

signal – the unit impulse δ(n). The unit impulse is defined as:

δðnÞ ¼ 1 for n¼ 0
0 elsewhere

�
ð1Þ

The weighted unit impulse δw(n) is the unit impulse multiplied
by a constant, wδ(n). Thus, δw(0)¼w. The unit impulse and the
weighted unit impulse are depicted in Fig. 1a and b respectively.

The multiplication of the unit impulse by a constant, as in the
case of the weighted unit impulse, is one of the basic digital signal
processing operations. Other basic operations include addition
(subtraction), signal multiplication, and delaying or shifting of
the digital signals. Fig. 2 shows the basic operations with their
graphical representations and the corresponding mathematical
expressions. Digital signal processing algorithms incorporate these
operations in order to achieve more complex system responses.

The transformation of an input signal x(n) into an output signal
y(n) by a LTI system is mathematically expressed as the output
signal as a convolution of the input signal and the impulse
response of the system. In the discrete-time domain the convolu-
tion is given by the following sum:

yðnÞ ¼
Xn

i ¼ �1
xðiÞhðn� iÞ; ð2Þ

where x(n) is the input signal being transformed into the output
signal y(n) by a causal LTI system with a unit impulse response h
(n). The convolution is commonly written using the star (n)
symbol:

yðnÞ ¼ xðnÞnhðnÞ ð3Þ
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The most important algebraic properties of the convolution are
commutativity, associativity, and distributivity. We will use these
convolution properties to explain and analyze various aspects of
the unfolding-synthesis technique. These convolution properties
are illustrated in Fig. 3.

3. Unfolding-synthesis technique

A system that implements the unfolding-synthesis technique is
depicted in Fig. 4. Analog signals from radiation detectors and
associated electronics are converted into discrete-time digital
signals by a fast analog-to-digital converter (ADC). The ADC digitizes

the analog signals by performing two operations: sampling and
quantization. In the discussion that follows we consider that the
quantization granularity is extremely fine and has little or no effect
on the digital pulse processing algorithms. The quantization effects,
however, should be taken into consideration when low-resolution
ADCs are utilized by the DPP systems [10].

The digital signal that is produced by the ADC inherits the
properties of the analog signal applied to its input. The analog
signal is a convolution of the detector signal and the signal
conditioning electronics. The detector signal can be approximated
by a Dirac delta function δ(t) when it is very short compared to the
DPP pulse shape. This approximation, for example, can be applied
to signals from silicon drift detectors, small semiconductor detec-
tors, and ultrafast scintillators. In such cases the analog signal
applied to the fast ADC is characterized by the impulse response of
the signal conditioning electronics.

In some cases, such as for large germanium detectors, the
detector signal may vary in duration (charge collection time
variation). In these cases, the pulse shaping in the discrete-time
domain can be designed to unfold the impulse response of the
signal conditioning electronics alone. The variability of the detec-
tor signal is then mitigated by features of the synthesized pulse
shape, e.g., a flat top.

In other cases, the detector response may be combined with
the response of the signal conditioning electronics. A typical
example is a scintillation detector light pulse converted by a
photo-multiplier tube (PMT) into an electric current. If the anode
of the PMT is loaded by a C||R network, the resulting voltage signal
at the PMT anode will be defined as a convolution of the
scintillation light signal and the exponential signal impulse
response of the C||R network. If the scintillator light emission
pulse is a single time-constant exponential signal, then the anode
signal will be a result of the convolution of the two exponential
impulse responses. Digitizing this continuous-time signal will
generate a digital signal that can be represented by the discrete-
time convolution of two digital exponential signals.

For efficient implementation of the unfolding-synthesis tech-
nique, it is important to know the characteristics of the analog
signals digitized by the ADC and to identify the impulse responses
of the analog systems that will be unfolded. It is clear that these
characteristics depend on both the response of the detector and
the response of the signal conditioning electronics. The signal
conditioning electronics are normally comprised of signal proces-
sing modules and networks with well-defined responses and
transfer functions. These include detector preamplifiers, C-R and/
or R-C networks, amplification stages, offset generators, base-line
restorers, and other circuits that optimize the signal being digi-
tized by the fast ADC.

The salient feature of the unfolding-synthesis technique is the
transformation of the digitized analog impulse response into a unit
impulse in the discrete-time domain. We call this process unfolding,
or deconvolution. The unfolding transformation of a digital signal is
performed by the unfolding system depicted in Fig. 4. The unfolding
system has a unit impulse response hU(n) whose convolution with
the digital signal from the ADC produces a unit impulse hN(n)
nhU(n)¼δ(n). Thus, the unfolding result is a convolution result and
the unfolding is essentially a convolution. To avoid convolution–
deconvolution tautology and confusion, the term “unfolding“ is
used in this paper rather than “convolution” [11].

The synthesis of the desired shape is accomplished by a
synthesizing system with impulse response hS(n) identical to the
system pulse-shaped signal, which we will reference to as an
optimal pulse shape. The optimal pulse shape is determined by
various factors such as noise suppression, counting rate require-
ments and other constraints. There is extensive material published
on this topic [12–14]. This paper does not focus on selecting the
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Fig. 1. (a) Unit impulse, (b) weighted unit impulse and (c) LTI system symbol and
its unit impulse response definition.
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Fig. 2. Basic digital signal processing operations: (a) addition, (b) subtraction,
(c) multiplication by a constant, (d) signal multiplication and (e) delaying or
shifting.
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most suitable pulse shape for a given detector or radiation mea-
surement arrangement; instead, in this paper we describe the
unfolding-synthesis technique as a design tool that allows the
synthesis of a wide variety of pulse shapes or their approximations.

The first part of this technique is the unfolding part, which can
be straightforwardly applied to the most common analog signals
from detectors and associated signal conditioning networks.

4. Unfolding

As stated earlier, the purpose of the unfolding is to transform
the digital signal from the ADC into a unit impulse. Some basic
digital signals can be obtained by digitizing signals commonly
found in radiation-measurement systems. The unit step digital
signal is, perhaps, one of the easiest signals to unfold.

4.1. Unit step

The unit step can be obtained by digitizing an analog step
signal. An example signal is the impulse response of a reset type
charge-sensitive preamplifier. Fig. 5 shows the unit step signal that
is described mathematically by a unit step function u(n):

Note that the unit step signal is defined using only two values,
zero and one. There is only one transition between these values–
from zero at n¼�1 to one at n¼0. Intuitively, a backward finite
difference u(n)�d(n�m) operation performed on the unit step
signal u(n) will transform it into a unit impulse when m¼1. In this
paper we use the term “digital differentiation“ as an equivalent to
the backward finite difference operation with m¼1.

Fig. 6a shows the block diagram of a digital differentiation
system (digital differentiator). The graphic symbol that is used in
this paper for the digital differentiator response y(n) to an
arbitrary signal x(n) is depicted in Fig. 6b.

The digital differentiator unit impulse response is given by:

hDIF ðnÞ ¼ δðnÞ�δðn�1Þ ð4Þ

This unit impulse response has only two non-zero consecutive
samples with the same magnitude but opposite signs. The unit
impulse response of the digital differentiator is a unit doublet
discrete function shown in Fig. 6c.

An important aspect associated with the unit step signal u(n) is
that it is the unit impulse response of an accumulator shown in
Fig. 7c. The accumulator is a digital signal processing system,
which adds together all samples presented at its input, known as
accumulation. The accumulator block diagram and its graphical
symbol are shown in Fig. 7a and b respectively.

h(n)
x(n) y(n)

y(n)=h(n)*x(n)=x(n)*h(n)

x(n)
h(n) y(n)

h1(n)
x(n)

y(n)=[x(n)*h1(n)]*h2(n)=x(n)*[h1(n)*h2(n)]

h2(n)
y(n)

h(n)=h1(n)*h2(n)
x(n) y(n)

h1(n)

x(n)

y(n)=[x(n)*h1(n)]+[x(n)*h2(n)]=x(n)*[h1(n)+h2(n)]
h2(n)

h(n)=h1(n)+h2(n)
x(n) y(n)+ y(n)
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Fig. 3. Algebraic properties of convolution.
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Fig. 4. Functional block diagram of a system using the unfolding-synthesis
technique.
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The unit impulse response of the accumulator hACC(n) is a unit
step:

hACCðnÞ ¼ uðnÞ ¼
Xn
�1

δðnÞ ð5Þ

It is important to note that the accumulator is a system that
needs to be relaxed before any non-zero signals are applied to its
input. That is, prior to any non-zero values of the input signal, the
accumulator output must be forced to zero by external means such
as a logic reset signal.

A relaxed accumulator will transform a unit impulse into a unit
step. Therefore, it is clear that a digital differentiator unfolds the
unit impulse response of the accumulator. From the commutative
property of the convolution it also follows that the accumulator
acts as an unfolding system for the digital differentiator. This is
also true for any pair of systems of which one unfolds the other.
The accumulator-digital differentiator unfolding is paramount to
the synthesis of pulse signals described by polynomial functions,
which will be discussed later in Part 2 of this paper. Fig. 8
illustrates the unfolding of the unit impulse responses of the
accumulator and the digital differentiator.

4.2. Exponential signal

Exponential signals are common in radiation measurement
pulse-processing systems. The impulse response of a resistive
feedback preamplifier, the impulse response of a R-C low pass
network, and the step response of C-R differentiation network are
only a few examples of systems with exponential responses in the
continuous-time domain. The unfolding of the exponential pulses
has been already discussed in our previous work [15]. Here we will
give a brief summary and expand the unfolding process to systems
representing summation and convolution of exponential pulses.

In the discrete-time domain an exponential unit impulse
response is defined as:

hNðnÞ ¼
an for nZ0
0 elsewhere

�
ð6Þ

where a is called an exponential base [16]. In this paper we limit
our considerations to an exponential base that is bounded
between zero and one: 0oao1. For these values of the exponen-
tial base, hN(n) is a decaying exponential signal and it represents
the most common signal found in radiation measurement systems.

In DPP the digital exponential signals are, in most cases, signals
that result from the digitization of an analog exponential signal by
a fast ADC. Fig. 9 shows an analog exponential signal and the
corresponding digital exponential signal obtained by a fast ADC
with a sampling period ΔT. The exponential base of the digital
exponential signal can be related to the decay time-constant τ of

Fig. 6. Digital differentiator (a) block diagram, (b) graphical symbol and (c) unit
impulse response.

Fig. 7. Accumulator (a) block diagram, (b) graphical symbol and operational
algorithm and (c) unit impulse response.

Fig. 8. Accumulator–digital differentiator unfolding system. Fig. 9. Relationship between analog exponential signal and its digital counterpart.

V.T. Jordanov / Nuclear Instruments and Methods in Physics Research A 805 (2016) 63–7166



the analog exponential signal by the following equation:

a¼ e�ΔT=τ ð7Þ
Eq. (6) can be rewritten in the following recursive form:

hNðnÞ ¼ ahNðn�1Þf or n40; hNð0Þ ¼ 1; 0 elsewhere ð8Þ
Eq. (8) suggests that with appropriate scaling and shifting the

exponential unit impulse response can be unfolded. The opera-
tional algorithm of a system that unfolds the exponential unit
impulse response can be described by the following equation:

yðnÞ ¼ hNðnÞ�ahNðn�1Þ ð9Þ
The functional block diagram and the unit impulse response of

the system defined by Eq. (9) are depicted in Fig. 10. The unit
impulse response is similar to the impulse response of the digital
differentiator except that the magnitudes of the two non-zero
samples are different. In this paper the function describing this
impulse response will be referred to as the “asymmetric doublet“.

It is straightforward to verify that the system shown in Fig. 10
that operates according to Eq. (9) transforms an exponential unit
impulse response into a unit impulse signal. From the definition of
the exponential unit impulse response signal (Eq. (6)) all values of
the samples preceding the sample at index n¼0 are equal to zero.
Therefore, y(n)¼0 for no0. For n40, taking into account the
definition of the digital exponential pulse (Eq. (6)), Eq. (9) can be
rewritten as

yðnÞ ¼ hNðnÞ�ahNðn�1Þ ¼ an�aUan�1 ¼ an�an ¼ 0; f or na0

ð10Þ
Finally, for n¼0 Eq. (9) becomes

yð0Þ ¼ xð0Þ�axð�1Þ ¼ a0�aU0¼ 1 ð11Þ
Therefore, using Eqs. (10) and (11), the output signal of the

unfolding system is defined by the following equation:

yðnÞ ¼ 1 for n¼ 0
0 elsewhere

�
ð12Þ

Eq. (12) is identical to the definition of the unit impulse signal
δ(n) given by Eq. (1). This proves that a system defined by Eq. (9)
unfolds a systemwith an exponential unit impulse. In other words,
such an unfolding system will transform a digital exponential unit
impulse response into a unit impulse. As the unfolding system is
linear, a weighted digital exponential signal whN(n) will be
transformed into a weighted unit impulse wδ(n).

The implementation of the system that operates according to
Eq. (9) may be challenging because the exponential base a is a

small, floating point number. Floating point multiplication is
complex and often leads to rounding or truncations of the result.
Integer multipliers are readily available in hardware such as field-
programmable gate arrays (FPGA). Thus it is important, from an
implementation point of view, to express Eq. (9) in a form that is
suitable for integer multiplication. Let's rewrite Eq. (9) in the
following form:

yðnÞ
a

¼ hNðnÞ
a

�hNðn�1ÞþhNðnÞ�hNðnÞ ¼ hNðnÞ�hNðn�1Þþ1�a
a

hNðnÞ
ð13Þ

Let us define a multiplication factor M as

M¼ a
1�a

ð14Þ

By multiplying both sides of Eq. (13) by M, Eq. (13) transforms to:

ywðnÞ ¼M hNðnÞ�hNðn�1Þ� �þhNðnÞ ð15Þ

where yw(n) is the weighted response of the system. When a is small
yw(n)EMy(n). This result is similar to the algorithms presented in
our previous work [15].

If the multiplication factor M is defined as

M¼ 1
1�a

ð16Þ

then Eq. (13) takes the form

ywðnÞ ¼M hNðnÞ�hNðn�1Þ� �þhNðn�1Þ ð17Þ

For this definition of M, yw(n) is exactly equal to My(n). That is
yw(n)¼My(n). When the digital exponential unit impulse response
is a result of digitization of an analog exponential impulse
response, the multiplication factor M can be expressed in terms
of the sampling period ΔT and the decay time-constant τ of the
analog exponential signal. Using Eqs. (7) and (16) the multi-
plication factor M can be expressed as:

M¼ 1
1�e�ΔT=τ

� τ
ΔT

þ0:5 ð18Þ

4.3. Sum of exponential signals

The unfolding of an exponential unit impulse response can be
extended to unit impulse responses that are a weighted sum of
two or more exponential signals. Next we will define a system and
the associated equations for unfolding an exponential unit impulse
response that is a sum of two exponential signals. Such a signal
can be expressed as

hNðnÞ ¼ AanþBbn ¼ xAðnÞþxBðnÞ ð19Þ
where a is the exponential base of the first summed exponential
signal xA(n), b is the exponential base of the second signal xB(n)
and A and B are the respective amplitude weighting coefficients of
these signals. The amplitude weighting coefficients are constants
that define the sum amplitude weights of the exponential signals
participating in the sum. We also define two unfolding systems of
digital exponential signals. The first unfolds the digital exponential
signal xA(n) with exponential base a, while the second unfolds the
digital exponential signal xB(n) with the exponential base b. The
unit impulse response of the first system is defined as:

hAðnÞ ¼
1 for n¼ 0
�a for n¼ 1
0 elsewhere

8><
>: ð20Þ

(a)

(b)

Fig. 10. Digital exponential signal unfolding system (a) block diagram and (b) unit
impulse response.
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The unit impulse response of the second unfolding system is

hBðnÞ ¼
1 for n¼ 0
�b for n¼ 1
0 elsewhere

8><
>: ð21Þ

We can define an unfolding system shown in Fig. 11.
In this system the input signal is processed consecutively by the

two exponential unfolding systems hA(n) and hB(n), producing a
result yB(n) that is, in general, not a unit impulse. The result yB(n)
is then unfolded by a system with a unit impulse response hE(n).
Our goal is to find the unit impulse response hE(n). The first step is
to find a mathematical expression for describing the signal yB(n).

The signal yA(n) is the result of the convolution of hA(n) and
x(n). Using the distributive property of the convolution the signal
yA(n) can be described as:

yAðnÞ ¼ xAðnÞþxBðnÞ½ �nhAðnÞ ¼ AδðnÞþxBðnÞnhAðnÞ ð22Þ
where annhA(n)¼δ(n).

Similarly, using the distributive and associative properties of
the convolution the signal yB(n) can be expressed as:

yBðnÞ ¼ AδðnÞþxBðnÞnhAðnÞ
� �

nhBðnÞ ¼ AhBðnÞþBhAðnÞ ð23Þ
Note that δ(n)n hA(n)¼hA(n) and δ(n)n hB(n)¼hB(n).
Substituting hA(n) and hB(n) with their definitions from Eqs.

(20) and (21) respectively, the signal yB(n) can be rewritten
explicitly as:

yBðnÞ ¼
AþB for n¼ 0

�Ab�Ba for n¼ 1
0 elsewhere

8><
>: ð24Þ

Eq. (24) can be normalized by dividing both sides by (AþB)
resulting in the following normalized expression:

_δK ðnÞ ¼
yBðnÞ
AþB

¼
1 for n¼ 0
�K for n¼ 1
0 elsewhere

8><
>: ð25Þ

where K is a weighting factor defined as:

K ¼ AbþBa
AþB

ð26Þ

The normalized signal described by Eq. (25) is an asymmetric
doublet and is similar to the unit impulse response of an unfolding
system of a digital exponential pulse as shown in Fig. 10.

Finally, we will define the system with a unit impulse response
hE(n) that unfolds the asymmetric doublet given by Eq. (25). In
other words, the system hE(n) will transform an asymmetric
doublet into a unit impulse. This transformation can be expressed
by the following equation:

δðnÞ ¼ _δKnhEðnÞ ¼ hEðnÞn _δK ð27Þ
From the definition of the asymmetric doublet (Fig. 10b) Eq.

(25) can be expressed in terms of unit impulses

_δK ðnÞ ¼ δðnÞ�Kδðn�1Þ ð28Þ
Eq. (28) is similar to Eq. (9) and, as stated earlier, it describes a

system which unfolds a digital exponential signal with exponen-
tial base K. Therefore, in order to unfold the asymmetric doublet
the unit impulse response hE(n) must be a digital exponential
signal with exponential base K. The system that responds to a unit
impulse by generating a digital exponential signal has been
described in our previous work [16]. The block diagram of the

system that unfolds an asymmetric doublet as defined by Eq. (28)
is shown in Fig. 12

The system in Fig. 12 must be relaxed as in the case of an
accumulator. In fact, when K¼1 this system acts as an accumu-
lator. The impulse response of the relaxed system hE(n) is, there-
fore, defined as:

hEðnÞ ¼ δðnÞþKhEðn�1Þ ð29Þ

It is important to note that the weighting factor K depends on
the amplitude weighting coefficients A and B, and the exponential
factors a and b of the signals being added together. This depen-
dence must be considered when unfolding signals with amplitude
weighting coefficients that may change with time, temperature, or
other factors. A typical example of such variability is the signals
from scintillation detectors with multiple light-emitting compo-
nents due to the temperature dependency of their light output and
decay time-constants.

The unfolding algorithm is independent of the sign of the
amplitude weighting coefficients except in the case when A¼�B.
In some cases the weighting factor K may become zero (K¼0)
making the system in Fig. 12a pass-through system (hE(n)¼δ(n)).
When A¼B the weighting factor K becomes independent of the
amplitude weighting coefficients A and B.

If A¼�B the weighting factor K becomes undefined because
the denominator in Eq. (26) becomes zero. An important signal in
the radiation measurements is the signal that is a sum of two
exponential signals with different exponential bases (aab) and
equal magnitude-opposite sign weighting factors A¼�B. We will
show below that such a signal is actually the result of a convolu-
tion of the two exponential signals forming the sum.

4.4. Convolution of exponential signals

The convolution of two exponential impulse responses is
commonly found in analog pulse-processing systems. A resistive
feedback preamplifier followed by a R-C low pass filter, cascaded
low pass filters, and a C-R or pole-zero differentiated preamplifier
signal followed by R-C low pass filter are all examples of system
impulse responses that are a result of a convolution of analog
exponential impulse responses. Fig. 13 illustrates some of these
systems.

The convolution hT(t) of two signals xa(t) and xb(t) in the
continuous-time domain is defined as:

hT ðtÞ ¼ xaðtÞnxbðtÞ ¼
Z t

�1
xaðθÞnxbðt�θÞdθ ð29Þ

Let's define xa(t) and xb(t) as exponential signals:

xaðtÞ ¼
e� t=τa for tZ0

0 elsewhere

(
ð30Þ

and

xbðtÞ ¼
e� t=τb for tZ0

0 elsewhere

(
ð31Þ

where τb and τa are the decay time constants of the exponential
signals.

Fig. 11. Unfolding system of the sum of two exponential signals.

Fig. 12. Block diagram of a system that unfolds an asymmetric doublet.
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By substituting Eqs. (30) and (31) in Eq. (29) the signal hT(t) can
be expressed explicitly. It is zero for to0. For tZ0 the signal hT(t)
can be expressed as:

hT ðtÞ ¼
Z t

0
e�θ=τane� t�θ=τbdθ ð32Þ

The integral in Eq. (32) has two different evaluations depending
on the relationship between τb and τa:

hT ðtÞ ¼
ab
a�b

ðe� t=τa �e� t=τb Þfortbata ð33Þ

and

hT ðtÞ ¼ te� t=τa for tb ¼ ta ð34Þ

Eq. (33) indicates that the convolution of two exponential
signals can be expressed as a difference of the two exponential
signals with equal amplitude weighting coefficient. Fig. 14a shows
the amplitude normalized signal hT(t) for τbaτa. Note that the
digital signal (Fig. 14b) corresponding to the analog signal is also
the difference (sum) of two digital exponential signals as shown
in Fig. 14c.

One important observation about the digital signal depicted in
Fig. 14b is that hN(0)¼0. As the real-time exponential unfolding
systems are causal, the unfolding result cannot be a unit impulse δ(n)
as defined by Eq. (1). Instead the unfolding can only result in a unit
impulse at n¼1 or greater. To unfold the signal defined by either
Eq. (33) or Eq. (34) we use the unfolding systems as defined by
Eqs. (20) and (21). Fig. 15 shows the unfolding system of a digital
signal obtained by digitizing an analog signal that is a result of a
convolution of two exponential signals in the continuous-time
domain.

First we will unfold the signal hN(n)¼an–bn¼xA(n)–xB(n). The
system with the unit impulse response hA(n) unfolds the digital
exponential signal xA(n). The convolution of hN(n) and hA(n) can be
expressed as:

yAðnÞ ¼ xAðnÞþxBðnÞ½ �nhAðnÞ ¼ δðnÞ�xBðnÞnhAðnÞ ð35Þ

The convolution with hB(n) will result in:

yðnÞ ¼ δðnÞ�xBðnÞnhAðnÞ
� �

nhBðnÞ ¼ hBðnÞ�hAðnÞ ð36Þ

Using Eqs. (20),(21) and (36) the result of the unfolding y(n) can
be found as:

yðnÞ ¼ hBðnÞ�hAðnÞ ¼
a�b for n¼ 1
0 elsewhere

�
ð37Þ

This result clearly shows that y(n)¼δw(n�1), a result that is a
direct consequence of the fact that the unfolding system is a causal
LTI system. The signal y(n) can be normalized by a factor (a–b) to
obtain an unfolding result that is a unit impulse shifted by one
sample. As the origin of the digital signal processing systems is
relative, the shift may be disregarded when y(n) is the only signal
applied to the signal processing systems that follow the unfolding
system.

Fig. 13. Convolution of analog exponential impulse responses (a) cascaded R-C
networks, (b) resistive feedback preamplifier followed by R-C network and (c) reset
type preamplifier followed by R-C network.

Fig. 14. Convolution of two exponential impulse responses (a) amplitude normal-
ized signal in the continuous-time domain, (b) digital signal obtained by digitizing
of the signal in the continuous time domain and (c) digital signal as the sum of two
exponents.

Fig. 15. Unfolding system of the digitized signal obtained by a convolution of two
analog exponential signals.
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Next we will unfold the signal xA(n)¼nΔTan. As ΔT is a
constant, our interest is to unfold the normalized signal hN (n)¼
nan. The unfolding procedure will be carried out by applying the
unit impulse response hA(n) twice in sequence. Using the defini-
tion of the exponential unfolding system given by Eq. (9) and the
properties of the convolution we obtain:

yðnÞ ¼ nannhAðnÞ
� �

nhAðnÞ ¼ nan�aðn�1Þan�1� �
nhAðnÞ ¼ annhAðnÞ ¼ δðnÞ

ð38Þ

Eqs. (37) and (38) indicate that the system in Fig. 5 can be used to
unfold an exponential unit impulse response that is a result of a
convolution of two continuous-time exponential signals regardless of
the relationship between their decay time constants (τbaτa or τb¼τa).

Fig. 16 shows an example of applying the unfolding to a signal
from a silicon drift detector (SDD) embedded in labZY X-Ray
spectrometer nanoXRS [17]. The SDD is connected to a reset type
preamplifier followed by a C-R differentiation network with time
constant τa¼6200 ns (a long time constant). Next, the C-R differ-
entiated signal passes through a R-C low-pass filter with time
constant τb¼32 ns (a short time constant). The signal from the
low-pass filter is digitized by a fast ADC with sampling period
ΔT¼12.5 ns. The signal from the ADC is shown in Fig. 16a. The
captured signal is from an interaction of 5.9 keV Kα manganese
X-ray quantum. Fig. 16b shows the result of using Eq. (35) to unfold
the response of the C-R differentiation network to a step signal,
which is an exponential pulse. The exponential base a in Eq. (35) is
aE0.998. The signal shown in Fig. 16c is the result of unfolding the
exponential impulse response of the R-C low pass filter according to
Eq. (37). The exponential base b in Eq. (35) is bE0.677.

The result from the unfolding is not a unit impulse as there are
unaccounted and unfolded responses such as the finite preampli-
fier rise time, bandwidth limiters of the ADC input stage, and finite
charge collection time of the SDD. As expected from Eq. (37) the
sum of the 3 samples representing the unfolded signal is about a–b
times less than the amplitude of the ADC signal.

The signal in Fig. 16d is a triangular signal synthesized using the
unfolded signal in Fig. 16c. The amplitude of the triangular signal is
normalized to the amplitude of the ADC signal. It is important to
emphasize that the digital signal processing is noiseless. Therefore, if
a digital signal is processed by a chain of signal processing systems
the outcome is the same regardless of the application order of the
systems in the chain. The triangular signal in Fig. 16c can be
synthesized exactly the same if other algorithms are used to process
the ADC digital signal preserving the same signal-to-noise ratio.

5. Conclusions

In Part 1 of this paper we have introduced the unfolding-
synthesis technique and have described the unfolding algorithms
applicable to most common signals in radiation measurements.
The unfolding technique can be extended to other digital signals
obtained by digitization of analog signals with known character-
istics. Our intent was to demonstrate and to provide a basic
procedure for unfolding commonly used signals in radiation
measurements. The unfolding technique may be applied to more
complex signals as long as they are well defined and described by
mathematical equations. It is important that not all responses can
be unfolded completely, especially ones on very short time scales.
Still, the unfolding of the major, long time scale, impulse responses
is key for achieving high throughput while utilizing pulse shapes
with optimal characteristics for a given measurement setup.

Fig. 16. Digital pulse shaping of experimental signal from a SDD: (a) ADC signal,
(b) after unfolding the long time constant (Eq. (35)) (c) after unfolding the short
time constant (Eq. (37)) and (d) triangular pulse synthesized from the unfolded
signal.
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