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Abstract—Seeded Localized Averaging (SLA) is a spectrum
acquisition method that averages pulse-heights in dynamic win-
dows. SLA sharpens peaks in the acquired spectra. This work
investigates the transformation of the original probability density
function (PDF) in the process of applying SLA procedure. We
derive an analytical expression for the resulting probability
density function after an application of SLA. In addition, we
prove the following properties: 1) for symmetric distributions,
SLA preserves both the mean and symmetry. 2) for unimodal
symmetric distributions, SLA reduces variance, sharpening the
distributions peak. Our results are the first to prove these prop-
erties, reinforcing past experimental observations. Specifically,
our results imply that in the typical case of a spectral peak
with Gaussian PDF the full width at half maximum (FWHM) of
the transformed peak becomes narrower even with averaging of
only two pulse-heights. While the Gaussian shape is no longer
preserved, our results include an analytical expression for the
resulting distribution. Examples of the transformation of other
PDFs are presented.

I. INTRODUCTION

NIQUE radioactive elements and their associated decay
chains produce unique energy spectra. This property has
motivated extensive study in the ability to identify radioactive
material based on its energy spectrum [1], [2], [3]. However,
the ability to collect information on the energy spectrum is
limited by the properties of the radiation detection equipment.
The main objective of the radiation spectroscopy is to record
a spectrum from a radiation detector. The spectrum provides
information about the incident radiation and the response
of the radiation detector. A common approach to record
differential pulse height spectra is to use multi-channel pulse
height analyzer - often referred to as multi-channel analyzer
(MCA). The differential pulse height spectrum is recorded as
a differential number of pulses with pulse heights within a
small amplitude interval. This interval is nearly constant over
the full range of analyzed pulse heights and is called channel
width. The full pulse height range divided by the channel width
determines the total number of channels of the pulse height
analyzer. Typically, the channels are consecutively numbered
using integer numbers starting from zero.
An example of radiation spectrum is shown in Figure 1.
The horizontal axis is the channel number. The vertical axis
represents the channel content - number of counts. There are
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different features in the spectra that are associated not only
with the energy of the detector events but also with the detector
itself and the signal processor properties. The most important
characteristic of the spectroscopy system is the resolution
(energy, time, etc.). The full-width at half-maximum (FWHM)
of the spectral peaks is a measure of the spectroscopy system
capability to resolve incident radiation, for example the energy
deposited into the detector. The FWHM depends on various
factors such as statistical fluctuations of the detector signal,
noise contribution of the signal processor, external interfer-
ence, temperature and long term drifts, etc [4].

Statistical fluctuations determine the theoretical limit of the
energy resolution for a given detector. The effect of the other
sources can be reduced by using appropriate noise filtering and
other electronic techniques. One way to reduce the detector
statistical fluctuations is to use averaging of more than one
pulse height in the process of pulse height analysis. In this
paper, we describe a signal processing technique called Seeded
Localized Averaging (SLA), that transforms the acquired
energy spectrum so as to reduce the noise in the system,
reducing the FWHM of peaks in the acquired spectra [5], [6].
In addition to demonstrating the benefits of SLA through both
experimental and simulated examples (see Figure 1), we prove
basic theoretical properties of the transformation.

There are methods to post-process the acquired energy
spectrum using spectral-deconvolution that strive reducing the
detector noise, as does SLA [7]. Those methods are based
on modeling the observed energy spectrum as a function of
two random variables, the input energy spectrum and the
detector response function. The detector response function can
be modeled as a joint probability distribution on input pulse
heights to output pulse heights. At least three such methods
exist, using regularisation [8], maximum likelihood [9], and
maximum entropy [10].

The main difference between SLA and spectral-
deconvolution methods is that SLA is a real-time processing
strategy. In particular, modeling the detector’s energy-
response function for spectral-deconvolution “can be a very
computing-intensive task [7].” On the other hand, SLA’s use
of averaging can be carried out in hardware, in real time,
as pulse heights are measured by the detector. In addition,
because SLA uses averaging to reduce instrument noise, SLA
does not require an explicitly formulated noise model for
the detector. This is practically advantageous, because SLA
can be readily used with varying detector equipment. On the
other hand, having a computationally-intensive, data-driven
model of the noise from a specific instrument may result in
cleaner post-processing spectra.

The remainder of this paper is structured as follows. In Sec-
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Fig. 1: Comparison of conventional spectrum to spectrum
processed with seeded localized averaging (SLA). Low energy
spectrum example from Nal(Tl) scintillation detector and
Am?241 radiation source. Both spectra have the same total
number of pulses. The spectrum on the left was acquired with
conventional pulse height analysis, the spectrum on the right
was acquired using SLA. The full-width half-maximum of the
peak is significantly reduced.

tion II, we describe Seeded Localized Averaging, its variants,
and its basic theoretical properties. In Section III, we demon-
strate some specific examples of the SLA transformation to
different distributions and its sensitivity to its input parameters.
In Section IV, we draw some conclusions. The detailed proofs
of the properties of SLA are left to Appendix A.

II. DESCRIPTION OF SEEDED LOCALIZED AVERAGING

In conventional spectroscopy, the increment of the spec-
troscopy channels is based on a single pulse height mea-
surement. That is, every pulse height measurement causes
increment of the channel content.

In order to improve the energy resolution of the radiation
detector, Seeded Localized Averaging uses the average of
a predetermined number of pulse heights to determine a
channel to increment. The essential feature of SLA and the
fundamental difference from the conventional pulse height
analysis method is the use of more than one pulse height
measurement to increment the spectroscopy channels. That
is, the channel number is derived and the channel content
increments only after the average of two or more pulse heights
is obtained.

Using simple pulse height averaging of all measured pulse
heights destroys the differential between distinct energy peaks
in the spectrum. Therefore, SLA implements a selective ap-
proach to carry out the averaging, averaging only over a narrow
window of pulse heights. The window size naturally alters the
results, and has to be carefully chosen in order to preserve
the spectral information. The window size selection should be
made taking into account the FWHM of the spectrum obtained
by the conventional pulse height analyzer.

Selection of an appropriately narrow averaging window is
not sufficient by itself; it is also necessary to select the position
of the averaging window. If the averaging window has a
fixed position, the post-averaging spectrum would simply be
a step-function of the original spectrum, not providing any
decrease in the FWHM. Thus, the key to SLA is that it
alters the position of the averaging window as the averaging
is performed.

We describe the SLA process, first in simple terms, and
then in more detailed terms that can be implemented in a
spectroscopy device. The SLA process has two parameters,
the size of the averaging window, and the predetermined
number of pulse heights to average. Simply, in SLA, when the
first pulse height is measured, it creates an averaging range
around it based on the averaging window. For example, if the
averaging window is 3 and a pulse height of 100 is measured,
the averaging range is from 97 to 103. When a second pulse
height is measured that falls within that averaging range, the
two pulse heights are averaged and the center of the averaging
range is moved to the computed average. For example, suppose
the second pulse height measured is 98. The second pulse
height is within the averaging range created by the first pulse
height. The averaging range is re-centered at the average of the
two pulse heights, 99, and now spans 96 to 102. The process
is repeated until a fixed number of pulse heights have been
averaged, as specified by the SLA parameter. For example,
if the number of pulse heights to average is 2, the running
example has averaged two pulse heights, and we output 99 as
a channel increment.

Figure 2 graphically depicts an implementation of SLA in
instrument memory. To implement SLA in an instrument, the
averaging of the pulse heights is done using an averaging
memory. The averaging memory has similar structure as
spectral memorys; it has channels that typically have the same
width as the spectral channels. Each of the averaging memory
channels holds two values: average sum and average number.

Since there may be multiple averaging ranges active at the
same time, it is easier to think of SLA’s averaging window
parameter as specifying a search range around the recently
measured pulse height.

Initially, the entire content of the averaging memory is set to
zero. When a pulse arrives its pulse height is used to center the
search range. The average number is checked within the search
range. If all channels within the search range hold zero than
the pulse height becomes the seed of new average sum. The
pulse height seeds the average sum, and the average number
is incremented by one (Figure 2a).

After some average sums are seeded, when a pulse height
is measured, not all channels in the search range will hold
zero. If there is at least one channel in the search range with
a non-zero average sum value, the measured pulse height is
added to the closest average sum. Every time a pulse height is
added to the average sum, the average number is incremented
by one. Then, an average value is computed by dividing the
average sum by the average number. If the average value points
to a new channel in the averaging memory, the average sum
and the average number are moved to this new channel. The
old average sum and average number locations are set to zero
(Figure 2b).

Eventually, the average number of an averaging channel
reaches the predetermined number of pulse heights to average.
At that point, the average sum is divided by the average
number. The result of this division is a value that is used to
point to the channel of the spectral memory. The channel of
the spectral memory increments. The locations of the average
sum and the average number are set to zero (Figure 2e).
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Fig. 2: Example of SLA in instrument memory. The averaging window in this example is set to 3, making the search range
encompass a total width of seven channels - three from each side of the pulse height channel and the pulse height channel
itself. Figures 2a and 2c show a seeding operation, when there is no average sum within the search range. The rest of the
figures illustrate the average sum build-up process. The number of pulse heights to average in this example is set to four. This
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number is reached in Figure 2e which illustrates the process of incrementing the spectrum memory channels.



A. Theoretical Properties of SLA

Theoretically, SLA can be viewed as a probability density
function (pdf) transformation. The energy spectrum produced
by the directly measured pulse heights describes a probability
density over energy levels. SLA takes as input such a proba-
bility density, and transforms it to a new probability density
over the same energy levels.

Let the energy spectrum before SLA describe pdf f(z) and
associated cumulative distribution function (cdf) F'(z). Let r
be the averaging window parameter. Let n be the number of
pulse heights to average parameter, and for simplicity let us fix
it to 2. Let X be a random variable (r.v.) describing the initial
pulse height measured; with a pdf f(x) and cdf F(z). The
pulse height X specifies an averaging range, [Xo—7, Xo+7].
Let X; be a r.v. describing the second pulse height to fall
within the averaging range. The distribution of X; has the
same pdf as X, but restricted to the interval [Xo — r, X + 7]
and normalized so that it integrates to 1. The energy channel
incremented at the end of SLA is the average of the two
measured pulse heights, corresponding to the random variable
Py = % An input probability density function, f(x),
completely specifies the distributions of Xy and Xy, and the
SLA transformation produces the probability density function
of Po.

For the remainder of this section, we describe the theoretical
properties of SLA, and what they mean practically. The proofs
of these properties are relegated to the appendix. We discuss
the properties with the parameter n fixed to 2, for1 simplicity.
For a larger value of n, we would have Py = ZZTUX, where
the distribution of X; for j = 1...n — 1 is the same as that
Zf’::o Xi Z;& Xi
[==— =, == 4]

of X but restricted to the interval
and normalized so that it integrates to 1. Properties for those
versions of the SLA transformation can be derived in a similar
manner as the ones stated here.

It is possible to explicitly characterize the pdf and cdf re-
sulting from the SLA transformation, in terms of the parameter
r and the initial pdf, f(x) and cdf, F(z), regardless of their
specific shapes.

Lemma IL.1. The random variable Py has cdf

Pr[Py <y] = /y_§ f(x)dx

y+% / 2y—xo flxy) -
+/y f(xo)/wor Flog 1) — Flag—7) dxydz

_ [ 2@y -2
= [ O

The most basic, desirable property of the SLA transfor-
mation is not to shift the locations of peaks in the energy
spectrum. This is clearly not true for an arbitrary setting for
the parameters. For example, setting r to infinity and n to
a very large constant makes to SLA transformation take a
simple average of n measured pulse heights, regardless of their
location. For those parameter settings, the SLA transformation

would produce a delta function at the mean of the original
distribution, f(z). Using the characterization of Lemma IIL1,
it is possible to show that SLA does not shift or alter the
symmetry of the original distribution.

Lemma IL2. If f(z) is symmetric about y, then f,(y) is also
symmetric about . As a corollary, if f(x) is symmetric with
mean (i, then f,(y) is also symmetric with the same mean, L.

Intuitively, the above lemma states that regardless of the
parameter values for SLA, the SLA transformation does not
shift the distribution, and maintains symmetry. In particular,
if the original distribution were a single Gaussian peak, the
resulting distribution would have the same mean, maintaining
the peak location, and would also be symmetric.

The second basic, desirable property of the SLA transfor-
mation is that it reduces FWHM of the original distribution,
sharpening the peaks. For a single Gaussian peak, the FWHM
is related to the variance of the distribution. We can charac-
terize SLA’s impact the variance of f(x) with the following
lemma.

Lemma IL3. If f(x) is symmetric and increasing towards its
mean, 1, then Py has a smaller variance than X,.

Intuitively, the above lemma states that for any distribution
that looks like a single peak, in other words is symmetric and
increasing towards the mean, the SLA transformation reduces
the variance, and thus the FWHM. Intuitively, for distributions
with multiple peaks, if r is small, at a local level of radius r,
the distribution behaves like a distribution with a single peak.
In Section III, we show explicit examples of these theoretical
results that help in their interpretation.

III. EXAMPLES OF SEEDED LOCALIZED AVERAGING

To get a better understanding of the SLA transformation,
Figure 3 depicts the transformation as applied to a standard
normal distribution. Figure 3a depicts the original distribution,
and the resulting transformed distributions from SLA with n
fixed to 2 and different values of r. The decrease in the FWHM
of the peak is evident in the figure. Figure 3b depicts the
theoretical distribution resulting from SLA with n = 2 and
r = 4 versus a histogram derived through simulation.

Different values of r provide different levels of variance
reduction, as can be seen in Figure 3a. We can understand
what levels of variance reduction are possible, both theoret-
ically and practically. Theoretically, as r goes to zero, X;
is approximately equal in value to Xy, and thus Py = X,
providing no variance reduction. As 7 goes to infinity, X
has the same distribution as X, and thus Py = % is
the sum of two independent, identically distributed Gaussians
divided by two. Because of standard results on the sums of
Gaussians, if X is standard normal, the variance of F; is %,
providing a factor of 2 variance reduction. As n increases,
this variance reduction would be greater. Figure 4 depicts the
variance reduction of SLA when changing the parameter r and
holding n fixed to 2.

For a symmetric distribution without a peak, such as
the uniform distribution, SLA maintains both the mean and
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Fig. 3: The Seeded Localized Averaging transformation applied to a standard normal distribution. Figure 3a depicts the original
Gaussian pdf, and the resulting pdfs from several variants of SLA, all with n = 2 but with varying averaging window, r. The
figure demonstrates the decrease in the FWHM. Figure 3b demonstrates agreement between a simulated histogram of SLA
with n = 2, r = 4 applied to a standard normal against the theoretical distribution as specified by Lemma II.1.

symmetry, as guaranteed by Lemma II.2. The result of the
SLA transformation on the uniform distribution is depicted in
Figure 5. When the averaging window, r, is equal to 1, the
SLA transformation outputs the average of two independent
identically distributed uniform variables, giving the familiar
triangular shaped distribution in Figure 5a. Figure 5b demon-
strates agreement between a simulated histogram of SLA with
n = 2, r = 0.25 applied to the uniform against the theoretical
distribution as specified by Lemma II.1.

Finally, consider a distribution with two peaks, such as a
mixture of two Gaussians. Figure 6 depicts the SLA trans-
formation acting on a mixture of two standard normals, one
centered at -2 and the other at 2. For small values of r, the SLA
transform reduces the FWHM, as shown for the value 1. For
larger values of r, the original distribution no longer locally
(an interval with radius r) acts as a distribution with one peak.
Thus, for larger values of r, 4 in the example, we see a new
peak introduced at 0, the mean of the original distribution. For
any distribution, there is a value of r small enough so as not
to introduce such artifacts. And, even for large values of r,
the SLA transform maintains the mean of the original pdf and
symmetry as guaranteed by Lemma II.2.

IV. CONCLUSIONS

Figure 2 compares spectra obtained with conventional spec-
troscopy system and spectroscopy system using SLA. The
figure shows the improvement in FWHM when the SLA
technique is used.

This paper demonstrates both a practical and theoretical
description of the Seeded Localized Averaging transformation.
The theoretical description leads to proofs of the fundamental
properties of SLA, and investigation of the SLA transformation
and its sensitivity on basic examples such as a Gaussian
peak (Figures 3 and 4), the uniform distribution (Figure 5),
and a mixture of two Gaussians (Figure 6). For a symmetric
distribution with a single peak, the SLA transformation always
maintains the mean, maintains symmetry, and reduces the
FWHM. For distributions with multiple peaks, if the averaging
window is small enough, SLA reduces the FWHM.

1.0y

° o o
~ @ ©

Variance of output distribution

Q)
o

SLA parameter r

Fig. 4: SLA variance reduction when applied to a standard
normal distribution. The horizontal axis shows different values
of the averaging window parameter, . The parameter n is
fixed at 2.. The vertical axis shows the variance of the result-
ing distribution. The results agree with theoretical arguments
showing that the variance of the output distribution must be
between 1 and 0.5.

One drawback of SLA is the reduced number of counts
in the channels compared to the conventional method. The
total number of the counts in the SLA spectra is reduced
by a factor equal to the predetermined maximum number of
pulse heights in the average sum (the parameter n). Some
techniques are available to mitigate this effect [11]. For
example, a large number of pulse height measurements may be
collected, and then repeatedly, randomly sub-sampled to apply
the SLA transformation. However, the theoretical analysis of
such techniques is beyond the scope of this presentation.

SLA provides a real-time processing method for reducing
detector noise, with provable theoretical guarantees, and con-
tributes to a related body of work on spectral-deconvolution
methods.
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Fig. 5: The Seeded Localized Averaging transformation applied to a uniform distribution. Figure 5a depicts the original uniform
pdf, and the resulting pdfs from several variants of SLA, all with n = 2 but with varying averaging window, r. Figure 5b
demonstrates agreement between a simulated histogram of SLA with n = 2, » = 0.25 applied to the uniform against the

theoretical distribution as specified by Lemma II.1.

— Mixture of Gaussians

Fig. 6: SLA applied to a mixture of two Gaussian distributions.
The original pdf is of two standard normals, centered at 2 and
—2. When r is sufficiently small, about 1 in this example, the
FWHM of both peaks is reduced, and the dip between the
peaks is exaggerated. When r becomes larger, the original pdf
no longer behaves like a single peak locally. With r = 4, the
output density’s pdf has a peak at 0, the mean of the original
density. Because the original distribution is symmetric, the
output distribution is also symmetric, following the theoretical
result of Lemma IL.2.

APPENDIX

RANDOM VARIABLE DEFINITIONS

Let r be SLA averaging window. Let X have a pdf f(z)
and cdf F(z). Let Xy, which depends on X, have the same
pdf as X but restricted to the interval [Xo — r, Xy + 7] and
normalized so that it integrates to 1.

We define the seeded localized average as the random
variable Py = XefX1,

PDF AND CDF OF SEEDED LOCALIZED AVERAGING

Lemma A.1. The random variable Py has cdf:

Proof:

We can split the event { Py < y} into two mutually exclusive
events. The first event is {Xo < y— £}, in which any value of
X1 makes {Py < y}. The second event is that X, is bigger,
but X; is small enough that Fp is less than y anyway: this
happens when ({y — § < Xo < y+ 5}) and ({Xog —r <
X1 <2y — Xo}). The two terms in the cdf expression in the
lemma reflect the probabilities of these two mutually exclusive
events, where FlaoT f )(f})(mrr) is the pdf of X in the interval
(X() —T,Xo—l—’r‘). |

Lemma A.2. The random variable Py has pdf:

(YR 2f(a)f(2y — )
fp(y)_/y F(ar:—i—r)—F(:z:—r)daC

T
2

Proof: We begin with the definition of pdf and the result
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where we have used the fundamental theorem of calculus to

take derivatives, and a change of dummy variables completes
the theorem statement. ]

PROPERTIES OF SEEDED LOCALIZED AVERAGING

Lemma A.3. If f(x) is symmetric about p, then f,(y) is also
symmetric about .

Proof: We show that f,(u—0) = fp(1n+0). We start with
the left hand side and the definition of f,(z) from Lemma A.2:

PR 2f (@) f (2 — 8) — x)
fo(pp—9) = Lé' Fle+1) — Fle —1) dx.

r
2

Now, we substitute x = 1 —J — 5 + 2 to get

2f(p—0—5+2)f(u—0+5—=2)

p(n=9) 0o Flpu—8+5+2)— (u—é—%+z)dz
:/T (5+**Z))f( +(=0+35—2))
oF( (—5+§+2)) Flp—(6+% -2) 0

We continue with the right hand side

O [PTTE 2f () f (2 + 6) — )
fp(“+5)é+5g Flx+r)—F(z—1)

dx,

and we substitute © = p + 0 + 5 — 2 to get

0 2f(ut i+ ) f(utd -5 +2)
fp(wré)*/r Flp+d+3 —2)— (u+§—gfz)dz

By (CENGS 1) (RS
o Flut G4 =) = Flu= o+ 5+2) "
2

Because f(z) is symmetric about y, for any value b we have
f(p—=0) = f(1+Db), and thus the numerators of equations (1)
and (2) are equal. Also because f(x) is symmetric about i,
for any values a and b we have F(u+a) — F(u—0) = F(pu+
b) — F (1 —a), and thus the denominators of equations (1) and
(2) are equal. Intuitively, the property F(u+a) — F(u—5b) =
F(u+b)— F(u—a) simply says that the area under the curve
f() in the interval (1 — b, u + a) is the same as the area in
the interval (1 — a, u+b).

Because both the numerators and denominators of equations
(1) and (2) are equal, we have that f,(1x—9) = fp(p+0). ®

Corollary A4. If f(x) is symmetric with mean p, then f,(y)
is also symmetric with the same mean, .

Proof: Follows from Lemma A.3. |

Lemma A.5. [f f(x) is symmetric and increasing towards its
mean, i, then Py has a smaller variance than X,.

Proof: Without loss of generality, we assume p = 0. The
lemma statement then reduces to showing E[(Xef%1)?] <
E[X?]. We begin by using linearity of expectation

Xo+ X1\ 1
E (021> =E {4 (X§ + X7 +2X0X1)

IN
—~~ o~

E[X{] + B [XT] + 2B [Xo X1])

2B [X§] + 2B [XoX1])

E [X{] 4+ E[XoX1])

where the inequality is because X is a restricted version of
Xo.

To show the lemma statement, the only thing that remains
is to show E [XoX;] < E[XZ]. We have

E [X()Xl] = /Oo f(xo)E[$0X1|Xo = .130] dl‘o

- / F(zo)2o E[X1 | Xo = w0l dzo.  (3)

Because f(z) is symmetric and increasing towards the mean
(0, since we assume p = 0) we have: 1) if xo = p = 0 then
E[X1|X0 = 370] = x¢ and 2) if xq 7& 1 then ‘E[X1|XO =
zo]| < |zo| . Thus, continuing from equation (3),

E [X()Xﬂ = /OO f({L‘())LU()E[XllXO = 1‘0] dl‘o

/ f(zo xo dxg

= E[X3



completing the proof. ]
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