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Digital pulse processing allows the synthesis of exponential signals that can be used in pulse shaping

and baseline restoration. A recursive algorithm for the synthesis of high-pass filters is presented and

discussed in view of its application as a baseline restorer. The high-pass filter can be arranged in a gated

baseline restorer configuration similar to widely used analog implementations. Two techniques to

synthesize time-invariant, finite impulse response (FIR) cusp shapers are presented. The first technique

synthesizes a true cusp shape in the discrete-time domain. This algorithm may be sensitive to round-off

errors and may require a large amount of computational resources. The second method for synthesis of

cusp shapes is suitable for implementation using integer arithmetic, particularly in hardware. This

algorithm uses linear interpolation to synthesize close approximations of true cusp shapes. The

algorithm does not introduce round-off errors and has been tested in hardware.

& 2011 Elsevier B.V. All rights reserved.
1. Introduction

Exponential signals are essential for the formation of detector
signals and pulse shaping in radiation measurements. Exponential
signals can be found in noise analysis and optimal pulse shaping
[1,2]. Historically RC–CR circuits have been used to shape detector
pulses. The R–C low pass filter has an impulse response, which is
a decaying exponential signal. The step response of the C–R high
pass filter is also a decaying exponential signal. With the devel-
opment of digital techniques to process detector pulses various
pulse shape synthesis algorithms were introduced that resemble
cusp shapes [3,4]. This paper describes efficient digital techniques
to synthesize exponential signals including the true cusp shape.
The algorithms and the system descriptions use discrete-time
signal notations, basic signal definitions and graphical system
blocks as defined in reference [5]. It should be noted that the
functional block diagrams are graphical representations of digital
signal processing operations and not of actual hardware blocks or
software routines. These operations accept and generate
a sequence of signal samples by performing instantaneous opera-
tions. Synchronous hardware designs will require accurate data
synchronization, which can be achieved by accounting for any
delays associated with the hardware-implemented arithmetic
and logic operations.
ll rights reserved.
2. Digital synthesis of exponential signals

Mathematically the exponential signals in the discrete time
domain are defined by

yðnÞ ¼
an for nZ0

0 elsewhere

�
ð1Þ

where a is called an exponential base [5]. In digital signal
processing n is the index of the consecutive values (samples) of
the discrete-time signal. If a¼0 or a¼1 then all samples y(n) for
nZ0 are constant (equal to 0 or 1, respectively). If the exponen-
tial base a is greater than 0 but less than 1, y(n) is a decaying
exponential signal. If a is greater than 1 then y(n) is a growing
exponential signal. If a is negative then y(n) alternates between
positive and negative numbers. In this paper we consider the
exponential base a to be greater than zero.

From Eq. (1) the ratio of two consecutive values of an
exponential signal can be expressed as

yðnÞ

yðn�1Þ
¼

an

an�1
¼ a ð2Þ

for n40 and y(0)¼1.
Using Eq. (2), a growing or decaying exponential signal can be

expressed in the following recursive form

yðnÞ ¼ ayðn�1Þ ð3Þ

for every n, given the initial conditions y(0)¼1 and y(n)¼0 for
no0.

www.elsevier.com/locate/nima
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The goal of exponential signal synthesis is to define a linear
time-invariant (LTI) recursive system that produces an exponen-
tial signal in response to an input signal x(n). This system can be
described using a first order difference equation [5]

yðnÞ ¼ xðnÞþayðn�1Þ ð4Þ

The output signal y(n) represents an exponential signal only
when the conditions y(0)¼1 and y(n)¼0 for no0 are fulfilled.
These conditions are met when the system is relaxed [5] by
forcing delayed term y(n-1)¼0 for no0, and when the input
signal x(n) is the unit impulse d(n) (x(n)¼d(n)). In this case the
output of the system y(n) is the system’s infinity impulse
response (IIR) h(n)

hðnÞ ¼ dðnÞþahðn�1Þ ð5Þ

for nZ0 and h(n)¼0 for no0. It is clear that this impulse
response is an exponential signal, which grows or decays infi-
nitely in time.

The functional block diagram of a system with an exponential
impulse response, as defined by Eq. (5), is illustrated in Fig. 1b.
The recursive algorithm requires three functional blocks: an
adder, a unit delay and a constant multiplayer. This system, when
excited by a unit impulse d(n), will generate exponential signals
that are either growing (Fig. 1c) or decaying (Fig. 1d). The growth/
decay rate is determined by the magnitude of the multiplication
coefficient a which is the exponential base of the output expo-
nential signal. The system depicted in Fig. 1b is a basic functional
block for the synthesis of cusp shapers that will be discussed later
in this paper.
h n-1ah n-1

� n h n =an

a > 1

0 < a < 1

n

n

h n

h n
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Fig. 1. Block diagrams: (a) of a system synthesizing exponential signals and (b)

exponential unit impulse response. Examples are shown of: (c) a growing

exponential impulse response and (d) a decaying exponential impulse response.
3. High-pass filter

High pass filters are used in pulse shaping as well as in
baseline restorers of radiation spectrometers [2,6,7]. The C–R
differentiation is widely used as a pulse conditioning circuit in
spectroscopy amplifiers. In some cases pole-zero cancelation
circuits are used to achieve a single real pole exponential
response. The step response of a high-pass C–R filter is a decaying
exponential signal with decay time constant equal to CR.

In the discrete-time domain a decaying exponential signal can
be synthesized as a response to a unit step u(n) (x(n)¼u(n)). In
Fig. 2a functional block diagram of such a system is shown. The
system implements a recursive algorithm using a constant multi-
plier, an accumulator (ACC) and a subtractor. It is important that
an initial condition of the system is established. Particularly, the
accumulator needs to be reset to zero before any non-zero digital
signal values are applied to the system input, e.g w(n)¼0 for
no0.

At any time the accumulator output w(n) contains the sum of
all weighted output values preceding y(n).

To derive the unit impulse response of the system the
accumulator response is expressed as a function of the weighted
output signal. The accumulator response is given by the sum of all
previous cy(i) values, and w(n) is the same, shifted by a unit delay

wðnÞ ¼
Xn�1

i ¼ �1

cyðiÞ ð6Þ

Let x(n)¼u(n) and w(n)¼0 for no0. These conditions define
y(n)¼0 for no0. The unit step response of the system y(n) is then
given by the following equation:

yðnÞ ¼ xðnÞ�wðnÞ ¼ uðnÞ�
Xn�1

i ¼ 0

cyðiÞ ð7Þ
w n

cy n

y nx n

n

x n =u n

w n

y n

Fig. 2. A digital high-pass filter: (a) functional block diagram and (b) its response

to a unit step signal.
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By definition u(n)¼0 for no0 and u(n)¼1 elsewhere. Thus,
Eq. (7) can be expressed in a recursive form for n40

yðnÞ ¼ ð1�cÞyðn�1Þ ð8Þ

If a¼1�c then Eq. (8) becomes equivalent to Eq. (3), which
defines an exponential signal. Therefore, the unit step response of
the discrete-time system in Fig. 2a is an exponential signal. The
exponential base of this signal is determined by the multiplica-
tion constant c. If 0oco1 the system is a discrete-time equiva-
lent to the C–R differentiation network in the continuous time
domain. Fig. 2b shows the digital signals synthesized by a digital
high-pass filter.

This filter may be used as a gated high pass filter for baseline
restoration and DC stabilization similar to analog implementa-
tions [6,7]. Base line restorers affect to some degree the noise
performance of pulse shapers [8,9,10]. Historically, the baseline
restorers were introduced to remove the baseline fluctuations
caused by AC coupling networks [8]. Digital pulse processing
algorithms allow removal of analog responses of CR and RC
networks, which virtually eliminates the need of baseline
restorers. The only function of the baseline restorers in such
systems is to compensate for DC offsets and drifts. If the high-pass
filter described here is used as a gated baseline restorer and its
time constant is very large then the baseline restorer impact on
the shaper noise-suppression function will be minimal [10]. If,
however, a finite impulse response of the entire pulse processing
system cannot be achieved, the choice of baseline restorer should
be made by considering optimal baseline restoration techniques
[8,9,10].
n

h(n)

δ(n)

RT FT DT

n

Fig. 4. Impulse response of a cusp shaper.
4. Digital cusp shaper

Cusp shapers have been recognized as the optimal filters for
high resolution spectroscopy in the presence of white noise when
the signal duration is much longer than the noise corner time
constant [1,2]. In order to determine the noise corner time
constant a detailed determination of the noise properties of the
spectroscopy system must be performed. In addition, the pulse
pile-up and the counting throughput requirements impose con-
straints that not only limit the total filter duration, but also define
the optimal pulse shape. For example, a triangular shape is
optimal for a duration much shorter than the noise time corner
constant in the case of a series and parallel only noise model. The
presence of 1/f noise will also have an effect on the optimal pulse
shape [11].

Various publications and text books provide detailed noise and
optimal pulse shaping analysis [1,2,6,11–13]. The selection of
optimal pulse shapers is beyond the scope of this paper. This paper
focuses on the synthesis of cusp shapers that may or may not be
optimal for a given spectroscopy setup. A practical cusp shaper
would have a finite exponentially rising edge, a flat top, if needed
and an exponentially decaying edge with finite duration. Although
of little use, a decaying edge with infinite duration can also be
synthesized and is presented in this paper only as a general
consideration.
Fig. 3. Pulse shape synthesis using u
Analog detector signals are normally conditioned and applied to a
digitizing ADC to be converted into discrete-time signals. The process
of digital pulse shaping can be easily performed by first unfolding
(deconvoluting) the digitized analog signal, and then synthesizing the
impulse response of the desired pulse shape. A system based on the
unfolding-synthesis technique is depicted in Fig. 3.

Algorithms are readily available to unfold single and multiple
real pole signals (exponential signals) [14]. Digitized step signals
from a reset type preamplifier can be unfolded using digital
differentiation. Thus, the goal of synthesizing a cusp shaper is to
define a linear digital system with an impulse response identical to
the desired cusp shape. This synthesis includes both growing and
decaying exponential signals. Depending on the type of exponential
decay of the cusp shape, two digital shapers can be synthesized. A
finite impulse response (FIR) cusp shaper corresponds to a cusp
shape with finite decay duration. When the decay is infinite the
shaper has an infinite impulse response (IIR).

The impulse response of a cusp shaper is shown in Fig. 4. The
cusp shape has three clearly distinguishable regions: RT represents
the rising edge of the cusp shape, FT is the flat top portion, and DT is
the decaying part of the cusp shape. In the digital domain the
duration of each of these regions is expressed by the respective
number of digital samples. The durations of these regions are
related to the continuous time durations, which are obtained by
multiplying the number of samples in each region by the ADC
sampling period DT.

The synthesis of the cusp shaper can be carried out by synthesiz-
ing each region separately and then combining the impulse
responses shifted appropriately. Fig. 5 shows the impulse responses
r(n), q(n) and p(n) to be synthesized. In this synthesis the number of
non-zero digital samples per region is as follows: RT has k samples,
FT has m samples and DT has either kþ1 samples (FIR) or an infinite
number of samples (IIR). The number of digital samples
nfolding-synthesis techniques.
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Fig. 5. Partition of the cusp impulse response into three separate impulse

responses: (a) exponential growth; (b) flat top and (c) exponential decay.
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Fig. 6. Functional block diagram of the true cusp shaper.
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corresponding to the discrete peaking time of the cusp pulse is
kþmþ1 and its continuous time equivalent is (kþmþ1)DT. The
cusp shape has a maximum equal to ak. As symmetrical pulse
shapes normally offer the optimal noise suppression, here it is
considered that the exponential growth and decay rates are the
same. It is straightforward, however, to synthesize asymmetrical
pulse shapes by making the exponential growth rate different from
the exponential decay rate.

The impulse response r(n) has a growing exponential part
followed by an abrupt return to zero. The recursive expression of
this impulse response is

rðnÞ ¼ dðnÞþarðn�1Þ�akdðn�kÞ ð9Þ

The recursive term ar(n�1) causes r(n) to grow exponentially
reaching a value of ak after k recursive iterations. At the moment
when r(n) becomes equal to ak the weighted and shifted unit
impulse term akd(n�k) is subtracted from r(n) causing r(k) to
become zero. This terminates the exponential growth. Note that
the return of r(n) to zero must be exact as any non-zero remnant
will grow exponentially due to the natural response of the system,
even when the input signal is equal to zero [5].

The cusp shape FIR of the decay part has a sharp rise from zero
to the maximum value ak of the cusp shape followed by a finite
exponential decay

pðnÞ ¼ akdðn�k�mÞþ
pðn�1Þ

a
�
dðn�2k�m�1Þ

a
ð10Þ
The recursive term (p(n�1)/a) causes p(n) to decay exponen-
tially. After k consecutive iterations from n¼kþm to n¼2kþm,
the exponentially decaying signal will decay from p(kþm)¼ak to
p(kþm)¼a0. At the next sample n¼kþmþ1 the term (p(n�1)/a)
is equal to 1/a. At this point the exponential decay of p(n) is
terminated (p(n) returns to zero) by a subtraction of the term
(d(n�2k�m�1)/a).

The IIR of the decay part of the cusp shape is similar, without
the term that terminates the exponential decay

pðnÞ ¼ akdðn�k�mÞþ
pðn�1Þ

a
ð11Þ

The flat top is synthesized by convolution of the shifted input
samples and a rectangular function

qðnÞ ¼ qðn�1Þþak½dðn�kÞ�dðn�k�mÞ� ð12Þ

Eq. (12) represents the well known box car averaging linear
system.

The impulse response of a cusp shaping system is achieved by
combining the impulse responses defined by Eqs. (9) and (12) and
either Eq. (10)(FIR) or Eq. (11)(IIR). The functional block diagram
of the shaper is shown in Fig. 6.

Caution should be exercised when these algorithms are imple-
mented using floating point arithmetic. The return of r(n) to zero
after reaching its peak is absolutely necessary. In the process of
r(n) synthesis small and very large numbers are added together,
which may cause round-off errors. These errors will exponentially
propagate and accumulate leading to a numerical overflow.

As the native data from analog to digital converters are
integers, the use of integer arithmetic is preferable, especially in
the case of real time pulse shape synthesis. However, integer
arithmetic imposes additional constraints that may limit the
flexibility of choosing cusp shape parameters. These limitations
are primarily caused by the restricted fractional multiplication in
integer arithmetic. In addition, exponential signals may require
digital words with a large number of bits, which may reduce the
speed of the algorithms synthesized in hardware, e.g. in FPGAs.
5. Cusp shaper with linear interpolation

One practical solution to synthesize cusp shapes using integer
arithmetic is to use an integer exponential base a¼2,3,4y. The
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process of incrementing each consecutive value of the growing
exponential y(n) requires a large amount of arithmetic resources
which increase the complexity of the cusp shape synthesis. For
example, a cusp shape with a peaking time of 100 samples will
require a digital word capable of storing a value of a100. If a¼2 the
digital word needs to have length of at least 100 bits to avoid the
introduction of round-off errors. Practically, only cusp shapes
with a very limited rising edge duration can be synthesized using
integer arithmetic operations. To synthesize cusp shapes with
longer rising edge durations a close approximation of the cusp
shape can be used. Let KZ0 and L40 be integer numbers. Let us
consider the following equation:

yðnÞ ¼

X1
K ¼ 0

aK dðn�KLÞ for nZ0

0 for no0

8><
>: ð13Þ

Eq. (1) is a special case of Eq. (13). Indeed, if L¼1 Eq. (13) is
identical to Eq. (1). If L41 then the non-zero values of the
exponential signal are spread out by introducing gaps between
them. The non-zero values of y(n) are y(KL)¼aK. This effectively
scales down the exponential base relative to the case when L¼1.
Let yc(n) be an exponential signal defined as

ycðnÞ ¼ bn
ð14Þ

If yc (KL)¼y(KL) for every KZ0, then the non-zero points of
y(n) lie on the curve defined by yc(n) as shown in Fig. 7. Thus, the
effective exponential base of Eq. (13) is reduced to

b¼ a
1
L ¼

ffiffiffi
aL
p

ð15Þ

The reduction of the exponential base relaxes the require-
ments for the integer arithmetic operations to use a large number
of bits for the synthesis of cusp shapes. However, this exponential
base reduction introduces gaps in the exponential signal. These
gaps cannot be filled with exact exponential values due to
limitations of integer arithmetic, but can be approximated using
linear interpolation. The linear interpolation is carried out using
integer numerical integration (accumulation) of the exponential
signal y(n). The first accumulation is given by the following
expression

yIðnÞ ¼

Xn

i ¼ 0

yðiÞ for nZ0

0 for no0

8><
>: ð16Þ

where y(i) is the signal as defined by Eq. (13).
Fig. 7. Exponential signal yII(n) using linear interpolation in comparison to

exponential signals y(n), yc (n) and yI(n).
The resulting signal is stair-case like as shown in Fig. 7. The
area enclosed by yI(n) is found by a second accumulation, which
completes the process of linear interpolation

yIIðnÞ ¼

Xn

i ¼ 0

yIði�1Þ for nZ0

0 for no0

8><
>: ð17Þ

The linearly interpolated signal yII(n) closely approximates the
exponential signal of Eq. (14), but has a term that causes non-
exponential behavior for small values of y(n). This term is a
constant term equal to L/(a�1), which can be obtained from
Eq. (17) taking into account that the area under yI(n) is the sum of
tightly stacked rectangles with height ai and length equal to L

yIIðKLÞ ¼
XK�1

i ¼ 0

Lai ¼
L

a�1
aK�

L

a�1
ð18Þ

The cascaded accumulations of y(n) introduces a gain
G¼L/(a�1). The goal is to make yII(n) a true exponential signal
at the n¼KL points. That is yII(KL)/yII(KL�L)¼a. To achieve this
goal a new term is added to Eq. (17), which cancels out the
constant L/(a�1), redefining yII(n) as

yIIðnÞ ¼
Xn

i ¼ 0

yIði�1Þþ
L

a�1
dðiÞ

� �
for nZ0 ð19Þ

Fig. 7 depicts the synthesized exponential signal using linear
interpolation with a¼2 and L¼10. The exponential functions
defined by Eqs. (13), (14) and (16) are also shown for reference.

Cusp shapes based on linearly interpolated exponential signals
are synthesized using Eqs. (13), (16) and (19). For the purpose of
real time synthesis all equations need to be used in their recursive
form. The recursive form of Eq. (13) is given by the following
expression

yðnÞ ¼
X1

K ¼ 0

ayðn�LÞdðn�KLÞ ð20Þ

Fig. 8 shows the functional block diagram of an FIR system that
synthesizes linearly interpolated cusp shapes. Note that this
circuit requires only two more delays and two more adders than
the cusp filter in Fig. 6. To synthesize the impulse response let
x(n)¼d(n). The following equations describe the recursive algo-
rithm of this system:

rðnÞ ¼ xðnÞþarðn�LÞ�aK xðn�kÞ ð21Þ

pðnÞ ¼
aK xðn�k�mÞþpðn�LÞ�xðn�2k�mÞ

a
ð22Þ

qðnÞ ¼ qðn�1Þþ½rðn�1Þ�rðn�L�1Þ��½pðn�1Þ�pðn�L�1Þ� ð23Þ

yðnÞ ¼ yðn�1ÞþqðnÞþ
L

a�1
xðnÞ�xðn�2k�m�1Þ
� �

ð24Þ
+x(n)
y(n)

z-k

z-m

-

-
+

z-L

z-L +
-

+
-

+
-

z-1 +r(n)

p(n)

q(n)

+-

z-1

z-1z-k

aK

a

aK 1/a

L/(a-1)

Fig. 8. Functional block diagram of the digital cusp shaper using linear

interpolation.
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where r(n)¼0 and p(n)¼0 for �Lrno0, q(n�1)¼0 and
y(n�1)¼0 are the conditions to make the system relaxed [5].

The duration of the rising and the falling edges of the
cusp shape is equal to k digital samples. The duration of the
flat top is equal to m digital samples. The flat top duration m

is an integer equal to or greater than zero. When m¼0 the
maximum of the cusp shape is reached by only a single digital
sample. The duration k of the rising and the falling edges is
Fig. 9. FIR examples of linearly interpolated cusp shape synthesis with K¼24, L¼40 wit

is not aligned and scaled as the linear scale.

Fig. 10. Oscilloscope traces of real time cusp shape (trace
also a positive integer which is, however, restricted to k¼KL. The
total width of the FIR cusp shape is 2kþmþ1. When K¼1 the
linearly interpolated cusp shape transforms to a triangular/tra-
pezoidal shape. The peak value of the linearly interpolated cusp
shape is

yPEAK ¼
L

a�1
aK ð25Þ
hout a flat top (c, d) and with a flat top (e, f). Note that the vertical logarithmic scale

1) in response to a preamplifier tail pulse (trace 2).



V.T. Jordanov / Nuclear Instruments and Methods in Physics Research A 670 (2012) 18–2424
When L¼1 the system in Fig. 8 will synthesize true cusp shapes.
Once the impulse response of the cusp pulse shaper is synthesized it
is straightforward to synthesize cusp shapes from other digitized
analog signals using the method of unfolding-synthesis as shown in
Fig. 3.

Examples of cusp shape synthesis using the linear interpola-
tion technique are shown in Fig. 9. The shapes are depicted in
linear and logarithmic scales, Fig. 9a shows the exponentially
growing part r(n). Note the abrupt return to zero at the end of the
exponential growth. Fig. 9b shows the exponentially decaying
part. The non-zero samples of both r(n) and p(n) occur at intervals
of L samples. Fig. 9c and d show the result of the first accumula-
tion q(n), which is a staircase like signal with step width of L

samples. Fig. 9c represents a case of a cusp shape without a flat
top (m¼0). Fig. 9d shows a case of cusp shape with a flat top. Note
that the positive (exponential growth) and the negative (expo-
nential decay) parts of q(n) are separated by a ‘‘gap’’ of samples
with zero values. The length of this ‘‘gap’’ is equal to m samples,
which is the duration of the flat top in the synthesized cusp shape.
Fig. 9e and f depict the synthesized cusp shapes without and with
a flat top, respectively.

A time invariant cusp shaper defined by Eqs. (21)–(24) was
implemented in an FPGA. The signal from a silicon drift detector is
digitized at 80 MHz by a 14-bit ADC. The digitized signal is
continuously processed by the FPGA at the same rate as the
ADC sampling rate. A digital-to-analog converter (DAC) is used to
convert the digital signal to a physical signal (voltage) in the real
time domain. Fig. 10 shows oscilloscope traces of the DAC
reconstructed response of the cusp shaper (trace 1) to the analog
tail signal (trace 2) from the silicon detector exposed to a Fe-55
source. To illustrate the real time operation the oscilloscope
display persistence is turned on.
6. Conclusion

Efficient algorithms for synthesis of exponential pulse signals
have been developed. These algorithms are suitable for
implementation in either time-invariant or time-variant linear
digital systems. The cusp shape algorithm based on linear inter-
polation is especially suitable for real-time implementation in
hardware. It is also possible to implement higher order cusp
interpolations. The discussion of such implementations, however,
is beyond the scope and the size of this paper. All algorithms that
use exponential growth functions require special attention to
avoid signal distortion and numerical overflow due to round-off
error amplification.
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