
ARTICLE IN PRESS
0168-9002/$ - se

doi:10.1016/j.ni

�Correspond
E-mail addr
Nuclear Instruments and Methods in Physics Research A 560 (2006) 517–523

www.elsevier.com/locate/nima
Digital-sampling systems in high-resolution and wide dynamic-range
energy measurements: Comparison with peak sensing ADCs

Luigi Bardelli�, Giacomo Poggi, (NUCL-EX collaboration)

I.N.F.N. and Department of Physics, University of Florence, Via G. Sansone 1, Sesto Fiorentino 50019, Italy

Received 5 August 2005; received in revised form 18 October 2005; accepted 2 December 2005

Available online 3 February 2006
Abstract

The use of fast digital sampling techniques in Nuclear Physics experiments as a replacement of the standard analog signal processing

methods is discussed for applications needing high-resolution signal amplitude measurements. This is for example the case of a solid-state

detector with a charge-sensitive preamplifier, processed using fast digital sampling methods. Under very general assumptions, an

expression for the achievable resolution and dynamic range of the system is reported, valid for any detector/digitizer/digital-filter

combination, taking into account the detector noise and the ADC properties, namely the Effective Number of Bits (ENOB) and the

sampling frequency. The system properties are summarized using the parameter PSENOB, i.e. the ‘‘Peak-Sensing-Equivalent Number of

Bits’’. These results can be used to predict the attainable performances in various applications, possibly requiring a resolution/dynamic-

range trade-off. Numerical examples for some representative cases in g-ray spectroscopy and charged particle experiments are reported,

demonstrating that the equivalent performances of a 15 bit peak-sensing ADC are feasible with today-available sampling ADCs. For ease

of presentation, other non-trivial effects as baseline- and non-linearity-related issues as well as experimental tests of the proposed

approach are presented in a companion paper [L. Bardelli, G. Poggi, Digital sampling-systems in high-resolution and wide dynamic-

range energy measurements: finite time window, baseline effects, and experimental tests, this issue].

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

For many Nuclear Physics applications high-resolution
amplitude (i.e. energy) measurements of the output of a
detector are of paramount importance, as for example in g
spectroscopy measurements or in charged particle detec-
tion/identification.

In experiments and proposals where hundreds of
detectors are used (for example [2–4]), the standard analog
signal processing methods are often replaced by digital
sampling systems. The output of the preamplifier (usually a
charge-sensitive one) is directly fed into a fast digitizer that
produces many sampled points for each detector signal.
This data stream is numerically processed with a digital
e front matter r 2006 Elsevier B.V. All rights reserved.
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shaping filter in order to improve the signal-to-noise ratio
(SNR) and to obtain the desired high-resolution amplitude
measurement. Using dedicated hardware, the computation
can be performed in real-time, thus realizing a digital
spectrometer system.
The properties of the used Analog to Digital Converter

(ADC) play a significant role to maintain the intrinsic
detector amplitude resolution over a wide dynamic range.
For this purpose, the two key parameters are the ADC
Effective Number of Bits (ENOB) and its sampling
frequency. An increased dynamic range can be obviously
achieved using an ADC having a higher resolution,
although this usually comes at the expense of a significantly
lower sampling rate. This choice is thus not feasible for
many applications where energy measurement is not the
only parameter of interest. For example in spectroscopy
experiments like [3,4], where large volume germanium
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detectors are used, an analysis of the pulse shape of the
signal is needed in order to reconstruct the g interaction
point. As a further example, in charged particle experi-
ments time coincidences and time of flight measurements
are often required, and moreover an analysis of the signal
pulse shape is needed in order to identify charge and mass
of the detected particles (some experimental results
obtained with digital sampling methods are reported for
example in Refs. [5–10]). Sampling frequencies in the
50–200MSamples/s range are needed in order to satisfy
most of the experimental needs. For example in Ref. [8],
where a 10.8 effective bits, 100MSamples/s converter is
used, a timing resolution of 100 ps FWHM using a silicon
detector is presented and discussed. The same system
provides a 1.9 ns FWHM resolution at 1.3MeV with a
30% efficiency germanium detector [10]. From the experi-
mental point of view the possibility of performing energy,
timing, and pulse-shape related measurements with a single

AD converter coupled to the preamplifier is obviously very
attractive, and thus a detailed understanding of the relative
importance of the ADC ENOB and of the sampling
frequency is needed.

Although it is well known in the literature that the
availability of many sampled points for each event allows
for a kind of ‘‘bit-gain’’ effect [11] (i.e. the finally
achievable resolution and dynamic range of a B-bits
ADC is higher than naı̈vely expected for the nominal B

value), this issue has been quantitatively addressed only in
a few special cases (see for example Ref. [12]). In this paper
a quantitative expression for the contribution to the
achievable resolution and dynamic range due to the used
fast AD converter and digital filter is proposed, under very
general assumptions regarding the various system proper-
ties. The relevant ADC and experimental parameters are
considered and summarized using the quantity PSENOB
(Peak-Sensing-Equivalent Number of Bits). The results are
also presented in a plot that can be used as a recipe for
simply determining the overall system performances (in
terms of energy resolution and dynamic range) in any given
experimental condition.

In Section 2 the concept of ADC ENOB is recalled and
discussed in view of energy measurement applica-
tions, whereas in Section 3 the computation of the
achievable performances is carried out under very general
hypotheses. In Section 4 the results are discussed and
applied to representative examples in the field of Nuclear
Physics.

In order to keep the presented discussion as clear as
possible, the inclusion of important effects—present in
Nuclear Physics experiments—requiring an elaborate dis-
cussion (like the use of a finite number of samples and a
non-zero baseline) are explicitly addressed in a companion
paper [1], where a general expression for the final
resolution is given. In Ref. [1] it is also demonstrated that
these experimental effects can be kept sufficiently small so
that the conclusions of the present paper are not altered. In
the same work, the results have been verified with
experimental tests on a germanium detector as well as on
DE � E charged particle identification.
The reported discussion and results can be directly

extended to various experimental arrangements.

2. Effective Number of Bits for energy measurement

applications

Besides the sampling rate f S, a fast sampling ADC is
characterized by its resolution, i.e. the number of bits. An
input signal fed into an ADC having B ‘‘physical’’ bits is
quantized into 2B levels.
In the case of a noiseless constant input signal an ideal

AD converter should produce a constant conversion code.
This is not the case of real ADCs, that output a digital data
stream with values fluctuating around the nominal
conversion code. The amount of this fluctuation can be
quantified with the ENOB (in general a non-integer
quantity). Typical values for high-speed ADCs are 1–2 bits
below the ‘‘physical’’ number of bits B (for example a 12 bit
converter usually has 10–11 effective bits). More technical
definitions as well as useful conversion formulæ regarding
the ADC SNR, ENOBs, and related quantities, are given in
Ref. [13].
The ENOB of an ADC is usually extracted from the

SNR obtained from a measurement of a fixed frequency
sinusoidal input signal [13,14]. This definition provides an
ENOB value that depends on the test frequency and
includes various ADC parameters, i.e. thermal noise, non-
linearities, aperture- and clock-jitter (see also Ref. [14]). In
particular, aperture- and clock-jitter effects give a con-
tribution that is proportional to the derivative of the input
signal. Whereas this is the proper definition for applica-
tions dealing with fast periodic signals (for example in RF
or telecommunication applications), not all these para-
meters are important for the purpose of amplitude
measurements with Nuclear Physics detectors.
A charge preamplifier signal is normally characterized by

a preceding nearly constant baseline value, a fast rise and a
subsequent much slower decay. The ADC-related noise is
thus clearly influenced by ADC thermal noise and non-
linearity effects, whereas aperture- and clock-jitter give
negligible contributions, as it will be quantitatively shown
later (see Appendix A). Accordingly, in the following
discussions as well as in the examples of Section 4 the used
ENOB value of ADCs does not include jitter effects, i.e. it
always corresponds to the value declared by the manu-
facturer at low frequency. Under these hypotheses, the
effect of the sampling process on the overall system noise
can be schematized as an additional white-noise source
with no correlation with the input signal [15]. The ADC
noise variance is given by

s2ADC ¼
R2

12

1

4ENOB
¼

R2

12
s2n þ

1

4B

� �
(1)

where R is the AD converter range in the used configura-
tion, B the number of ‘‘physical’’ bits (i.e. the quantization
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level), and the term s2n summarizes additional noise sources
(like thermal noise and differential non-linearity).1 The
spectral noise density of the converter noise is then given by

bADCðoÞ ¼ s2ADC �
2

f S

for oo
f S

p
. (2)

In the following, the total ADC noise contribution will be
denoted by ‘‘sampling noise’’.

In other Nuclear Physics applications, time-jitter effects
cannot a priori be neglected, for instance when sampling
ADCs are used with current-sensitive preamplifiers in
amplitude measurements or when used in pulse-shape and
timing applications (as for example in Refs. [8,10]).
Assuming the worst case of no correlation between the
time fluctuations at different samples, the sampling (with
jitter) of a continuous signal pðtÞ with a sampling period tclk
gives a sampled sequence p½k� ¼ pðtclkk þ dtjiÞ, where dtji is
a zero-mean random variable with variance s2ji. This
corresponds to a jitter-related noise nji½k� ¼ p0½k� � dtji½k�,
where p0½k� is the derivative of p½k�. This noise component is
thus non-stationary. The resulting term (see Eq. (A.1))
must then be added to s2ADC of Eq. (1) when jitter-related
effects need to be considered.

3. Digital system performances and Peak-Sensing-

Equivalent Number of Bits

A signal amplitude (for example energy) measurement as
typically performed in Nuclear Physics experiments can be
schematized as follows. The determination of the desired
quantity E (for example the particle energy) is obtained by
the analysis of the output signal SðtÞ of a detection device.
The resulting signal is digitized and shaped with a digital
filter in order to improve the SNR. As an example, in
typical experiments solid-state/scintillation detectors are
used, connected to charge- or current-sensitive preampli-
fiers/photomultipliers. In the following, with the term
‘‘detector’’ we generally refer to the complete detection
system, i.e. including the preamplifier, if present.

If the noisy detector signal is characterized by a (possibly
non-constant) shape pðtÞ and an amplitude proportional to
E, the signal SðtÞ can be written as

SðtÞ ¼ E � pðtÞ þ nðtÞ (3)

where nðtÞ is the detector electronic noise. We assume that
nðtÞ is described as a stationary random process with zero
mean2 and no correlation with the signal pðtÞ. The spectral
noise density of nðtÞ can be written as

wðoÞ ¼W aðoÞ þ b (4)
1Strictly speaking, the value ENOB to be used in Eq. (1) should not

include any integral non-linearity effect, i.e. it is slightly different (higher)

from the manufacturer declared value at low frequency. Whereas this last

value can be safely used as a conservative assumption, in Ref. [1] integral

non-linearity related effects are explicitly considered and shown to be

usually negligible.
2The case of a non-zero mean is directly related to the baseline-

subtraction issues described in detail in Ref. [1].
where b is the white noise component of nðtÞ, and the
remaining (non-white) components are summarized in the
generic term W aðoÞ. We further suppose that pðtÞ is a
band-limited signal, i.e. no signal components are present
for frequencies greater than some value f N . The shapes pðtÞ

are supposed to be normalized (for example maxðpÞ ¼ 1 for
charge-preamplifier-like signals, or

R
pðtÞdt ¼ 1 for cur-

rent-preamplifier-like ones). We define the (ensemble)
average signal shape as bpðtÞ. We further define any
resolution worsening on the E measurement due to
detection-mechanism properties with s2D, a representative
case being statistical fluctuations in the detection process.
As previously discussed, the signal SðtÞ is fed into a

sampling ADC and acquired. The ADC is assumed to have
a sampling frequency f S higher than 2f N (i.e. a perfect
reconstruction of pðtÞ is possible, see [15]) and a proper
antialiasing filter cutting at f S=2 (i.e. no over-Nyquist noise
components are sampled). This hypothesis allows for
seamlessly switching from the discrete to the continuous
time domain and viceversa. The following notation will be
used—a continuous time quantity, for example qðtÞ, has the
discrete-time equivalent q½k�, where k is an integer and
t ¼ ktclk.
It has to be noted that all the aforementioned hypotheses

can be easily met in ordinary experimental conditions.
A generic linear filter is defined by its response GðtÞ to a

d-like impulse, hence the dimensions of GðtÞ are ½1=time�.
We assume that the digital system has been applying the
filter GðtÞ to the input data since a very long time, i.e. an
infinite number of samples is available for processing. The
experimentally important case of a finite number of
available samples, also in presence of a non-zero baseline,
is the main topic of the companion paper [1]. With this
notation, the output RðtÞ of a digital time-invariant filter is
given by the convolution between the digitized signal SðtÞ

and GðtÞ.3 The desired measure bE of E is obtained by
evaluating RðtÞ at a defined time TM (for example the time
at which the digitally shaped signal reaches its maximum).
The system resolution is thus defined as the variance of
RðTMÞ. We fix the (arbitrary) amplitude normalization of
GðtÞ with the condition

R TM
�1

bpðtÞGðTM � tÞdt ¼ 1, so thatbE ¼ RðTMÞ.
For a given digital shaping filter G, we define sth as the

theoretically achievable resolution in the chosen experi-
mental condition, i.e. in the ideal situation where no
contribution arises from the digitizer system. The quantity
sth obviously depends not only on the detection system, but
also on the used digital filter.
Under these hypotheses, the system resolution can be

evaluated. Since we are dealing with several non-stationary
quantities, the computation is in general performed in the
time domain using ensemble averages, except for those
3In the following discussion only the case of time-invariant filters will be

explicitly considered. Time-variant filters Gðt; t0Þ (i.e. the response to a d-
like signal occurring at time t0) can be included by simply replacing in the

following expressions GðTM � tÞ with Gðt;TMÞ.
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terms where only stationary quantities are present. For the
detector noise case, the autocorrelation function RðyÞ of
n½k� is obtained from Eq. (4) using the Wiener–Kintchine
theorem. For example, in the case of white noise,
RðyÞ / dðyÞ. The n½k�-related contribution s2n to the overall
system resolution is then given by ðTM ¼ tclkNMÞ:

s2n ¼
XNM

k;h¼�1

G½NM � k�G½NM � h� � Etfn½k�n½h�g

¼

Z Z TM

x;y¼�1
GðTM � xÞGðTM � yÞRðx� yÞdxdy. ð5Þ

Ensemble averages have been replaced by time averages
Etfg due to the adopted stationary hypothesis on n½k�, and
the second equivalence follows from passing to continuous
variables.

The resolution sth of the E-measurement, i.e. the
variance of the quantity bE, can then be computed and gives

s2th ¼ H2
G þ bk2

G þ s2p þ s2D (6)

where the term s2p is related to the shape variations of pðtÞ,
s2n has been split into the non-white- and white-related
terms (H2

G and bk2
G, respectively), and kG is given by

ðkGÞ
2
¼

1

2

Z TM

�1

½GðTM � tÞ�2 dt. (7)

The quantity kG includes the characteristics of the filter and
it is easily computed for any given filter. kG is related to the
‘‘delta-noise index’’ hN2

Di as defined in Ref. [16] by
ðkGÞ

2
¼ 1

2 hN
2
Di.

We define the quantity R=3sth as the theoretical dynamic
range of the system, i.e. we assume 3sth as the signal
threshold of the system, having R as full range. The value R

may be larger than the maximum expected signal
amplitude, in order to take in account the possibility of
pile-up events (see for example the ‘‘rescaling factor’’ of
Ref. [12]).

We now define sexp as the experimental resolution
obtained using the very same digital filter GðtÞ, and taking
into account the presence of the sampling noise. As
discussed in Section 2 this effect is related to the ADC
ENOB. In Appendix A it is shown that the additional
ADC jitter-related contribution is negligible with respect to
the ENOB one in all practical cases of interest in Nuclear
Physics experiments, and thus in the following only the
term in Eq. (1) is retained. In this hypothesis, recalling that
the sampling process can be schematized as an additional
white-noise contribution to SðtÞ, s2exp can be simply
computed including bADC (Eq. (2)) in the white-noise
related term of Eq. (6). The ratio between s2exp and s2th is
then given by 1þ bADCk2

G=s
2
th, which can be written as

s2exp
s2th
¼ 1þ

9

12

R

3sth

� �2

�
1

4PSENOB
(8)
with the definition:

PSENOB ¼ ENOBþ
1

2
log2

f S

k2
G

 !
�

1

2
. (9)

We name PSENOB as the ‘‘Peak-Sensing-Equivalent
Number of Bits’’. As a matter of fact, it is easily recognized
that Eq. (8) has the same structure as if a peak-sensing
ADC (or an ADC producing only one sample for each
signal) were used in a hypothetical analog system employ-
ing the filter G. As a consequence, the quantity PSENOB
directly gives the number of bits required by a ‘‘tradi-
tional’’ peak-sensing ADC to achieve the same perfor-
mances of the given digital sampling and shaping system in
terms of resolution and dynamic range. The term f S=k2

G

can be interpreted as the number of points acquired by the
digitizer during a ‘‘characteristic’’ time of the filter, as
determined by 1=k2

G (see also Section 4).
As a particular case, when no filtering is applied, i.e. the

measurement is performed using only one sample at
t ¼ TM, one has GðtÞ / dðtÞ and k2

G ¼ f S=2, so that
PSENOB � ENOB, as expected.
The adopted formalism allows to quantify the ‘‘bit-gain’’

effect that is present in energy measurements performed
with digital sampling methods, i.e. an important increase of
the system performances due to the availability of many
sampled points for each waveform. In the next section it
will be shown that, in the special case of energy
measurements with solid-state detectors, a ‘‘bit-gain’’ of
the order of 3–5 bits is achieved in typical experimental
conditions with the today-available fast sampling AD
converters.
Since no special assumption on the detector spectral

noise density wðoÞ, on the (possibly varying) detector signal
shape pðtÞ, and on the detector resolution s2D is required to
obtain Eqs. (8) and (9), these equations can be applied to
any measurement of an ‘‘amplitude’’-related quantity E.
An extension of Eq. (8) to those cases where a finite time
window is available and baseline-related effects are present
is reported in Ref. [1], and it maintains the PSENOB
definition of Eq. (9).
The predictions of Eq. (8) for various PSENOB values

are presented as solid curves in Fig. 1 (bottom panel) as a
function of the theoretical dynamic range R=3sth. In the
upper panel of the figure the attainable dynamic range
R=3sexp is shown as percentage of the theoretical R=3sth.
Examples of application are presented in Section 4.
Fig. 1 can be used as a recipe for determining the overall

system performances using a given fast AD converter and
any digital filter in various experimental configurations,
possibly requiring a resolution/dynamic-range trade-off. In
practical applications of Fig. 1, an estimate of sth can be
obtained by performing a resolution test in a very small
dynamic-range configuration, using either a state-of-the-art
analog system (possibly using a filter as ‘‘close’’ as
possible to G) or a sampling digital system imple-
menting GðtÞ.
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Fig. 1. Predicted experimental resolution (bottom panel) and dynamic

range (top panel) obtained from Eq. (8) for various sampling systems, as

described by their PSENOB. The curves can be used as a universal

guideline to evaluate the overall detector and digital shaping-system

performances. See text for details.

Table 1

The quantity kG% is reported for various filter types and two choices of the

parameter W, i.e. the maximum time TM and the detector tC;opt (see text for
details). ‘‘Trapezoidal 1’’ is a trapezoidal filter with a flat top time equal to

the linear rise time, whereas in ‘‘Trapezoidal 2’’ the flat top time is half the

rise time

Filter kG%

W ¼ TM W ¼ tC;opt

CR-RC 0.961 0.961

Trapezoidal 1 1.414 0.955

Trapezoidal 2 1.225 0.874

CR-RC4 1.012 0.823

Triangular 1.000 0.760

Infinite cusp – 0.707
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In those cases where only electronic resolutions are of
concern, the presented results can be applied by simply
discarding the terms s2p and s2D. When detector-and shape-
related effects need to be considered it is possible either to
directly apply the presented formulas including s2p and s2D,
or to simply add the s2p and s2D terms to the computed
electronic resolution.

The presented discussion does not include any resolution
optimization issue, i.e. the possibility of using different
values for the filter parameters in sexp and sth in order to
take into account (and partially compensate for) the
additional ADC noise. An example of this optimization
in a particular experimental case is presented in the next
section.
4We assume that the remaining filter parameters are proportional to W
and fixed using other constraints (as for example ballistic deficit

compensation).
4. Applications to energy measurements with solid state

detectors

The general approach presented in the previous section is
now applied to the representative case of high-resolution
energy measurements with solid state detectors (germa-
nium or silicon) connected to charge-sensitive preampli-
fiers, assuming pðtÞ as a perfect step signal.

The spectral noise density at the output of the
preamplifier is assumed to have the ‘‘standard’’ behaviour
wðoÞ ¼ a=o2 þ b. The noise corner time constant is defined
as tC ¼

ffiffiffiffiffiffiffiffi
b=a

p
.

Typical filters used in spectroscopy measurements (i.e.
triangular, trapezoidal, CR-RCn) depend on a single
shaping time parameter W.4 These filters can be written as

GðtÞ ¼
1

W
G%

t

W

� �
(10)

where the adimensional G%ðxÞ represents the filter ‘‘shape’’
and W is used as scaling parameter, whose value is usually
chosen in order to adapt the filter to the experimental noise
figure. By defining ðkG%Þ

2
¼ 1

2

R
½G%ðxÞ�2 dx, it is easily

verified that

k2
G ¼

k2
G%

W
. (11)

Regardless to the used scaling parameter W, for a given filter
GðtÞ the simple relation k2

G%
=W ¼ constant holds. In Table 1

the value of kG% for some representative filters is reported,
for two different choices of the (arbitrary) scaling
parameter W. In the first column, W is the time TM at which
the shaped signal reaches its maximum if the detector signal
starts at t ¼ 0 (TM !1 for the infinite cusp). In the
second column W is the detector corner time tC;opt at which
the filter provides its optimal performances when applied to
a detector with a=o2 þ b noise. This last choice, although
not directly related to any filter shape parameter, allows for
a simple resolution comparison between the listed filters.
Besides, it is easily seen from Eqs. (9) and (11) that, due to
the moderate dependence of kG% from the filter shape (if
W ¼ tC;opt in Table 1), the key factor in determining the
system ‘‘bit gain’’ is directly related to f StC;opt, i.e. the
number of sampled points in the tC;opt time span.
Using the listed kG% values, it is now possible to apply

the general results of the previous section to typical
experimental Nuclear Physics setups and to evaluate the
resulting performances.
For example, by using an 11ENOB, 100MSamples/s

converter, optimized CR-RC4shaping, with a detector/
preamplifier system having tC;opt ’ 6ms (this configuration
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is similar to the simulated and experimental tests of
Ref. [1]), the value PSENOB ’ 15 is obtained, i.e. the
performances of this system are expected to be the same as
using a ’ 15 bit peak-sensing ADC. If this digitizer is
employed in an experimental setup using a germanium
detector with a theoretical electronic resolution of about
0.7 keV FWHM and full range R ’ 10MeV (i.e. operating
conditions similar to those of future g-arrays [3,4]), the
value sexp=sth ¼ 1:04 is extracted from the figure. This
corresponds to a predicted electronic resolution of the
overall system of about 0.73 keV FWHM, i.e. within few
percents of the theoretically maximum achievable value.
This small effect on the electronic resolution has practically
no influence on the final resolution when, for example, g-
rays with energies greater than a few hundreds of keV are
of interest, due to the added statistical fluctuations (i.e. the
term s2D in Eq. (6)).

As a further example, let us assume to have a silicon/
preamplifier system with 60 keV FWHM electronic
resolution, tC;opt ’ 1:9ms, and a desired full range
R ¼ 2GeV. This situation is similar to the experimental
tests presented in Ref. [1] but for a infinite baseline time.
The predicted system performances can be obtained from
Fig. 1 using a dynamic range of �2:6� 104. The use of a
100MSamples/s, 11 ENOB converter with an optimal
CR-RC4shaping provides PSENOB ’ 14:4, i.e. an experi-
mental dynamic range of �1:8� 104. In this example a
significant electronic resolution degradation can be toler-
ated in view of the wide dynamic range aimed at. The
apparent reduction of the PSENOB value with respect to
the preceding example is immediately traced back to the
shorter detector noise corner time, which—as already
discussed—significantly reduces the number of samples
used for shaping.

Further performance improvement can be achieved
recalling that Eq. (8) has been obtained in the hypotheses
of using the very same digital filter (i.e. the same value for
the parameter W for the kind of filters of Eq. (10)) for both
the theoretical and the experimental resolutions. In many
applications, it is possible to modify the value of W used in
the experiment in order to reduce the importance of the
ADC white noise, i.e. by using longer shaping time
constants. Performing the calculation, recalling the a=o2 þ

b noise hypothesis, one obtains:

s2exp;opt
s2th;opt

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2 �

9

12

R

3sth

� �2
1

4PSENOB

s
. (12)

The notation ‘‘opt’’ refers to the use of the optimal filter-
parameter. The effect of this further optimization is only
negligible for sexp=sth;opt�1. For example, in the previous
case regarding the silicon detector, the resulting dynamic
range after this optimization is about �1:95� 104, i.e. a
10% improvement is obtained. The use of Eq. (12) implies
a longer shaping time parameter W with respect to the one
used for obtaining sth;opt, precisely an increase of the
shaping parameter by a factor s2exp=s

2
th;opt. Since in an
experimental measurement the available range for W is
usually limited by several constraints (like counting rate),
this further optimization is not always feasible from a
practical point of view.
5. Conclusions

In this paper a quantitative evaluation of the perfor-
mances of fast digital sampling-systems for applications
requiring high-resolution and wide dynamic-range energy
measurements has been presented. A simple expression of
the achievable resolution has been proposed as a function
of the dynamic range of the system, valid for any detector/
preamplifier/AD converter/digital filter combination. The
parameter PSENOB, i.e. the ‘‘Peak-Sensing-Equivalent
Number of Bits’’, has been proposed to describe the
obtained performances in analogy to ‘‘traditional’’ peak
sensing systems, thus allowing for an easy comparison with
state-of-the-art analog systems. The computation has been
performed under very general assumptions for the various
detector properties, and then discussed for some typical
cases of Nuclear Physics applications. For example, using
the proposed recipe, a typical fast AD converter
(10–12ENOB, 50–200MSamples/s) is able to reach and
overcome the performances of a 15 bit peak-sensing ADC.
A complete replacement of the traditional analog

systems is possible given the predicted performances of
the presently commercially available sampling ADCs, with
the additional bonus of a significant simplification of the
experimental setups. In order to fully exploit the perfor-
mances of these converters a corresponding effort has to be
dedicated to improve the dynamic range of detection and
preamplification systems, at least in the field of charged
particle detection and identification over wide energy,
charge, and mass ranges. Clean cabling, differential signal
transmission, and proper triggering of the system are also
needed in order to exploit the achievable dynamic range.
While not considered in this paper, in the companion

paper [1] experimentally important issues like the use of a
finite number of samples for digital shaping and the
presence of a non-zero baseline level are quantitatively
addressed and extended prescriptions are provided for the
final energy resolution. As a matter of fact, in Ref. [1] it is
shown that in practical applications it is possible to reduce
the importance of both the aforementioned effects, so that
the conclusions of the present paper are not altered.
Experimental tests validating this presentation are pre-
sented in the companion paper [1].
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Appendix A. Evaluation of time-jitter effects

In this Appendix the evaluation of time-jitter related
effects is carried out. As it will be shown, these effects can
usually be neglected in typical Nuclear Physics applica-
tions.

Using the definitions given in Section 2, recalling the
worst case hypothesis of uncorrelated dtji½h�, and carrying
out the computation in the finite-time domain, the non-
stationary jitter-related effect on sexp is given by an
additional s2 term:

s2 ¼ E2s2ji
k2
ji

f S

(A.1)

where kji is given by

ðkjiÞ
2
¼

Z TM

�1

p0ðtÞGðTM � tÞ½ �
2
dt. (A.2)

The dimensions of ðkjiÞ
2 are thus [1/time3]. Comparing Eq.

(A.1) with the ENOB-related one (i.e. bADCk2
G), it is easily

verified that the jitter term is negligible if the following
holds:

s2ji5
2

12

1

4ENOB

R2

E2

k2
G

k2
ji

. (A.3)

Using these results one can extend the given PSENOB de-
finition as

PSENOB ¼ ENOBþ
1

2
log2

f S

k2
G þ 6s2jik

2
ji4

ENOB

 !
�

1

2
.

(A.4)

In a typical case of interest in Nuclear Physics applications,
the signal pðtÞ is the output of a charge-preamplifier. In this
case, the signal portion mainly influenced by the time jitter
is the signal risetime that, anyway, does not significantly
contribute to the final energy measurement due to its short
length compared to a typical shaping time.

To examine this case, let us start by schematizing the
signal with a step-like shape. The digitally shaped output is
therefore simply given by

R
GðtÞdt. The derivative p0ðtÞ is

p0ðtÞ / f SdðtÞ. Substituting into Eq. (A.2), and taking into
account that the measuring point TM is typically chosen as
the time where the shaped signal reaches its maximum, i.e.
in the ‘‘flat-top’’ area where GðtÞ ¼ 0, one obtains k2

ji ¼ 0
and thus, in this approximation, zero jitter effects.
More realistic cases can be easily considered by an exact
evaluation of Eq. (A.3). For example, we consider a
trapezoidal filter with rise-time 3ms, flat top time 1ms, and
compensated for the signal decay time. The evaluation of
Eq. (A.3) shows that an 11ENOB converter sampling a
charge-preamplifier signal with a 100 ns=50ms rise/decay
time combination provides sji52400 ps (1700 ps for
50 ns=50ms, 320 ps for 100 ns=5ms). When the same system
is used to sample a current-preamplifier or photomultiplier
signal having 10 ns rise time, 30 ns fall time we obtain
sji530 ps. In common operating conditions these limits are
easily met using commercially available ADCs (typical
aperture jitter 0.1–1 ps) and quartz oscillators (typical jitter
1–4 ps).
In all the examined cases any time-jitter effect is thus

negligible.
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