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a b s t r a c t

An extensive study of digital pulse processing methods is presented. Existing methods, both traditional
and more recent, are compared with original advanced techniques within an appropriate modeling and
benchmarking framework. This comprehensive approach ensures general applicability to the broad field
of pulse processing, even though the focus lies on hard X-ray spectrometers operated at high count rates.
In this regime, pile-up is the main issue and the individual pulse shape characteristics play a minor role,
although they remain important for the algorithm parameter optimization.

The digital implementation of double-differentiating analog filters and trapezoidal FIR filter methods
results in excellent performance that is second only to that of optimum digital FIR filters. Several more
complex methods involving increased computational effort are found not to meet the expectations.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

A novel hard X-ray tomographic spectrometer (HXRS) appara-
tus [1,2] is being developed for TCV, an experimental nuclear
fusion device of the tokamak family [3]. It uses (2 mm)3 cube CdTe
detectors to measure photons with energies of 10 keV to over
300 keV. The detectors are followed by fast integrators that act as
charge collectors, the charge being proportional to the impinging
photon energy. The pulses have a characteristic rise time of 400 ns,
and the integrators are discharged with a decay time of 4 μs. The
collected signal is amplified to the digitizer range and acquired at
12M samples/s.

The detection and analysis of the single photons from these
time traces is a challenging task at the desired high count rates of
several 100 kcps (counts-per-second) and in view of the significant
noise level of a tokamak experiment environment.

To find the best-suited algorithm for the specific HXRS require-
ments, several standard and advanced pulse processing techniques
have been implemented. The accompanying algorithm bench-
marking suite was deliberately designed with broad flexibility,
permitting a general study of the pulse detection and analysis
problem at high count rates that transcends the specific require-
ments of the HXRS system. The results of this study are reported in
this paper.

1.1. Analog versus digital pulse processing

Practically every particle counting spectrometer consists of an
analog and a digital part with an analog to digital converter (ADC)
in between. In analog pulse processing the digital part only
performs a histogram. This was the only solution available till
the early 1990s, when digital systems became fast enough to
restrict the analog part to the charge collection and preamplifica-
tion. In the latter scheme, the preamplified signal is directly
sampled by a high-resolution ADC that records the time history
of each individual pulse, and the pulse processing is performed
digitally, either by hardware or by software [4]. In the transitional
period, when the performance of digital processors was still
relatively low, hybrid systems were also used, in which a digital
signal processor (DSP) was triggered by an analog pulse height
analyzer (PHA) [5].

The main advantages of analog pulse processing lie in robust-
ness, decades of experience and low cost as compared to digital
systems. With some additional effort even the pulse shape can be
used to a certain extent to aid the pulse recognition, for instance to
discriminate between particle types [6].

Nowadays digital pulse processing is used in commercially
available spectrometers [7] as well as in highly specialized
applications such as spacecraft [8] and magnetic confinement
fusion experiments [1]. The available digital solutions continu-
ously decrease in cost and increase in processing speed and
storage, enabling real-time applications as well as storage of the
entire time traces acquired. Since the shape of each pulse is
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known, it can be used to extract more information than just the
height of the pulse. Therefore the pulse processing algorithms can
be optimized with respect to the pulse characteristics, for instance
for neutron - gamma discrimination [9] or to detect the incident
position of the particle within a detector [10] and use this informa-
tion to improve the determination of the particle energy [11].

Furthermore, the time and energy of each detected pulse are
available. This allows one to freely choose time and energy bins
after the measurement and subsequently to use advanced analysis
techniques such as conditional averaging: this is very effective in
particular in tokamak diagnostic applications to analyze randomly
repeated events such as sawtooth crashes [2].

1.2. Existing techniques

In analog pulse processing the preamplifier signal is shaped by
a shaping amplifier. This can be realized either as a single or a
double delay line (SDL, DDL) or as a combination of m differentiat-
ing (CR) and n integrating (RC) circuits (ðCRÞmðRCÞn filter). In
addition, tail (pole-zero) cancellation and baseline restoration
are regularly applied to improve the signal properties further.
Finally the signal is evaluated using a peak-sensing ADC and the
detected pulses are digitally stored in a histogram [12].

In digital pulse processing the same analog techniques can be
implemented digitally [13]. However, a large variety of additional
methods can also be used, comprising more sophisticated techni-
ques that take the whole time history and pulse shapes into
account. Typical such techniques are digital finite and infinite
impulse response (FIR and IIR) filters [14,15], cross-correlation
[16,17] and least-squares difference [18] to template pulses, neural
network pulse recognition [19], wavelet transform [20,21] and
support vector machine (SVM) pulse sorting [22].

1.3. Outline

The implementation framework of the pulse processing algo-
rithms will be briefly discussed in Section 2. The algorithms are
then described in detail in Section 3. The specification of the
benchmarking methods in Section 4 is followed by the discussion

of the algorithms' performance in Section 5. Finally, conclusions
will be drawn in Section 6.

2. Digital implementation

Although a very wide range of different pulse processing
algorithms is compared, a large fraction of these algorithms shares
the use of a few fundamental steps in the data analysis. This allows
not only the implementation of a general framework for data
input/output (I/O), storage and benchmarking, but also a general-
ization of the algorithm implementation itself. This in turn makes
it possible to study more algorithms with little additional effort
and facilitates their comparison. The common basic steps are,
namely, signal treatment, pulse detection (PD) and pulse height
analysis (PHA). These components are individually presented in
the following. Nonetheless, the implementation can be kept
flexible enough to treat algorithms that can be only partially or
not at all resolved by this sequence of steps or that require
additional post-processing.

For all presented algorithms, the signal treatment, PD and PHA
methods are listed in Table 1.

2.1. Signal treatment

The signal treatment processes the raw data to provide an
input for the pulse detection and analysis. It keeps the signal's
original sampling rate and is often realized by the application of
filters. Usually the signal treatment is the same for the pulse
detection and pulse height analysis, although there are also a few
methods where the signal treatment for analysis differs from that
for detection. Since most pulse processing algorithms share the
same or similar detection and analysis methods, their main
differences lie in the signal treatment. Therefore, the signal
treatment parts play the main role in characterizing a pulse
processing method.

Table 1
List of signal treatment, pulse detection and PHA methods for all presented algorithms.

Algorithm Detection Analysis

Abbreviation Signal treatment Pulse detection Signal treatment PHA

Trpz2 Trpz2 Dynamic threshold Trpz2 Level evaluation
Trpz1a Trpz1a: nr ¼ nd ¼ 4 Dynamic threshold Trpz1a: nr ¼ nd ¼ 4 Level evaluation
Trpz1as Trpz1a: nr ¼ nd ¼ 3 Dynamic threshold Trpz1a: nr ¼ nd ¼ 3 Level evaluation
Trpz1 Trpz1 Dynamic threshold Trpz1 Level evaluation
Trpz Trpz Dynamic threshold Trpz Level evaluation
CC-LMS CC Dynamic threshold LMS Level evaluation
LMS LMS Dynamic threshold LMS Level evaluation
(CR)2(RC) (CR)2(RC) Dynamic threshold (CR)2(RC) Level evaluation

ðCRÞ2ðRCÞ4 ðCRÞ2ðRCÞ4 Dynamic threshold ðCRÞ2ðRCÞ4 Level evaluation

ðCRÞðRCÞ4 ðCRÞðRCÞ4 Dynamic threshold ðCRÞðRCÞ4 Level evaluation

(CR) (RC) (CR) (RC) Dynamic threshold (CR) (RC) Level evaluation
CIS Digital band-pass CIS – rise threshold Digital band-pass Rise evaluation
PSD MA filter Multiple condition MA filter Rise evaluation
Canny Canny Dynamic threshold Canny Level evaluation
SDL SDL Dynamic threshold SDL Level evaluation
DDL DDL Dynamic threshold DDL Level evaluation
opt1na Optimum filter 1 Dynamic threshold Optimum filter 1 Level evaluation
opt2na Optimum filter 2 Dynamic threshold Optimum filter 2 Level evaluation
opt3na Optimum filter 3 Dynamic threshold Optimum filter 3 Level evaluation
opt4na Optimum filter 4 Dynamic threshold Optimum filter 4 Level evaluation
i-500 kcps Idealized algorithm, detects all pulses spaced by Z2 μs correctly
i- 1 Mcps Idealized algorithm, detects all pulses spaced by Z1 μs correctly
i-2 Mcps Idealized algorithm, detects all pulses spaced by Z500 ns correctly
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2.2. Pulse detection

In the analysis chain comprising signal treatment and pulse
detection, care has to be taken not to introduce a time shift in the
particle arrival time. Already in the raw signal, and additionally
after filtering using only data points from the past, the peak of a
pulse is delayed with respect to the photon arrival time. This is
why it can be necessary to apply a time index shift in addition to
the basic signal treatment in order to detect the photon at its
arrival time instead of the time point at which the corresponding
pulse appears in the processed signal after the whole chain from
charge collection to basic signal treatment.

Threshold: The threshold detection defines the detected pulses
as groups of contiguous points exceeding a set threshold value,
separated by points below it. The time of each pulse is then
defined as the point of maximum value within it. This solution
prevents artificial time shifts dependent on the pulse height, such
as in the leading edge threshold crossing method, which for this
reason is not considered here, in spite of its frequent usage.

Dynamic threshold: The dynamic threshold detection algorithm
detects local maxima that lie above a set threshold value and
identifies them as pulses if they are separated by a minimum, with
the maximum to minimum ratio exceeding a set factor. Especially
at high count rates this is expected to be advantageous since the
signal between two consecutive pulses only has to go down to the
specified ratio and not all the way below the threshold value in
order to separate these two pulses.

Rise threshold: Here, the pulse rise is investigated by selecting
monotonically increasing segments of the signal. Since the deri-
vative of the signal is positive in these segments and bounded by
sign changes before and after them, this selection is realized by
detecting the change-in-sign (CIS). If the signal rise within such a
segment exceeds a set threshold value, the start or mean time of
this segment is taken as the pulse time.

Multiple conditions: Several other detection methods can be
grouped under this expression, meaning that they do not look only
for maxima but apply additional conditions. For instance the
pulse-shape discriminator (PSD) algorithm, operating on a
smoothed signal, checks for a signal rise followed by a decrease
over three or more consecutive points lying within the integrator
decay time [23].

2.3. Pulse height analysis

Level evaluation: To determine the pulse height the signal is
simply evaluated at the points detected by the pulse detection. It
should be noted that a statistical average over several points can
be achieved by including this averaging in the signal treatment
directly.

Rise evaluation: The rise of the signal over a certain period,
usually defined by the rise threshold detection, is used to deter-
mine the pulse height.

3. Overview of signal treatment algorithms

The methods presented in this section, especially the filters, are
all time-invariant. This corresponds to the application where pulse
shapes and noise characteristics do not change over time. In time-
variant systems, however, the method's parameters should be
adjusted accordingly over time. Then the results presented in this
paper can, to a certain extent, be extended to such systems as well.

In Figs. 1 and 2 the pulse responses of the most important filter
methods presented in the following are compared.

3.1. IIR filters

Infinite impulse response (IIR) filters are widely used in digital
pulse processing, for instance as band-pass filters or to emulate
analog filters digitally.

3.1.1. Digital band-pass filters
A tempting approach is the simple use of band-pass filters to

remove high frequency noise and low frequency baseline devia-
tion. In the remaining signal only the pre-amplified pulses should
appear and be evaluated. However, since the pulses themselves are
not sinusoidal but have a wider frequency spectrum, the filter pass
band has to be chosen carefully, especially if the pulse and noise
spectrum overlap significantly.

CIS method: One of the earliest attempts at digital pulse
processing for the HXRS diagnostic was based on a digital band-
pass filter. The filtered signal, however, cannot be used for
(dynamic) threshold detection and level evaluation analysis. In
order to yield a working pulse processing method the rise thresh-
old detection and rise evaluation analysis have to be applied on
the band-pass filtered signal. Subsequently, the method as a whole
is called a change-in-sign (CIS) method [23].

3.1.2. Analog filters
Classic analog pulse shaping amplifiers use a combination of

differentiating CR and integrating RC circuits. Their transfer functions
are determined by time constants and can be easily implemented
digitally, providing a reference for digital pulse processing. The
principle can be understood by considering the simplest type (CR)
(RC) with one CR and one RC circuit. First, the CR circuit determines
the slope of the pulse rise and then its output decays over its time
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Fig. 1. Pulse response of the presented IIR, delay line, LMS and cross-correlation
filters to a simulated clean input pulse.
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Fig. 2. Pulse response of the presented FIR filters to a simulated clean input pulse.
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constant. Therefore it acts as a high-pass filter. The RC circuit then
integrates the CR output and acts as a low-pass filter [12].

(CR) (RC)n method: If the RC integrating step is repeated n times
the high-frequency noise is further reduced and the resulting
pulse shape approaches a Gaussian. To keep the peaking time
constant, the time constants of the n RC circuits have to be 1/n
times the time constant of a single RC circuit. This shortening of
the time constants shortens the decay after the peak as well.
However, adding more circuits increases the complexity of the
system and the improvement is only significant for low n.
Typically 2–4 RC circuits are used [13].

(CR)2(RC)n method: In the limit of high count rates any pulse
detection method is affected by pile-up. To reduce this effect a
second differentiating CR circuit is added, which makes the output
signal bipolar. This was, for instance, done for the hard X-ray
camera (HXRC) that was formerly installed on TCV and used
(CR)2(RC) analog pulse processing with a filter time constant of
0:3 μs [24]. As before, n41 is expected to yield a slight improve-
ment in performance.

3.2. FIR filters

Finite impulse response (FIR) filters have, in contrast to IIR
filters, an impulse response of finite duration. An analog imple-
mentation of these filters is not trivial but can be realized using
delay lines or surface acoustic wave (SAW) filters. The digital
implementation of discrete-time FIR filters, however, is very
simple. The output signal r is the convolution of the input signal
s and the filter coefficients cARðNþ1Þ�1

ri ¼ ∑
N

k ¼ 0
cksmþ i�k 8 i¼ 1;…;n ð1Þ

where s is zero for all indices that are out of range. The common
FIR filter definition (m¼0) is extended here by a time index shift
mAZ, in order to detect photons at their arrival time, as described
in Section 2.2. The map f : s↦r defined by Eq. (1) is linear
f ALðRn�1Þ. Another important property is that the filter coeffi-
cients represent the impulse response of a Nth order discrete-time
FIR filter, which is of length Nþ1 samples.

The impulse responses of the more complicated FIR filters
presented in the following, corresponding to their filter coefficients,
are compared in Fig. 3. Their step responses are shown in Fig. 4.

3.2.1. Delay lines
The delay line technique splits the input signal onto several

paths of different lengths where each sub-signal is also multiplied
by a different weighting factor. The outputs from all the paths are
then added to obtain a weighted sum of delayed versions of the
raw signal.

SDL method: The single delay line (SDL) method uses a single
delay line to subtract a delayed and slightly downscaled version of
the signal off the signal itself. This leads to a short, nearly
trapezoidal pulse with a length of the order of the delay followed
by a fast reset to zero. The delay of the line should in no case be
smaller than the rise time of the input pulse, otherwise parts of
the pulse would already be subtracted while it still rises. To
minimize the flat top of the trapezoidal-like pulse the delay should
be close to the rise time of the input pulse. This results in a quasi-
triangular output pulse without visible flat top, as can be seen in
Fig. 1. Also, the downscaling factor has to be adjusted according to
the pulse decay in order to restore the baseline after the pulse
properly.

While noise at the exact delay time frequency is damped, this
method includes no low-pass filter to get rid of general high-
frequency noise.

DDL method: The double delay line (DDL) is a series of two SDL
circuits to obtain a bipolar pulse instead of a trapezoidal peak. The
resulting zero-crossing leads to a better pulse separation whereby
even higher count rates can be resolved than with the SDL.

3.2.2. MA filter
A moving average (MA) filter of span S is a FIR filter with S

coefficients, all being equal to 1/S. We restrict S to odd positive
integers, meaning that the order of the FIR filter N¼ S�1 is even
(NA2N), and we set the time shift to m¼N=2. Following this
definition, the filtered signal at each point in time is the arithmetic
mean of the raw signal at that time and the N/2 consecutive points
before and N/2 consecutive points after that point in time.

PSD method: The moving average filter is used to smooth the
signal for the multiple condition detection in the pulse-shape
discriminator (PSD) method.

3.2.3. Trapezoidal filters
Here, the trapezoidal (Trpz) filter family encompasses the basic

Trpz filter and several FIR filters closely related to it.
Trpz method: The step response of the trapezoidal (Trpz) filter is

a trapezoidal peak as shown in Fig. 4. The filter is specified by the
number of samples in the rise (nr), the flat top (nf) and the decay
(nd) phases of this peak. It computes the difference between the
mean value of nr samples on the future side of a gap of nf samples
and the mean value of nd samples on the gap's past side [12]. The
response to a ramp from 0 to 1 within a certain rise time is a piece-
wise quadratic function. It is smoothed with respect to the step
response and its flat top is shortened by the finite ramp rise time.
Without a flat top this response is a quadratic spline approxima-
tion to a Gaussian.
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Fig. 3. Impulse response of the presented FIR filters, being equal to the filter
coefficients.
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Fig. 4. Step response of the presented FIR filters.
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In analogy to the SDL, the delay time, corresponding to nf,
should be greater than the rise time of input pulses. The flat top
should be as short as possible to obtain Gaussian-like output
pulses. However, a short flat top is required in order to account for
ballistic deficit [25].

The case nr ¼ nd ¼ 1 corresponds to a time-discrete SDL method
with nf specifying the delay; for increasing nr and nd high-
frequency noise is averaged out with increasing effectiveness.

Trpz1/Trpz1a method: Starting from the Trpz filter, the Trpz1
(a) filter is obtained by computing weighted mean values instead
of mean values before and after the gap. If one increases the
weights for samples closer to the gap, e.g., this technique can
narrow the output pulse. In the Trpz1 method the weights
increase linearly towards the gap while an exponential increase
is used in the Trpz1a method.

Trpz2/Trpz2a method: Applying to the Trpz1(a) method the
same step that was taken from the (CR) (RC) to the (CR)2(RC) and
from the SDL to the DDL method to the Trpz1(a) method yields the
Trpz2(a) method. This subsequent application of two Trpz1(a) and
an integrating window can be represented by a single FIR filter
whose coefficients are a convolution of two Trpz1(a) filters and an
integrating FIR filter. The latter is similar to a MA filter, but uses
numerical integration method coefficients (such as ð7;32;12;
32;7Þ=90 from Boole's rule) instead of the arithmetic mean.

As is the case in going from SDL to DDL, this leads to a bipolar
shape and is expected to increase the throughput at high
count rates.

3.2.4. Canny method
The problem of detecting a pulse is similar to edge detection.

The Canny edge detector [26], the first derivative of a Gaussian,
can therefore be used as a FIR filter.

3.2.5. Optimum filters
The FIR filters presented above represent only a small, very

specific set within the space of FIR filters. To overcome the
restrictions to filters that follow strict design rules and are
determined by only a few parameters, one can look for an
optimum FIR filter with respect to well-defined requirements.
This can be realized by linear least squares minimization of a
functional containing information about the noise and the desired
output pulse shape [27,28].

The basic idea is to optimize the FIR filter coefficients under
several constraints in a least squares sense. The two main
constraints taken into account are the following: for a given input
pulse a desired output should be obtained; and for noise input the
output should be zero. Furthermore, specific input frequencies can
be suppressed and the pulse response area can be specified. Since
all these constraints form an over-determined system of equations
there is usually no exact solution. However, a best approximation
in a least squares sense, where weighting factors reflect the
importance of each constraint, can be found.

The two main constraints, optimum pulse response and noise
rejection, can be formulated as follows: the signal s is written as
the sum of a clean pulse signal sc and a noise component sn. This
results, according to Eq. (1), in the FIR filter output

ri ¼ ∑
N

k ¼ 0
cksc;mþ i�kþcksn;mþ i�k 8 i¼ 1;…;n: ð2Þ

For noise of mean zero this yields an average output

r i ¼ ∑
N

k ¼ 0
cksc;mþ i�k 8 i¼ 1;…;n ð3Þ

with variance

s2r ¼ cTVc: ð4Þ

Here, V is the auto-covariance matrix of the noise sn. The variance
of the clean signal sc that does not originate from noise, such as
pulse shape changes due to different interaction locations in the
detector, can be taken into account in the same manner.

The ideal result would be an average output identical to the
request, and with zero variance. Generally, this cannot be obtained
exactly but a best approximation can be found by minimizing the
sum of the weighted difference between the average output r and
the desired output rd and the variance s2r

∑
i
αr;i‖r i�rd;i‖2þαns2r-min ð5Þ

αr being the weighting factors for the request and αn being the
noise weighting factor, all greater or equal to zero.

The expression in Eq. (5) can be written in matrix form. It
adopts its minimum at the zero of its gradient, yielding the normal
equation

∑
i
αr;iðscsTc Þi

 !
þαnV

" #
c¼∑

i
αr;iðscÞird;i: ð6Þ

Its solution is the vector of the Nþ1 optimum FIR filter coefficients
c. Additional constraints can be imposed by adding corresponding
terms to Eqs. (5) and (6) respectively.

The choice of the weighting factors is essential in order to
obtain a well-behaved optimum filter. In particular, a low αn can
lead to over-fitting, yielding unacceptably poor performance if the
signal s deviates only slightly from the clean signal sc.

3.3. Least squares and cross-correlation methods

3.3.1. LMS method
The least squares (LMS, from least mean squares) difference

from a template pulse can be used to specify a digital filter. The
idea is to find the pulse amplitude a such that the template pulse t
of height 1 is optimally scaled to the signal s (both column vectors
of N samples) in a least squares sense

‖ta�s‖2-min ð7Þ
with t; sARN�1. The obvious choice for the template pulse t is
the clean signal sc. To reduce the effect of baseline shifts both the
signal and the template are shifted by their mean value before
the least squares optimization is effected (u is a vector with all
values equal to 1 and of same size as s and t)

x0 ¼ x� uTx
N

u; x¼ s; t: ð8Þ

The linear least squares problem (7) is solved by the solution of the
normal equation

tT0t0a¼ tT0 s� uTs
N

u
� �

: ð9Þ

From the definition of u it follows that uTu¼N and, since

uTx0 ¼ uTx� uTx
N

uTu ð10Þ

subsequently

uTx0 ¼ 0 ð11Þ
for vectors x0 as defined in Eq. (8). On the other hand, vectors y
with uTy¼ 0 remain unchanged by Eq. (8): y0 ¼ y. Therefore Eqs.
(8) and (11) are equivalent definitions of a zero mean LMS method
template pulse t0.

Using Eq. (11) for x¼ t yields directly tT0u¼ 0, which simplifies
Eq. (9). The pulse amplitude is then given by

a¼ tT0
‖t0‖2

s: ð12Þ
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Comparison to Eq. (1) reveals that Eq. (12) defines the coefficients
of a FIR filter of order N�1:

c≔
t0

‖t0‖2
: ð13Þ

Conversely, FIR filters with coefficient sum zero (uTc¼ 0) can be
represented by the LMS method, since the template pulse defined
by

t0≔
c

‖c‖2
ð14Þ

fulfills Eq. (11).

3.3.2. Cross-correlation detection
Using the notation of Section 3.3.1 the normalized cross-

correlation of a signal and a template pulse can be written as

c¼ tT0s0
Jt0 J Js0 J

A ½�1;1�: ð15Þ

This can be directly used as a non-linear filter for pulse detection
[17]. A clear advantage of this filter is that it ideally responds
equally to the pulse shape, no matter what its amplitude is.
However, since it does not respond to the amplitude of the pulse,
a different method has to be used for the pulse height analysis.
This could be any of the PHA methods discussed earlier; however,
the formal similarity between the cross-correlation detection and
the LMS method suggests to combine these two for an optimal
result.

3.4. Wavelet transform

A discrete wavelet transform is used to detect patterns in
signals that may occur on different timescales. This is for instance
successfully applied in sawtooth detection using the Canny edge
detector as wavelet [20] to detect sawtooth crashes whose length
may vary.

In the present pulse processing application, however, the rise
and decay times of the pulses to be detected are practically
constant and usually well known. Therefore, pulse detection
algorithms can be well-tuned to the pulse characteristics. It is
not necessary to scan different timescales using a wavelet trans-
form since the timescale over which the pulses occur is already
known. Hence, it is not expected that the use of the wavelet
transform would improve well-tuned pulse detection algorithms.
However, if the pulse rise and decay times are not known, this
method may be advantageous [21].

4. Benchmarking methods

A detailed comparison and benchmarking of the presented
algorithms is carried out using experimentally measured as well as
simulated signals. The analysis concentrates on simulated signals
where the particle arrival time and energy are exactly known and
arbitrary count rates and noise can be investigated. Nonetheless
the use of experimentally measured noise in the simulation as well
as the analysis of full experimental signals are necessary to ensure
the validity of the signal simulation models.

4.1. Signal simulation model

The signal simulation model comprises the steps from
the particles arriving at the detector via the charge collection in
the pre-amplifier and the amplification up to the digitization of
the signal.

4.1.1. Particles
The particle arrival times are modeled using a Poisson distribu-

tion whose free parameter is determined by the desired average
count rate. The particle energy can be modeled using different
spectra, e.g. monochromatic or polychromatic, exponentially dis-
tributed or uniformly distributed. The vectors of particle arrival
times and energies are fed into the pre-amplifier model and kept
as reference for the benchmark evaluation.

4.1.2. Detector
Since we are interested in the performance of the pulse

detection algorithms, the detector model assumes simply that all
modeled particles are detected at their exact incident energy. In a
real system this energy may be smaller than the total energy of the
particle, e.g. in the case of Compton scattering of photons. How-
ever, we do not concern ourselves in this paper with the analysis
complications arising from such events.

4.1.3. Pre-amplifier
The pre-amplifier model accepts arbitrary particle arrival time

and energy vectors. It is the first step in which the full time trace is
modeled: the output pulses are defined by the charge collection
time and the integrator decay time.

4.1.4. Amplifier
The amplifier's purpose is to amplify the pre-amplifier output to

the digitizer input range without disturbing the pulse shape sig-
nificantly. Since these requirements are met quite easily in practice,
this stage can almost be neglected in the signal simulation model.

4.1.5. Noise
The noise sensitivity is important in the benchmarking; there-

fore, different forms of noise (white Gaussian, 1/f and experimen-
tally measured) can be used and entered at the pre-amplifier as
well as after the amplifier stage [29]. In the following analysis the
experimentally measured noise is taken from HXRS data on the
TCV tokamak discharge ♯46061, partially shown in Fig. 5.

4.2. Benchmarking figures of merit

4.2.1. Main figures of merit
Detection efficiency: The parameters reflecting the detection

performance are true positive, false negative and false positive
detection rates. Here, positive/negative stands for the detection
result of the algorithm and true/false if this agrees with the
simulation, in each case normalized to the number of simulated
particles. The true positive rate (a simulated particle is detected)
should obviously be as close to unity as possible, while the false
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Fig. 5. Experimentally measured time traces for noise only (TCV discharge ♯46061,
HXRS chord 12, t0 ¼ 0:8 s) and signal with photons arriving at the detector (TCV
discharge ♯45252, HXRS chord 9, t0 ¼ 0:8 s).
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negative (a simulated particle is not detected) and false positive
(a particle that was not simulated is detected) rates should be as
small as possible.

Energy accuracy: To obtain high energy resolution the energy
deviation has to be minimal. At high count rates where significant
pile-up occurs the energy deviation is expected to increase
accordingly. Note that the energy under discussion here is the
energy transferred by the incident particle to the detector, which
is assumed to be the total particle energy, as stated already in
Section 4.1.2.

4.2.2. Additional figures of merit
Time resolution: The time resolution of the detection is not

analyzed in detail since the deviation in the particle arrival time is,
for all investigated algorithms, in the order of the sampling
interval. In specialized applications, such as Positron emission
tomography (PET) using time of flight measurements, the time
resolution plays a major role and can be enhanced by increasing
the sampling rate or applying interpolation around the detection
time. This works in a straightforward manner for all methods
presented here.

The standard application, however, is to build spectrograms or
time traces in spectral channels. Hence, the single pulses are
grouped in energy and time intervals. The length of the latter can
be effectively shortened by several orders of magnitude using
techniques such as conditional averaging, which improve statistics
by adding over different realizations of statistically similar events
(e.g., periodic phenomena). Still, to get useful statistics, the time
grouping interval needs to be much longer than the sampling
interval length and is therefore much longer than the detection
time error.

As an example, asking only for quite poor statistics (1000 pulses)
from a system detecting a pulse in average every 10 samples
requires more than 104 conditional averaging events in order to
get a time resolution (grouping interval length) close to the
sampling rate.

Computational performance and complexity: Since digital pulse
processing inherently involves high sampling rates (typically in
the M samples/s–G samples/s range), the computational perfor-
mance plays an important role. Execution time and storage
requirements are the main issues. Parallelization and its scaling
may also play a role in certain applications but can be neglected
for the HXRS system in which the number of detectors exceeds the
number of available processor cores.

Real-time applicability: Directly related to the computational
performance is the question whether or not the algorithms can be
implemented in real-time, for instance directly in FPGAs. This is
essential if the measurement is used in a control cycle, for systems
with low storage capacities relative to input channels and acquisi-
tion rate and for continuously operating systems.

5. Results: algorithm benchmarks

The benchmark analysis is presented in this section.

5.1. Analyzed algorithms

All algorithms analyzed and presented in this study are listed in
Table 1. Therein, for each algorithm abbreviation, the correspond-
ing signal treatment algorithm for detection (as presented in
Section 3), the detection method (Section 2.2), the signal treat-
ment for analysis (Section 3) and the PHA (Section 2.3) applied are
specified. All algorithms using dynamic threshold detection can
also be used with ordinary threshold detection, yielding a slightly
degraded performance at reduced computational effort.

5.1.1. Optimum filter parameters
In the benchmarking analysis four optimum FIR filters are

investigated. They are all optimized with respect to the noise
present in the HXRS system but the requested output differs.

The outputs requested for filters 1 and 2 are based on the clean
signal responses of the Trpz1as and ðCRÞ2ðRCÞ4 method respec-
tively. For the filters 3 and 4 cusp responses are requested. In the
case of number 3 the cusp rises within 6 points, defined by

rd;i ¼
1
2

i
6
þ i

6

� �3
" #

; i¼ 1;…;6 ð16Þ

and the cusp decay is symmetric, followed by 23 zeros. For
number 4 the rise is requested to take place within only 4 points
and the linear contribution is replaced by a quadratic one, both in
order to optimize for a very fast response. After the cusp rise
defined by

rd;i ¼
i2þ i3

80
; i¼ 1;…;4 ð17Þ

and the symmetric cusp decay, the subsequent zero is followed by
a small negative dip (rd;9 ¼ � 1

40 ) before the final zeros. It turns out
that in the case number 4 the request can never be met since it is
on a smaller time scale than the pulse. However, the response is
optimized to be as fast as possible in order to get good pulse
separation at high count rates.

5.1.2. Idealized algorithms
To provide an absolute comparison of the detection efficiency,

idealized algorithms are used. These are not real algorithms;
rather, they use the particle simulation without processing. They
are characterized by a specific detection frequency and detect
all pulses that are at least separated by the timescale correspond-
ing to this frequency. Here, the idealized algorithms i-500 kcps,
i-1 Mcps and i-2 Mcps are used for the performance comparison.

5.2. Detection efficiency

5.2.1. Count rates
All presented algorithms are directly compared to each other

and to the idealized cases in Fig. 6 with respect to their true
positive detection rate. The photon energy of 20 keV and signal
noise correspond to the typical HXRS operational point while the
count rate range is extended well beyond the HXRS limits (opera-
tional point: 100–400 kcps), especially toward higher frequencies,
to better visualize the performance limitations of the detection
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Fig. 6. True positive detection vs simulated count rates for all analyzed algorithms
including three idealized reference ones: 20 keV photons with experimental and
Gaussian (s¼ 1 keV) noise.
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algorithms. In addition to the experimentally measured noise, a
white Gaussian noise component of s¼ 1 keV is added in the pre-
amplifier stage.

Very restrictive algorithms aiming to recognize the whole pulse
shape, represented here by the PSD, are very limited in the count
rate and stay far below the ideal 500 kcps limit. The other
investigated algorithms can be classified into three distinct
groups; within each group a change of simulation parameters
may still yield a reordering.

In the lowest group we find the simple CIS algorithm and
the analog methods using only one differentiator. The LMS and
CC-LMS show similar performance and are therefore assigned to
this group as well, although they approach the second group for
lower count rates.

The main, middle group contains mainly FIR filters including
the trapezoidal and the Canny algorithms as well as the optimum
filter 1 (opt1na). The best performance in this group is achieved by
double differentiation IIR and FIR filters coming close to the
idealized 1 Mcps case.

The top performance with respect to true positive detection
rate is obtained with the other optimum filters 2, 3 and 4, and by
delay line algorithms. All of these approach the performance of the
idealized 2 Mcps detection.

5.2.2. False detection
Although the true positive detection or throughput at high

count rates is an important parameter, the classification made in
the previous section is certainly not a general one. One parameter
demonstrating this is the percentage of false positive detection,
plotted in Figs. 7–9.

In the top group (Fig. 7) it can be clearly seen that the delay line
algorithms, especially the double one, are unusable in the present
parameter range since the noise leads to an unacceptable fraction
of false positive detection.

Within a selection of the middle group with good throughput
(Fig. 8), the FIR filter algorithms based on one differentiation suffer
from practically no false positive detection while those using a
second differentiator (Trpz2 and ðCRÞ2ðRCÞ4) do have a finite false
positive fraction, albeit still arguably fairly low.

For the algorithms in the bottom throughput rung (Fig. 9), there
is a very similar subdivision. Here, the CC-LMS and LMS algorithms
select the pulses quite restrictively and are therefore very resistant
to false positive detection. In the case of the CIS and PSD

algorithms, a significant false detection level is observed, attribu-
table to the limited noise filtering.

5.2.3. Noise sensitivity
The comparisons of the algorithms in the count rate scan,

especially the false detection analysis, lead one to expect signifi-
cant differences in the algorithms' noise sensitivity. This is now
studied, again around the HXRS operational point defined in
Section 5.2.1, by varying the noise level from 0% to 200% at a
fixed simulated count rate of 200 kcps. This noise level scan is
equivalent to a photon energy scan since both result in scans of the
signal-to-noise ratio.

True positive detection: The resulting true positive detection
fraction is shown in Fig. 10. Substituting the experimentally
measured noise by white Gaussian noise with s¼ 5 keV yields
essentially the same result, shown in Fig. 11.

One of the main observations is that at a low noise level the
classification into 3 groups breaks down. All investigated algo-
rithms except (CR) (RC) and PSD detect about 75–90% of the
simulated pulses if the noise stays below 40% of the reference
level. However, as the noise rises above 50% of the reference level,
the optimum and single Trpz FIR filters, as well as the ðCRÞ2ðRCÞn
analog methods are hardly affected while the other methods are
quite significantly degraded, especially the ðCRÞðRCÞ4 and CIS
methods. The delay-line algorithms represent a special case: their
performance appears, paradoxically, to increase with noise, but
this is an artifact as discussed in the following.

False positive detection: The increase in the true positive
detection performance of the delay line algorithms with increasing
noise can be understood by looking at the false detection rate,
shown among the other figures of merit in Fig. 12. It is evident that
the very limited noise rejection of the delay line algorithms leads
to an extremely high false positive detection rate at a significant
noise level, reaching in fact over 300% for the DDL (well beyond
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Fig. 7. Comparison of figures of merit for the 5 algorithms achieving the best count
rate performance for 20 keV photons at 200 and 400 kcps with experimental and
Gaussian (s¼ 1 keV) noise. From left to right the 5 figures of merit are the false
positive detection rate, the true positive detection rate, the false negative detection
rate, the energy standard deviation derived from true positive detection and the
energy standard deviation including all (true and false) positive detection. The true
positive and false negative detection rate bars are stacked since they add up to one.
In contrast, the two energy deviation bars are not stacked but overlaid, starting
from the same origin, labeled at the horizontal axis.
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the range accommodated by Fig. 12). This results in spurious false
positive detections that coincide but are uncorrelated with real
pulses, leading them to be wrongly classified as true positive. As a
consequence, the use of delay lines should be avoided if there is
significant noise in the signal.

Again, the main algorithms of each group are shown in
Figs. 12–14, for four different relative noise levels. The algorithms
with strongly noise-degraded true positive detection rate (PSD,
ðCRÞmðRCÞ4, CIS, Trpz2) also show the highest noise sensitivity
regarding false positive detection. Hence, their usage should be
limited to low noise applications too. In contrast to that, the false
positive detection rate of the optimum and single Trpz FIR filters is
also barely affected by the increasing noise level. Only the opt4na
filter, which is most optimized for fast response, should be used
with some caution at significantly higher noise levels.

5.3. Energy accuracy

Regarding the energy accuracy the most salient observation is
that all algorithms exhibit a significant energy deviation of at least
15% at the HXRS operational point. This is, however, reasonable
under the demanding conditions of high count rates and pulse
heights in the range of the noise level. Figs. 7–9 indicate that most
algorithms lie near the high energy accuracy limit achieved by
several FIR and the ðCRÞðRCÞ4 IIR filters. Only the CIS and the DDL
algorithms are highly disturbed due to their poor noise filtering.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

relative noise level

tru
e 

po
si

tiv
e 

de
te

ct
io

n 
fra

ct
io

n

Fig. 11. True positive detection vs relative noise level (w.r.t. pure white Gaussian
noise with standard deviation of 1 keV at the pre-amplifier stage and 5 keV after
the amplifier stage) for all analyzed algorithms including three idealized reference
ones for 20 keV photons.
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Fig. 12. Comparison of figures of merit as in Fig. 7 for the 5 algorithms achieving
the best count rate performance for 20 keV photons at 200 kcps for several relative
noise levels f nAf0;0:5;1;1:2g (selected from Fig. 10).
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Fig. 13. Comparison of figures of merit as in Fig. 12 for 5 algorithms with
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Fig. 14. Comparison of figures of merit as in Fig. 12 for 5 algorithms with relatively
poor count rate performance for the same modeled signal as in Fig. 12.
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Fig. 10. True positive detection vs relative noise level (w.r.t. the noise used in Fig. 6)
for all analyzed algorithms including three idealized reference ones for 20 keV
photons.
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As for the previously discussed figures of merit, the energy
accuracy is also affected by a changing signal-to-noise ratio. As can
be seen in Figs. 12–14, the energy deviation, as expected, increases
with the noise level. Interestingly, however, several algorithms
exhibit a significant energy deviation even when the noise level is
equal to zero. This effect is generally stronger for algorithms with
low count rate performance. Those suffer mainly from poor pulse
separation which causes consecutive pulses to influence both the
pulse detection and the pulse height analysis of each other.

5.4. Experimental validation

The simulation-based benchmarking was validated using an
experimentally measured signal from the HXRS diagnostic (TCV
discharge ♯45252, time trace part shown in Fig. 5). The positive
detection rate was compared to a reference method (opt4na)
around the HXRS operational point (100–400 kcps). As can be
seen in Fig. 15, the result of the simulation is essentially repro-
duced. Only the double differentiating methods (Trpz2, ðCRÞ2ðRCÞn)
and the delay line methods report a significantly higher count rate.
This is mainly due to an increased false positive detection.

5.5. Computation/real-time applicability

The computational effort required by most of the algorithms
discussed in this paper is quite limited. To give a quantitative
measure we list the CPU time required by our implementation on
a single core of a present x86-64 CPU (Intel Core i7-2760QM) for
2 s of signal acquired or simulated at 12M samples/s: the signal
treatment using digital FIR or digitally emulated analog filters
takes about 1 s, only the cross-correlation and digital band-pass
filters require significantly higher computational effort (about one
order of magnitude). The threshold or rise threshold detection
takes about 1.5 s while the use of a dynamic threshold or multiple
condition detection increases the computational time as well. The
level or rise evaluation analysis is negligible (about 10 ms).
Algorithms with significantly higher computational effort (about
one order of magnitude) are therefore the CC-LMS, CIS and PSD
algorithm. The post-processing to obtain a histogram in time and
energy bins takes about 2 s at high count rates and is significantly

lower at low count rates. The real-time applicability is already
proven for digitally implemented ðCRÞmðRCÞn filters in Ref. [13] and
digital FIR filters in Ref. [14], at sampling rates well beyond that
of the HXRS. It is planned to implement real-time pulse processing
for the HXRS system too, using the FPGAs on the digitizer cards
(D-tAcq ACQ216CPCI).

6. Conclusions

A complete set of digital pulse processing methods was
individually described, jointly implemented and compared within
a general benchmarking framework. This ensures the general
applicability of the presented results for any kind of digital pulse
processing application, far beyond the scope of the specific
measuring apparatus to which these results were first applied
[2]. Although the focus was initially placed on high count rates and
significant noise levels, the extension of the analysis to both low
count rates and noise levels was straightforward and seamlessly
integrated.

The main message is that the implementational and computa-
tional effort of essentially all the methods presented is comparable
while the results differ significantly. Therefore the importance of
making the right choice of pulse processing method should not be
underestimated.

The best overall performance was obtained by optimum FIR
filters that were also superior on each of the individual bench-
marking figures of merit. Therefore these filters are clearly the top
choice. FIR filters constructed on the basis of trapezoidal filters,
along with the analog ðCRÞ2ðRCÞn method, lie only slightly behind.
Since the filters of the Trpz family are among the easiest to
implement, they can also be a reasonable solution if one wants
to avoid the optimization process. The ðCRÞ2ðRCÞn is consequently
the best-performing method that can be easily implemented as an
analog system [24].

The use of delay lines should only be considered for virtually
noiseless systems. Other algorithms studied, such as the ðCRÞðRCÞn,
CC-LMS, LMS, PSD and CIS methods, are not recommended,
especially not in high count rate applications.
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