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Abstract

Fast digital sampling and signal processing of the output of charge-sensitive preamplifiers connected to solid-state detectors, used in

nuclear physics experiments, constitute effective replacements of the standard analog methods. If high-resolution and high-speed

sampling Analog to Digital Converters (ADCs) are used, both the energy and timing resolution performances of the detector can be

effectively exploited. The choice of a particular fast ADC in these applications is strictly related to the desired resolution and dynamic

range of the system. In this paper a quantitative evaluation of system resolution is carried out—the results of [L. Bardelli and G. Poggi,

Digital sampling-systems in high-resolution and wide dynamic-range energy measurements: comparison with peak sensing ADCs, this

issue] are extended taking into account not only the detector noise, the digitizer properties, and the digital shaping, but also the use of a

finite time interval for both baseline evaluation and digital shaping. The resulting performances are expressed using the parameter

PSENOB [L. Bardelli, G. Poggi, Digital sampling-systems in high-resolution and wide dynamic-range energy measurements: comparison

with peak sensing ADCs, this issue] and two additional correction terms. The effects due to ADC non-linearities are also briefly

addressed. Simulations are presented to validate the proposed recipe. Experimental tests using a germanium detector in a wide dynamic-

range configuration (at different counting rates) as well as an application to DE � E charged particle identification are shown. The

presented discussion and results can be directly extended to various experimental arrangements.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

High-resolution amplitude (i.e. energy) measurements
are fundamental in various nuclear physics applications, as
for example in g spectroscopy measurements or charged
particle detection/identification. In the last decade the
availability of Analog to Digital Converters (ADCs)
characterized by high-resolution (410 bits) and sampling
speed ð420MSamples=sÞ has made it possible to use such
systems as a replacement for standard analog electronics
(i.e. analog shaping followed by peak-sensing converters),
e front matter r 2006 Elsevier B.V. All rights reserved.
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the main advantages being increased performances, flex-
ibility, ease of maintenance, and generally lower costs.
In a commonly adopted configuration (as described for

example in Ref. [1]) the digitizer is directly connected to the
detector preamplifier output. The use of a proper signal
processing of the data does not introduce any additional
noise contribution, so that the highest Signal-to-Noise
Ratio (SNR) can be achieved. Depending of the noise
characteristics of the used detector/preamplifier configura-
tion and of the experimental requirements (for example
counting rate, ballistic deficit compensation with flat top
filters, . . .) an ‘‘optimal’’ digital filter can be synthetized
(see for example Ref. [2] and references therein) and
applied to the collected data in order to improve the SNR
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1In systems where many detectors are used and complex high-

multiplicity events are of interest, an additional validation by a general

‘‘experiment’’ trigger is usually required, built on the various single

channel triggers.
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and to extract the desired high-resolution amplitude
information.

The properties of the used ADC, i.e. mainly the Effective
Number of Bits and the sampling frequency, play a
significant role to maintain the intrinsic detector amplitude
resolution over a wide dynamic range. This point has been
addressed in the companion paper [1], using very general
hypotheses regarding the detection/ADC system under
consideration. It has been shown that the digital system
performances can be summarized by defining the quantity
PSENOB, i.e. the ‘‘Peak-Sensing-Equivalent Number of
Bits’’.

In Ref. [1] the practical problem of using a finite time
interval (i.e. a finite number of samples) for digital signal
shaping and the presence of a non-zero baseline value has
been deliberately neglected. On the contrary, in this paper
the resolution worsening due to both these effects is
explicitly discussed and quantitatively evaluated. As a
matter of fact, these topics have been decoupled from the
first discussion [1] because the arising necessary complica-
tions would have made the presentation less perspicuous.
The present paper shows that in most practical cases these
effects can be kept sufficiently small so that the main results
of Ref. [1] can still be applied.

The paper is organized as follows. After a brief pre-
sentation of the used event-based approach (Section 2), an
exact computation of the attainable resolution is carried
out (Section 3) for the general case of digital shaping,
taking into account the baseline duration and the sampled
preamplifier noise. The effects of the used baseline
subtraction method for short baseline times are explicitly
considered in Section 4, and a connection with the quantity
PSENOB [1] is established. The used approach is validated
in Section 5 using the simulation of a realistic wide
dynamic-range experiment employing a germanium detec-
tor. ADC non-linearities are briefly addressed in Section 6.
The discussion is also validated by experimental tests
(Section 7) performed with a germanium detector (at
various counting rates) and with a Si–CsI(Tl) telescope in a
standard DE � E configuration using the AD conversion
system described in Ref. [3].

2. Event-based and continuously running digital systems

In typical nuclear physics applications, for instance those
requiring a large solid angle coverage, several detectors are
often used, each of them typically provided with an
independent electronic device for amplitude/energy mea-
surement. Each of these measuring devices, either with
analog or digital implementation, is usually based on two
subsystems, one devoted to the very determination of the
signal amplitude and the other one to the recognition of the
presence of the signal. The first subsystem, referred to as
‘‘energy estimator’’ in the following, provides on demand
an estimate of the amplitude/energy of the current event,
by using proper filtering (thus also including any baseline
correction, if needed). The second subsystem, ‘‘event-
finder’’ in the following, provides a logic signal when a
signal is present at the output of the associated detector.
The ‘‘event-finder’’ output may also be used as a single
channel trigger.
Using this schematization, the whole energy measure-

ment process of a single detector consists in waiting for the
event-finder subsystem to detect the presence of a signal of
the detector, and then in transferring1 the value provided
by the energy estimator subsystem to the acquisition
system.
Both subsystems can be implemented either with analog

or digital methods. In a typical implementation using
digital methods, the ADC is usually free-running, i.e. a
digital data stream with fixed sampling period tclk is
produced at any time. The details of the used event-finder
system, either with a standard analog implementation
(i.e. leading edge, constant fraction, . . .) or a digital one as
in Ref. [4], are immaterial for the following discussion and
therefore will not be addressed in this paper.
Regardless of the implementation details, the event-

finder subsystem must continuously check the input for
detector events. On the other side, a digital implementation
of the energy estimator subsystem may be realized either
using an ‘‘event-based’’ or a ‘‘continuously running’’
configuration. The main difference between these two
configurations resides in the way the digital data are on-line
analysed by the energy estimator subsystem, resulting in
different hardware and software requirements.
In event-based systems (as the one described in Ref. [3]

and subsequent developments [5]) the energy estimation
subsystem connected to the AD converter is usually in an
idle state, waiting for the arrival of the logic signal from the
event-finder subsystem. The digital data stream produced
by the converter is thus normally ignored and no real-time

digital signal processing is performed. When a detector
signal is recognized by the event finder and the associated
logic signal is produced, the energy estimation subsystem
transfers into its memory the digital data belonging to the
time window covering the signal of the current event, and
starts the needed computations (including baseline correc-
tions, if needed). A circular buffer is usually inserted
between the AD converter and the processing system—old
samples are discarded and new samples are stored in such a
way that at each instant the last TBL=tclk samples are
available. The fired energy estimation subsystem is thus
able to use a finite ‘‘baseline time’’ TBL before the arrival of
the detector signal.
In continuously running systems (as in the proposal

[6,7]) the digital data stream coming from the AD
converter is always fed into the energy estimation
subsystem that performs a real-time implementation of
the desired processing (including baseline corrections if



ARTICLE IN PRESS

Time (ms)
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

500

1000

1500

2000

2500

3000

Fig. 1. Example of the output of a charge preamplifier over a long time

scale. Two distinct events can easily be seen. The shaded areas correspond

to the time windows available to an event-based system.
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needed), with no hardware restriction on the available time
window. When a detector event occurs, the measured
energy value is already available (apart from a possibly
non-zero fixed pipeline time delay), and is directly
transferred to the acquisition system with no additional
dead-time.

In the following sections an evaluation of the attainable
energy resolution using a finite time window system is
carried out, corresponding to the practical case either of an
event-based energy estimator subsystem or of a continu-
ously running system where the user has deliberately
decided to limit the digital signal processing to a finite
time window.

As far as the practical implementation details are
concerned, the choice between the two configurations is
fundamental in order to define the hardware and software
requirements of the system and to characterize its dead-
time.

As a matter of fact, continuously running systems are
characterized by an ideally zero dead-time, and require an
input/output and processing speed of the energy estimation
subsystem high enough to withstand the output data rate
of the AD converter. Depending of the AD converter used,
this may severely restrict the available choices of the
hardware for real-time processing. For example if a
�100MSamples=s converter is used (as in Refs. [3,8,9] or
in the proposals [6,7]), only fast FPGAs would be feasible,
ruling out all of the today available DSP processors on the
market. It has to be noted also that the typical processing
time required by a modern fast FPGA to perform a sum
between two 16 bit operands is of the order of 8–20 ns,
i.e. comparable or longer than the typical sampling period
of high-speed ADCs. This means that a non-trivial FPGA-
based implementation is required to withstand the ADC
throughput rate.

On the other side, an event-based system is characterized
by a higher dead-time, corresponding to the time needed by
the energy estimation subsystem to perform the computa-
tion of the signal amplitude after each event. Due to the
fact that the digital data stream can be stored on fast
temporary memory for later retrieval, event-based systems
can afford the use of both FPGAs and DSPs as energy
estimation subsystems. DSPs, while usually not as fast as
FPGAs, allow the use of much more sophisticated
algorithms that can be easily coded and maintained, taking
full advantage of the flexibility of these processors.

An example of an event-based system using a DSP-based
energy estimator and a simple analog event-finder system is
the prototype board described in Ref. [3], with the
developments of Ref. [5], that we have developed. This
system has been designed in order to be versatile enough to
be applied to several detector types (silicon, CsI, fast
scintillators, gas avalanche counters [9,10]) normally used
in nuclear reaction studies at Fermi energies [11–16].
Besides, these experiments usually require from a few
hundreds to thousands of electronic sampling channels.
The typical reaction-events of interest involve a multiplicity
of fired detectors significantly higher than unity, and the
typically involved reaction-event counting-rates are of the
order of 1 kcps. For each of the used detectors, several
physical quantities (energy, timing, pulse-shape, . . .) are
needed, and thus an event-based, DSP-equipped system
has been chosen to implement the energy-, timing-, and
pulse-shape-estimators. In these applications, due to the
relatively non-demanding counting-rate requirements, and
a fortiori in future applications in Radioactive Nuclear
Beam facilities, the DSP-related dead-time is not an issue.

3. Energy resolution with finite-time-window shaping and

baseline subtraction

In the present and the following sections we calculate the
energy resolution when a finite time window is used for
performing digital shaping (for example in the previously
discussed event-based systems). The calculation also
includes the issue of baseline evaluation and subtraction,
that is well known to be very important for high-resolution
wide-dynamic-range energy measurements. After this pre-
liminary discussion, in the following sections the influence
of ADC Effective Number of Bits and sampling rate is
quantitatively investigated exploiting the conclusions of
this section. The formalism adopted in the following
derivations coincides, where possible, with the notations
used in Ref. [1].
A correct baseline evaluation usually requires a ‘‘baseline

time’’ TBL free from detector events (or from long decaying
tails of the preceding ones). All the baseline-relevant
information is extracted from the available TBL=tclk
samples preceding the rise of the signal. In Fig. 1 a typical
output of a charge preamplifier over a relatively long time
scale is shown. Two distinct events can easily be seen,
together with the corresponding time windows used by
an event-based system (supposed to have TBL ¼ 4ms as in
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Ref. [5] and a total measuring time limited to 20ms). Given
the long time base shown in Fig. 1, the main features of the
preamplifier fluctuations are associated to the low fre-
quency step noise. In practical situations pick-up and
interferences from the environment, for instance 50/60Hz
noise related to the power lines, can also be present.
Detector dark current, preamplifier-output offset, and poor
pole-zero cancellation or AC coupling associated with high
counting-rate, may contribute with additional DC compo-
nents. These DC/low-frequency components constitute the
baseline which the signal develops over. In Fig. 2 an
example of an acquired digital sequence is presented. The
waveform from the considered event-based system starts at
the time conventionally chosen as t ¼ 0 in the figure, and a
finite time TBL precedes the rise of the detector signal. This
is the only time-window used for the whole procedure of
baseline evaluation/subtraction and digital shaping.

In the literature, many papers deal with the problem of
baseline subtraction for high resolution energy measure-
ments, both using analog baseline restorers (as pioneered
by Radeka [17]) and digital filtering [18]. As far as digital
baseline-restores are concerned, in the approach of Ref.
[18] any baseline shift is described as an equivalent detector
dark current I eq and therefore the baseline determination
consists in the evaluation of I eq. To this aim, the procedure
can be schematized as applying a proper weight function to
the detector current signal obtained by digital deconvolu-
tion of the preamplifier response—the optimal weight
function can be determined starting from the known noise
sources at the detector level.

In this work a different approach has been chosen,
similar to the one proposed few years ago in Ref. [19]. The
baseline is evaluated at the preamplifier level as an average
of the available samples preceding the signal and sub-
tracted. The resulting preamplifier signal is then digitally
shaped starting from t ¼ 0. The proposed method does not
need any detailed knowledge of the preamplifier response,
and it can be directly applied to several experimental
configurations, providing spectroscopy-grade resolutions
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Fig. 2. Example of digitized event for an event-based analysis. Note the

very different time scale with respect to the one used in Fig. 1.
and dynamic ranges (as it will be shown later). This method
performs at the same time the baseline evaluation over a
finite time interval and the digital shaping over a finite
number of samples. For this reason, in the following ‘‘finite
baseline time’’ and ‘‘finite time window’’ are used as
synonyms. The connection of this procedure with the
formalism of Ref. [18] is reported in Appendix A.
As anticipated, for each event the baseline is estimated as

an average of the NBL ðNBL ¼ TBL=tclkÞ samples available
in the first portion of the signal:

BL ¼
1

NBL

XNBL

i¼1

S½i�. (1)

The obtained BL value is then subtracted from the whole
sequence S½k�, and a digital shaping filter is applied.
A quantitative computation of the noise properties of the

system is performed, taking into account the baseline
subtraction. This computation cannot be performed in the
frequency domain because the acquired sequence S½k� is
non-stationary, since S½k� ¼ 0 for to0. The evaluation
must be carried out in the time domain.
Given the preamplifier response P½k� to a d-like detector

current (P½k� ¼ 0 8ko0, having for example a step-like
shape with exponential decay), the signal S0½k� after
baseline subtraction can be decomposed into signal and
noise components:

S0½k� ¼ S½k� � BL; S½k� ¼ q � P½k �NBL� þ n½k� (2)

where q � P is the noiseless preamplifier signal to be
measured, q is the deposited charge in the detector, and
n½k� describes the noise/DC components. With this nota-
tion, the subtracted BL value is thus given by

BL ¼
1

NBL

XNBL

i¼1

n½i�. (3)

For a noisy preamplifier with an ideal zero DC offset in the
output, n½k� (and thus BL) has zero expectation value (over
an ensemble of events). When a non-zero offset (possibly
slowly varying) is present, the baseline subtraction method
(Eq. (2)) allows for a compensation of this effect. As a
matter of fact, no hypothesis on the n½k� expectation value
hni is required for the following computations.
The output of the digital filter is computed with a

convolution between S0½k� and the digital filter response to
a d-like signal, that will be denoted by G½k� (the notation
GðtÞ will be used for its continuous-time equivalent). It has
to be noted that G includes all the necessary features for a
proper amplitude measurement, for example pole-zero
cancellation and ballistic deficit compensation. The integral
of GðtÞ will be denoted with GintðtÞ, coinciding with the
filter output to a perfect step input.
With reference to Fig. 3, the overall energy fluctuation

(in shaper output units2) can be computed as the variance
2In order to obtain the resolution in preamplifier output units or for

comparison between different filters having different gains, a normal-

ization factor equal to ½GintðTMÞ�
2 must be applied in Eq. (4).
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of the shaped signal at the measuring time TM, as defined
in Ref. [1] (where the signal starts at time ¼ 0). Usually TM

is chosen as the time when the output of the digital filter
reaches its maximum. With the used notation, the resulting
shaped signal reaches its maximum at time TBþM ¼ TBL þ

TM (see Fig. 3).
One immediately verifies that the expectation value of

the output of the digital filter is given by qP � G (‘‘�’’
denotes the convolution), i.e. the noise expectation value
hni cancels out. For the variance s2ðTBþMÞ of the output of
the digital filter at TBþM the following expression is
obtained:

s2ðTBþMÞ ¼ Ee

XNBþM

h¼1

ðn½h� � BLÞ � G½NBþM � h�

 !2
8<
:

9=
;

(4)

where NBþM ¼ TBþM=tclk and the notation Eefxg indicates
the expectation value of the quantity x over an ensemble of
events. The noisy samples n½k� are supposed to be described
as a stationary random process. The autocorrelation
function RðyÞ of n½k� is defined as usual:

RðyÞ ¼ lim
T!1

1

2T

Z T

�T

½nðtÞ � hni�½nðtþ yÞ � hni�dt. (5)

The quantity BL in Eq. (4) is not a constant but rather
a value extracted from the noisy samples n½k� for
1pkpNBL (see Eq. (3)) and therefore various autocorrela-
tion-like terms ðn½k� � n½h�Þ appear in the expansion of
Eq. (4).

Carrying on the calculations in the discrete time domain
as already discussed in the derivation of [1, Eq. (5)],
one obtains

s2ðTBþMÞ ¼
XNBþM

k;h¼1

G½NBþM � k�G½NBþM � h� � Etfn½k�n½h�g

þ
1

N2
BL

XNBþM

k;h¼1

G½NBþM � k�G½NBþM � h�

 !

�
XNBL

i;j¼1

Etfn½i�n½j�g

 !

�
2

NBL

XNBþM

k;h¼1

XNBL

i¼1

G½NBþM � k�G½NBþM � h�

�Etfn½k�n½i�g. ð6Þ

From Eq. (6) it can be easily seen that the possibly non-
zero average noise value hni cancels out, as expected,
regardless of the used filter G and TBL time interval. This
means that any DC component at the output of the
preamplifier is removed by the outlined procedure (an
alternative proof is given in Appendix A). Passing to
continuous variables and using the given definition of the
noise autocorrelation function, the obtained energy resolu-
tion reads

s2ðTBþMÞ

¼

ZZTBþM

x;y¼0
GðTBþM � xÞGðTBþM � yÞRðx� yÞdxdy|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

①

þ
1

T2
BL

Z TBþM

x¼0

GðTBþM � xÞdx

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

②

�

ZZTBL

x;y¼0
Rðx� yÞdxdy

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

③

�
2

TBL

Z TBþM

x¼0

GðTBþM � xÞdx

� �

�

Z TBþM

x¼0

dx

Z TBL

y¼0

dyGðTBþM � xÞRðx� yÞ

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

④

ð7Þ

The term ① is the contribution due to the use of the finite
time window TBþM for digital shaping, whereas the terms

②, ③ and ④ are associated with the baseline subtraction
algorithm. The ADC noise can be easily included in Eq. (7)
by adding to the detector autocorrelation function RðyÞ an
ADC-related autocorrelation term bADCf S=2 � dðyÞ. Eq. (7)
can be applied once the autocorrelation function RðyÞ is
known, typically with a dedicated measurement of the
sampled noise at the output of the preamplifier. Eq. (7)
gives an analytical expression of the overall energy
resolution for any given shaping filter GðtÞ and noise
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spectral density, taking into account the availability of a
finite baseline and shaping time.

In the limit TBL!1 only the term ① of Eq. (7)
survives, i.e. the special case of infinite number of samples
available for shaping and zero baseline is obtained. This
exactly corresponds to [1, Eq. (5)], that is the limit of
Eq. (7) for TBL!1.

In the following sections a quantitative evaluation of the
general formula Eq. (7) is performed for realistic experi-
mental configurations.
4. PSENOB and effects of the baseline subtraction for finite

TBL

In this section the resolution loss due to the use of a finite
length baseline will be considered and a connection to the
quantity PSENOB defined in Ref. [1] is established.

In the same hypotheses used in Ref. [1, Section 3], the
overall system energy resolution sexp;BL with a given ADC
and using a finite baseline time can be computed from Eq.
(7). In analogy with Ref. [1], grouping the non-white and
white terms and including the s2p and s2D contributions, one
obtains

s2exp;BL ¼ H2
GðTBLÞ þ ðbþ bADCÞk

2
GðTBLÞ þ s2p þ s2D (8)

where the same notation of Ref. [1, Eq. (6)] has been used
and the ADC noise, neglecting time-jitter effects [1], is
denoted by bADC (given in Ref. [1, Eq. (2)]). The two terms
HGðTBLÞ and kGðTBLÞ obviously depend on the used digital
filter and baseline time. Using the explicit expression for
the term kGðTBLÞ (given in Appendix B) it is seen that it
converges to the kG term defined in Ref. [1, Eq. (7)] in the
limit TBL!1. With a slight abuse of notation, in the
following this limit (i.e. the kG term of Ref. [1, Eq. (7)]) will
be denoted with kGð1Þ, and similarly for HG.

For a given filter G, we define sth;BL¼1 as the
theoretically achievable resolution with an infinite baseline
time in the chosen experimental conditions, i.e. in the ideal
situation where no contribution arises from the digitizer
system—s2th;BL¼1 ¼ H2

Gð1Þ þ bk2
Gð1Þ þ s2p þ s2D.

The ratio between s2exp;BL and s2th;BL¼1 is

s2exp;BL
s2th;BL¼1

¼
H2

GðTBLÞ þ bk2
GðTBLÞ þ s2p þ s2D

H2
Gð1Þ þ bk2

Gð1Þ þ s2p þ s2D

" #

þ
k2

GðTBLÞbADC

s2th;BL¼1

" #
. ð9Þ

Recalling the definition of PSENOB, given in Ref. [1,
Eq. (9)], two quantities l0BL and rBL can be defined so that
the first addendum of Eq. (9) is given by ½1þ l0BL� and the
full equation can be written as

s2exp;BL
s2th;BL¼1

¼ 1þ l0BL þ ð1þ rBLÞ
9

12

R

3sth;BL¼1

� �2

�
1

4PSENOB
.

(10)
With respect to the original equations using PSENOB [1,
Eq. (8)], two correction terms are present:

l0BL term. This term is directly related to the baseline
subtraction algorithm, and it does not depend on
the chosen AD converter. This reflects the loss of
information due to the use of a finite baseline time
that would be present also if a noiseless ADC (i.e.
very large PSENOB value) were used. In the limit
TBL!1 we obtain l0BL ¼ 0.

rBL term. This term increases the importance of the ADC
noise contribution (i.e. the PSENOB-related term)
taking into account the evaluation of the baseline
over the finite TBL time. In the limit TBL!1 we
obtain rBL ¼ 0.

It has to be noted that, as shown in Eq. (10), neither l0BL
nor rBL include any ADC-related parameter (i.e. ENOB or
f S), and therefore they can be computed once the detector/
preamplifier noise, the used digital filter, and the available
baseline time are known. PSENOB is thus the only
quantity in Eq. (10) that depends on the ADC character-
istics.
Eq. (10) can be used to predict the attainable resolution

in a given experimental condition, once the two terms
HGðTBLÞ and kGðTBLÞ are known. In practical cases, these
two terms can be numerically calculated using Eq. (7) once
the detector noise autocorrelation function RðyÞ has been
measured and the white noise component (which appears
as a d-like contribution in R) is separated from the non-
white one.
In order to quantitatively evaluate the importance of the

two correction terms, the special important case of a solid-
state detector/charge-sensitive preamplifier is examined.
The detector spectral noise density is assumed to have the
‘‘standard’’ expression a=o2 þ b (the same case has been
also discussed in Ref. [1, Section 4]). We consider shaping
filters typically employed in energy measurements with
solid-state detectors (i.e. triangular, trapezoidal, CR-RCn).
We further assume that the shaping time parameter of each
filter has been optimized in order to achieve the maximum
resolution with the used detector in infinite baseline
operating conditions. With this hypothesis the electronic
resolution is given by 2kGð1Þb.
As discussed in Ref. [1, Section 4], these filters can be

represented by the expression GðtÞ ¼ 1=W � G%ðt=WÞ (i.e.
Ref. [1, Eq. (10)]), using as scaling parameter W the optimal
detector corner time (see the discussion of Ref. [1, Table
1]). Substituting in Eq. (8), one obtains ðxBL ¼ TBL=tCÞ:

s2exp;BL ¼ atCh2
G%
ðxBLÞ þ

bþ bADC

tC
k2

G%
ðxBLÞ þ s2p þ s2D.

(11)

The expressions for hG%ðxBLÞ and kG%ðxBLÞ (defined in
analogy with Ref. [1]) are given in Appendix B. In the limit
xBL!1, these two terms are closely related to the ‘‘step
noise index’’ and ‘‘delta noise index’’ as defined in Ref. [20].
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Substituting in Eqs. (9) and (10) one obtains

l0BL ¼
k2

G%
ðxBLÞ þ h2

G%
ðxBLÞ � 2k2

G%
ð1Þ

2k2
G%
ð1Þ

� Z ¼ lBL � Z (12)

rBL ¼
k2

G%
ðxBLÞ � k2

G%
ð1Þ

k2
G%
ð1Þ

. (13)

The quantity Z is the square of the ratio between the
electronic resolution and the overall resolution (i.e.
including s2p and s2D). As already discussed in Ref. [1,
Section 3], when only electronic resolutions are of concern
s2p and s2D are removed and Z ¼ 1.

The two quantities lBL and rBL have been computed for
various representative filters. As evident from the explicit
expressions of k2

G%
ðxBLÞ and h2

G%
ðxBLÞ (and well known in

the literature, see for example Ref. [18]), the parameter xBL

may be used as scaling parameter when the performances
of these different filters are compared. The results are
reported in Fig. 4 as a function of xBL.
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Fig. 4. Results of a numerical evaluation of the two parameters lBL and rBL fo

time equal to the linear rise time, whereas in ‘‘Trapezoidal 2’’ the flat top tim
For finite width filters (i.e. triangular and trapezoidal
ones) the two correction terms lBL and rBL are exactly zero
as soon as the baseline is evaluated over a time greater than
the total filter width. Therefore, for these filters, it is
possible to reach the theoretical resolution limit by using a
finite baseline time. This is not the case for infinite width
filters (i.e. CR-RC4 and infinite cusp), the infinite cusp
being the most sensitive to baseline effects.
Fig. 4 allows for a quantitative estimate of the

importance of baseline-related effects on the final energy
resolution. From the figure it is apparent that a digital-
sampling system, once the digital shaping includes a
baseline subtraction evaluated over TBL�1–2tC, is able to
practically reach the theoretically maximum resolution of
the used AD converter/shaping filter (i.e. lBL;rBL51).
These quantitative results, although obtained using a
different baseline subtraction method, are in fair agreement
with the discussion on the baseline time given for a
particular case in Ref. [18]. For low xBL values the
resolution is dominated by the white-noise component,
Infinite cusp

Triangular

CR-RC4

Trapezoidal 2

Trapezoidal 1

BL /τC

1.6 1.8 2 2.2 2.4 2.6 2.8 3

r various filter types. ‘‘Trapezoidal 1’’ is a trapezoidal filter with a flat top

e is half the rise time. See text for details.
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given the nearly exact elimination of the low-frequency
noise operated by the baseline subtraction method.

As anticipated, the presented discussion has been carried
out in the low counting-rate limit, i.e. without significant
preceding signals tails over the considered TBL time. As
experimentally verified and reported in Section 7.1, these
results can be safely applied even in presence of a
significant counting rate, once the standard prescription
of a fast preamplifier decay time with proper pole-zero
compensation is used. This solution is well known to be
very effective in removing the influence of preceding signals
tails, thus allowing a moderate sensitivity to counting rate.
5. Comparison with simulations

In this section the previously discussed results are
validated by a simulation. The simulation allows to explore
a wide range of AD converter characteristics (ENOB and
f S) for various choices of baseline times once an experi-
mental setup is defined. Experimental tests are reported in
Section 7.

A typical germanium-based detection system for high-
resolution g ray experiments has been considered. The
simulated detector–preamplifier system is characterized by
its performances under an ideal shaping, i.e. an electronic
resolution sth;BL¼1 ¼ 0:3 keV using a CR-RC4 filter with
optimal shaping time constant tsha;opt ¼ 3ms. The system
noise is assumed to have a spectral noise density a=o2 þ b,
and then tsha;opt ¼

ffiffiffiffiffiffiffiffiffiffi
b=7a

p
. The CR-RC4 digital filter has

been considered for the sake of simplicity and ease of
comparison with standard analog systems. Moreover, as
discussed in Section 4, this digital filter exhibits a sizeable
ENOB
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Fig. 5. Digital electronic energy resolution from Eq. (10) using a simple CR-R

bits of the converter and considering a baseline time TBL ¼ 1ms. The resolutio

between the detailed simulation presented in the text and the predictions of Eq.

as R=3s, is shown on vertical axis on the right side of the figure.
sensitivity to baseline-effects, and allows for a more
stringent test of the calculation.
In the simulation, a proper noise contribution is added

to the signals, which are digitized and processed by a
simulated digital system running at various sampling
speeds, using a baseline subtraction algorithm followed
by digital CR-RC4 shaping with a shaping time of 3ms (no
further tsha optimization as a function of bADC and TBL has
been performed). A full range R ¼ 10MeV has been used
(compatible with the requirements of experiments with 4p g
arrays like Refs. [6,7]). About 1000 events for each point
have been used for determining the simulated energy
resolutions.
In Figs. 5 and 6 the simulation results are compared with

the predictions of Eq. (10) for TBL ¼ 1 and 4ms,
respectively, whereas Fig. 7 refers to the case of infinite
baseline time. In each figure the points marked with the ’
symbol represent the simulation results, while the predic-
tions of Eq. (10) are shown as continuous curves.
The digital shaping energy resolution is shown as a
function of the ENOB of the converter. The integer
number of ‘‘physical’’ bits B has been chosen as
intðENOBÞ þ 2, i.e. B ¼ 12 for ENOB ¼ 10:8, according
to the typical characteristics of commercial ADCs. In each
figure the predicted performances for four different
sampling speeds (50/100/200MSamples/s, 1GSample/s)
are shown also (as a reference, a typical digital oscilloscope
is characterized by 1GSample/s, 7 effective bits). On the
right of the figures the equivalent dynamic range of the
system is reported, defined as the ratio between the full
range (i.e. 10MeV in the figures) and 3s, i.e. we assume
that only signals greater than three times the resolution are
detectable.
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From the figures a very good agreement between the
simulated points and the prediction of Eq. (10) is evident
for the explored range of converter resolutions, sampling
speeds, and TBL times. These results validate the approach
proposed in Ref. [1] with the additional correction terms of
Section 4, summarized by the three key parameters
PSENOB (the only term depending on the ADC proper-
ties), lBL e rBL (baseline only terms). For finite baseline
times (Figs. 5 and 6) and very high PSENOB values, only
the term lBL influences the achievable electronic resolution.
On the other side, the data reported in Fig. 7, being
characterized by lBL ¼ rBL ¼ 0, can be directly obtained
from Ref. [1, Fig. 1].

There is an appreciable discrepancy at low values of
ENOB, where the simulated points are characterized by a
worse resolution than the predicted ones. In fact, the
hypotheses used for the evaluation of the sampling noise
are accurate only when the quantization noise is smaller
than the noise at the ADC analog input. For low-
resolution converters this assumption is no longer valid
(no dithering [21] occurs) and thus a discrepancy with
respect to the predicted value is indeed observed in the
expected direction.

6. Non-linearity effects

In the previous discussion as well as in Ref. [1] the
contribution to the finally attainable energy resolution and
dynamic range due to ADC non-linearities (either of the
AD converter or of its analog front end) has been
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Table 1

Results of a numerical simulation including ADC integral non-linearity

Integral non-linearity (LSB) Resolution (keV FWHM)

0 0.806

0.5 0.814

1 0.817

1.5 0.818

2 0.82

3 0.83

4 0.86

5 0.89

Data refer to a 10.8 effective bits, 100MSamples/s converter in the same

simulated experimental condition of Fig. 6. See text for details.
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neglected, whereas pile-up effects and a fluctuating baseline
in presence of a significant non-linearity may influence the
final resolution.

To quantitatively estimate the importance of these
effects, the simulation described in the previous section
has been modified in order to include a non-zero integral
non-linearity of the digitizer. Data have been simulated for
the case of a 12 bit (10.8 effective) 100MSamples/s
converter, using a 4ms TBL time and taking into account
various degrees of non-linearity of the system (assumed
having a second-order polynomial behaviour). The ob-
tained results are shown in Table 1 for a baseline
fluctuation of �20 keV FWHM (compatible with the
experimental test of Section 7.1).

In the first column of the table the used integral non-
linearities are shown, defined as the maximum deviation
from the best linear fit over the full converter range. As a
reference, typical values for a 12 bit ADC microchip (i.e.
without considering the analog front end) are in the 0.2–1
LSB range. In the second column the obtained simulated
resolutions are shown. These values do not include any
systematic contribution (the peak shift due to the non-
linearity of the system), i.e. only the statistical fluctuations
around the obtained peak centroid are considered. From
the table one does not see any significant contribution to
the overall resolution as soon as the non-linearity is smaller
than �1 LSBs. Additional analysis of the simulated data
confirms indeed that the main source of resolution
worsening can be traced back to baseline fluctuations that
explore a not negligible portion of the full converter range.
From this discussion it follows that as long as the non-
linearity of the used digitizer (ADC and analog front end)
is limited to �1 LSB its effect on the attainable resolution
and dynamic range is negligible.

An off-line non-linearity measurement of the AD
converter is anyway advisable when characterizing
the setup. If needed, this information can be stored in a
look-up table and effectively used during data taking for
on-line correction of the digitized samples, for instance
when the non-linearity itself is sizeably larger or when
significantly high baseline fluctuations (or pile-up) are
present.
By modifying the simulation in order to include the
differential non-linearity (typical value: �0:5 LSB), we
verified that no significant resolution worsening is intro-
duced. This is due to the beneficial sliding-scale-like effects
intrinsically included in the amplitude measurements, due
both to the asynchronous sampling of the decaying
preamplifier signal [22] and to the baseline fluctuations.

7. Experimental tests

In order to test the energy resolution properties of a
digital-sampling system, experimental tests have been
carried out using the prototype digitizing system of
Ref. [3], i.e. a 12 bit 100MSamples/s digitizer. The effective
number of bits of the used converted has been measured at
various input frequencies (1–10MHz) using an Anritsu
68147C sinusoidal generator, with an additional quartz
filtering to reduce the oscillator phase noise. The obtained
data are consistent with 10.8 effective bits for the used
ADC, the time-jitter contributions being zero within errors.
The integral non-linearity of the system has been measured
to be 0.8 bits (using the same definition of Section 6).

7.1. Experimental test with a germanium detector

An experimental test with a 30% efficiency coaxial
germanium detector has been carried out, using a 60Co
source. The preamplifier output of the detector, having a
57ms decay time, is directly coupled to the digitizer. A
maximum baseline time TBL ¼ 10ms has been used.
The full range of the AD converter in this test was about

14MeV. The achieved resolution (using a digital CR-RC4

filter with tsha ¼ 2ms) on the 1.3MeV line is 2.1 keV
FWHM, where the resolution of an injected pulser signal is
1.1 keV FWHM. From independent measurements the
maximum electronic resolution for this detector–preampli-
fier system is indeed known to be 1.1 keV FWHM. The
measurements were performed at a counting rate of
�1 kcps.
In order to evaluate the performances of the system as a

function of the baseline time, the collected events have been
processed using only a fraction of the available baseline
time. The results are shown (with symbols) in Fig. 8, for
both the 1.3MeV 60Co line and the injected pulser. A
detailed comparison with the prediction of Eq. (7) can be
performed by numerically extracting the autocorrelation
function RðyÞ of the overall system noise from the
experimental digitized dataset and by direct computation
of Eq. (7). The results are shown, with lines, in Fig. 8 (the
prediction for the 1.3MeV line is obtained by adding the
statistical fluctuations to the electronic resolution). A good
agreement between the experimental data and the predic-
tion of Eq. (7) is evident.
Using the prescriptions of Ref. [1] and of Section 4, the

considered case corresponds to a corner time constant of
�5ms, and to a PSENOB value of �15. For the case
TBL�10ms the lBL and rBL effects can be neglected
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(TBL=tC ’ 2, see Fig. 4), and thus the system resolution
can also be extracted from Ref. [1, Fig. 1]. In the shorter
baseline-time cases, the numerical evaluation of Eq. (7)
with the experimental RðyÞ, as in Fig. 8, is needed only
when a very precise prediction is required. However, since
in many practical case the detector noise can be safely
approximated with a=o2 þ b, the formulæ and results of
Section 4 can be satisfactorily applied (o5% error on the
average for the electronic resolution data in Fig. 8).

In order to check the sensitivity of the used shaping and
baseline subtraction algorithms to pile-up effects, the
measurements have been repeated for various counting
rates. The standard procedure of using a faster decaying
preamplifier has been used, i.e. a CR network with pole-
zero compensation has been inserted to reduce the
preamplifier decay time from the original value ð57msÞ to
3:5ms. The very same analysis has been performed on the
collected data for counting rates ranging from 1 up to
20 kcps. With no event selection, an electronic resolution
worsening of about 0.2 keV at the maximum examined
counting rate has been observed. If the same analysis is
performed but for a shorter shaping time ðtsha�1 msÞ, a
resolution worsening of only 0.05 keV is observed over the
used counting-rate range. The use of a digital deconvolu-
tion of the preamplifier response did not show any
resolution improvement.

7.2. Test with a DE � E Silicon–CsI(Tl) telescope

A test has been also performed for a configuration
widely used in charged particle experiments, namely a
Silicon–CsI(Tl) telescope. This well known setup employs a
DE � E identification method to measure not only the
energy but also the charge (and the mass) of the incoming
particles. The identification power is limited by the DE

detector characteristics (as the thickness uniformity),
energy straggling, and—to a much lesser extent—by the
electronic resolution on the silicon channel.
In Refs. [9,23] the aforementioned digitizer has been

used to sample the Si and the CsI signals and to build a
DE � E identification plot (Fig. 1 of Ref. [9]). The
experimental arrangement used a 300 mm thick, 2 cm2 Si
detector and a 3 cm thick CsI(Tl) with photodiode readout.
The full range on the digitizer on the Si channel is about
500MeV. Both preamplifiers have a silicon-equivalent
noise of about �60 keV FWHM. Due to hardware
restrictions, the available baseline time in the test was only
about 200 ns.
In order to test the presented computation the experi-

mental dataset (where the waveforms corresponding to
each event were stored on disk) has been re-processed to
simulate a wider dynamic range. The originally acquired
waveforms are first scaled to comply with the increased
dynamic range. A proper white noise contribution (corre-
sponding to 10.8 effective bits over the simulated range)
is afterward added, and the samples are re-quantized
with 12 bit resolution. This procedure allows to simulate
the performances of the used digitizer (10.8 ENOB) as
if a wider dynamic range were used in the test. The
obtained waveforms have then been processed with a
baseline subtraction followed by digital CR-RC4 shaping
ð0:7 msÞ, and the DE � E plots corresponding to the new
ranges have been produced. Each DE � E correlation
has been linearized in order to extract a particle identifica-
tion (P.I) spectrum. In Fig. 9 the corresponding plots
are shown.
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Fig. 9. Particle identification (P.I) spectra obtained for various dynamic ranges. The experimental data, collected with range R ¼ 500MeV, have been

reprocessed in order to simulate wider dynamic ranges.

Table 2

Quantitative evaluation of the particle identification performances for various simulated ranges

Range p2d p2d d2t 3He24He 4He25He 5Li26Li 7Be29Be 9Be210Be 9B210B 12C213C 13N214N 15O216O

(MeV) from Eq. (10)

Exp.: 500 1.80 1.82 1.38 1.37 1.90 1.34 2.44 0.91 1.15 0.96 0.95 1.04

1000 1.68 1.67 1.27 1.35 1.88 1.29 2.40 0.88 1.11 0.96 0.95 1.01

1500 1.51 1.50 1.15 1.30 1.83 1.30 2.37 0.86 1.14 0.94 0.96 1.03

2000 1.33 1.34 1.03 1.22 1.77 1.24 2.45 0.90 1.14 0.92 0.98 1.01

2500 1.18 1.14 0.86 1.17 1.46 1.22 2.21 0.82 1.04 0.91 0.91 0.96

3000 1.03 1.02 0.77 1.10 1.53 1.13 2.07 0.85 1.00 0.89 0.89 0.92

3500 0.94 0.91 0.70 1.05 1.32 1.12 1.96 0.81 1.01 0.86 0.88 0.87

4000 0.85 0.81 0.62 0.94 1.36 1.06 1.90 0.71 0.95 0.84 0.88 0.82

The obtained Factor of Merit (FoM) is reported for various nuclei pairs. The experimental data have been collected using a 500MeV range. In the second

column estimated FoM values obtained from Eq. (10) are reported.
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It is possible to appreciate the presence of a full
isotopic identification for all the particles produced in the
used reaction (16Oþ116Sn, beam energy of 250MeV).
When wider dynamic ranges are used, the attained
identification capabilities seen in the 500MeV range
are maintained for Z\2 and only degrade gracefully
for hydrogen isotopes. The isotopic resolution is thus
available up to the maximum considered range of 4GeV.
As quantitatively shown shortly, the digital system
dynamic range would have been even larger if a longer
baseline time were used, as we plan to do in future
experiments [5].

The resulting dynamic range is at least a wide as the ones
obtained by heavy ion experiments like INDRA [11] or
CHIMERA [16]. As a matter of fact, these two experi-
ments, based on standard analog shaping techniques (with
final digitization performed with QDCs or peak-sensing
ADCs), are forced to use a double electronic chain with
different gains (high/low) to cover the needed dynamic
range.
A quantitative measurement of the attained identifica-

tion capabilities as a function of the simulated range
can be performed using the Factor of Merit (FoM) as
defined in Ref. [24], i.e. the ratio between the two
peaks distance and the sum of the two FWHM resolu-
tions. The results for several nuclei pair are shown in
Table 2.
It is possible to see that the FoM values for Z\2

undergo only a minor deterioration, whereas a somewhat
greater effect is present for Z ¼ 1.
A quantitative comparison between the data in Table 2

and Eq. (10) over the full particle and energy range is
difficult because of the presence of many experimental
effects, not known with sufficient accuracy, that influence
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3In this Appendix the definition of all the considered quantities is the

same of the previous sections (Section 3). At variance with Ref. [18], where

the time conventionally chosen as t ¼ 0 corresponds to the arrival of the

detector event, in this Appendix a time offset consistent with the one of the

previous discussions (see for example Fig. 3) will be used, i.e. the detector

event is placed at t ¼ TBL. This corresponds to a simple time shift of TBL

of the obtained weight functions with respect to Ref. [18].
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the P.I. FoM computation (for example detector inhomo-
geneities and/or energy straggling as a function of particle
type and energy).

For the case of the p2d FoM a semiquantitative
comparison can be performed, estimating a proton energy
straggling of about 180 keV FWHM from the Bohr
stopping formula. Since the other experimental effects are
expected to be small, this is the major non-electronic
contribution. The system performances can be predicted
using Eq. (10), with tC ¼ 1:9 ms and PSENOB ’ 14:4.
Since TBL=tC ’ 0:1, the corresponding values for lBL erBL,
assuming the standard a=o2 þ b noise behaviour, are 3.3
and 1.8, respectively (outside the range of Fig. 4). Since the
experimental resolution is mainly determined by the
detection mechanism, the evaluation of Eq. (10) is
performed using these parameters and explicitly taking
into account the s2D contribution due to energy straggling.
The parameter Z (Eq. (12)) is 0.1. One obtains an expected
energy resolution ranging from 220 keV FWHM with
500MeV ADC full range, up to 300 keV FWHM with
4GeV full range. Given the average separation energy
between p and d of about 1.3MeV, a ‘‘predicted’’ FoM
value can be estimated for each energy range shown in
Table 2; this estimate is reported in the second column of
Table 2. The maximum deviation from the ‘‘simulated’’
FoM is less than 5%.

From the presented discussion is evident that the 12 bit
(10.8 ENOB) converter can be employed in experiments
requiring isotopic P.I from Z ¼ 1 upwards, with a full
energy range of few GeVs. It has to be noted that, if a
longer baseline were used (for example 4 ms as planned in
Ref. [5]), the predicted resolution at 4GeV full range would
be 230 keV FWHM (lBL;rBL51 for TBL=tC ’ 2), a very
tiny increase with respect to the low-range value. This
result confirms once again that, once the described signal
processing method includes a baseline time of the order of
twice the detector noise corner time, the only parameter
controlling the digital sampling and shaping contribution
to the resolution is PSENOB, and therefore the results of
Ref. [1] directly apply.

In order to reach these performances, the use of wide
dynamic-range preamplifier and a high uniformity
DE detector is mandatory, whereas a moderate preampli-
fier resolution ð�100 keVÞ can be tolerated. A differential
preamplifier output (and differential ADC input) is
expected to be necessary in order to reduce pick-up
noise.

Identification spectra with poorer resolution than the
ones shown in Fig. 9 have been reported in the recent
work [25] using a 14 bit 105MSamples/s ADC. A
discrepancy with the theoretical and experimental
results shown in this work using a 12 bit, 100MSamples/
s ADC is evident. Assuming proper preamplifier perfor-
mances, clean cabling and good choice of the various
digital processing parameters in Ref. [25], the apparent
performance difference is probably due to non-optimal
detector behaviour.
8. Conclusions

In this paper an extensive evaluation of the limiting
factors influencing energy measurements with sampling
ADCs has been carried out, starting from the conclusions
of the companion paper [1]. An expression for the
attainable resolution has been presented for the general
case of a sampling system employing digital shaping over a
finite time, having a finite baseline-time preceding the
arrival of the event, taking into account the ADC effective
number of bits and the presence of any preamplifier noise.
The resulting formulæ have been re-expressed in terms of
the parameter PSENOB introduced in Ref. [1], with the
addition of two correction terms that include any baseline-
and finite-time-related effect. These parameters are re-
ported for representative filters as a function of a normal-
ized baseline time. The obtained results have been validated
for various TBL times and ADC parameters by comparing
them with a realistic simulation—a high-resolution germa-
nium detector in a wide dynamic-range configuration.
The ADC non-linearities effects have been also briefly
considered.
These results have been confirmed by two experimental

tests, using a germanium detector and a DE � E Silicon–
CsI(Tl) telescope. For the first case, a low sensitivity to
counting rate effects has been experimentally verified.
This work shows how to calculate the key parameters

that, in practical applications, determine the resolution loss
due to finite-time shaping and baseline subtraction. Be-
sides, these effects are demonstrated to be negligible as
soon as the used baseline time is of the order of twice the
detector noise corner time. In this hypothesis, the system
performances can be directly predicted using the simpler
recipe of the companion paper [1].
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Appendix A. Comparison with the formalism of previous

works

In this Appendix the shaping baseline subtraction
method discussed in the paper is re-expressed using the
formalism of Ref. [18].3

Whereas in this work all the signal processing has been
formulated at the preamplifier level, in Ref. [18] only



ARTICLE IN PRESS

10 20 300-10-20-30
Time (µs)

0

0.5

1

TBL
TB+M

to -∞

Fig. A.2. As Fig. A.1, but using an experimental arrangement similar to

Ref. [22], see text for details.
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quantities at the detector level are considered. Given
the known preamplifier response PðtÞ to a d-like detector
current, it is obviously possible to translate any signal
processing algorithm from one formalism to the other.
Although the preamplifier response PðtÞ is not explicitly
present in the equations of Ref. [18] (here resides one of the
main advantages of that formalism) its detailed knowledge
is needed in all practical applications of the method.

In Ref. [18] the shaping algorithm is mathematically
represented as a weighted sum of the detector current iðtÞ,
evaluated at the peaking time of the used filter. The weight
function W ðtÞ is optimized in order to obtain the best SNR
and to satisfy few constraints, including having a finite
width. In this work the baseline is instead evaluated at the
preamplifier level over a finite time TBL. Nevertheless, the
presence of the long preamplifier response (for example
having an exponential decay) introduces a long-time
correlation between the acquired samples S½k�, i.e. the
weight function W ðtÞ develops over a time much longer
than TBL—over an infinite time if PðtÞ has an infinite
length.

Carrying out the computations, recalling that both
PðtÞ ¼ GðtÞ ¼ 0 8to0, the (non-normalized) weight func-
tion of the method used in this work is given by

W ðtÞ ¼

Z TBþM

0

Pðt� tÞGðTBþM � tÞdt

�
1

TBL

Z TBL

0

Pðt� tÞdt
� �

�

Z TBþM

0

GðTBþM � tÞdt
� �

ðA:1Þ

valid for �1otoTBþM. It is easily seen thatR TBþM

�1
W ðtÞdt � 0 for any P, G functions and TBL time,
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Time (µs)
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Fig. A.1. Weight function (as defined in Ref. [18]) for the baseline

subtraction method used in this work. A configuration similar to the

experiment described in Section 7.1 has been used, see text for details.
i.e. W ðtÞ is ‘‘area balanced’’. As discussed in Ref. [18], this
property of the weight function ensures a perfect elimina-
tion of any baseline DC offset. This behaviour of the used
baseline subtraction method was already discussed from a
different point of view in Section 3.
In Figs. A.1 and A.2 two examples of W ðtÞ as computed

with Eq. (A.1) are reported. In Fig. A.1 W ðtÞ for
the configuration used in Section 7.1 is shown (2ms
CR-RC4 shaping, 10ms baseline, 50ms preamplifier
decay time), whereas in Fig. A.2 an example of W ðtÞ

obtained applying the baseline subtraction method
of this work to an experimental setup similar to Ref. [22]
is shown (10ms triangular shaping, 20ms baseline,
5ms preamplifier decay time). The comparison of the
obtained weight functions with the ones of Ref. [18]
shows that a qualitative agreement exists between the
method proposed in this work and the one of Ref. [18],
although no noise optimization has been performed
in this work. This result is not surprising because, although
non-optimal, the used baseline subtraction and shaping
method is able to provide spectroscopy-grade resolutions,
and thus the weight function is expected not to be
dramatically different from the one used in the optimal
system.

Appendix B. Expressions for kG and hG

In this Appendix explicit expressions for kGðTBLÞ and
hGðTBLÞ, used in Section 4 are given. These are the
expression used to extract the numerical values shown in
Section 4.

kG By substituting into Eq. (7) the white noise
autocorrelation function (i.e. a d-function) one
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obtains

k2
GðTBLÞ ¼

1

2

Z TBþM

0

½GðxÞ�2 dxþ
1

TBL
GintðTBþMÞ

� 1�
1

2
GintðTBþMÞ

� �
ðB:1Þ

where, in analogy with Ref. [1], the normalization
GintðTMÞ ¼ 1 has been used.

hG Since the autocorrelation function of a spectral
noise density a=o2 þ b cannot be computed (it
diverges due to low frequency terms), a direct
application of Eq. (7) is not possible. This is due to
the mathematical assumption of having a pre-
amplifier with an infinite decay time, i.e. a perfect
integrator. When the preamplifier decay time tpre
is taken into account and tpreb

ffiffiffiffiffiffiffiffi
b=a

p
, the follow-

ing spectral noise density can be written:

wðoÞ ¼ a �
t2pre

1þ t2preo2
þ b. (B.2)

The non-white term is now characterized by a
finite autocorrelation function. By applying
Eq. (7), and performing the limit tpre!1 in
order to recover the desired a=o2 þ b schematiza-
tion, one obtains

h2
GðTBLÞ

¼
1

2

Z TBþM

0

½GintðxÞ�
2 dx

�
1

2
GintðTBþMÞ

Z TBþM

0

GintðxÞdx

�
TBL

12
½GintðTBþMÞ�

2 þ
GintðTBþMÞ

4TBL

�

Z TBþM

0

½ðTBþM � xÞ2 þ ðTM � xÞ2�

�

�GðxÞdx� 2

Z TBþM

TM

ðTM � xÞ2GðxÞdx

�
.

ðB:3Þ

kG%,hG% The quantities kG% and hG% are defined in analogy
with kG, hG but for the adimensional variables
xBþM ¼ TBþM=W, xBL ¼ TBL=W and the adimen-
sional functions G%ðtÞ and G%

intðtÞ. They can be
immediately computed starting from Eq. (B.1) and
Eq. (B.3). kG% and hG% are adimensional variables,
related to kG and hG by k2

G ¼ k2
G%
=W, h2

G ¼ h2
G%

W,
respectively. In Section 4 the parameter W has been
chosen as tC;opt.
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