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Probability Density Function Transformation
Using Seeded Localized Averaging

Nedialko B. Dimitrov and Valentin T. Jordanov, Senior Member, IEEE

Abstract—Seeded Localized Averaging (SLA) is a spectrum ac-
quisition method that averages pulse-heights in dynamic windows.
SLA sharpens peaks in the acquired spectra. This work investi-
gates the transformation of the original probability density func-
tion (PDF) in the process of applying the SLA procedure. We de-
rive an analytical expression for the resulting probability density
function after an application of SLA. In addition, we prove the fol-
lowing properties: 1) for symmetric distributions, SLA preserves
both the mean and symmetry. 2) for unimodal symmetric distribu-
tions, SLA reduces variance, sharpening the distribution’s peak.
Our results are the first to prove these properties, reinforcing past
experimental observations. Specifically, our results imply that in
the typical case of a spectral peak with Gaussian PDF the full width
at half maximum (FWHM) of the transformed peak becomes nar-
rower even with averaging of only two pulse-heights. While the
Gaussian shape is no longer preserved, our results include an an-
alytical expression for the resulting distribution. Examples of the
transformation of other PDFs are presented.

Index Terms—Energy resolution, energy spectrum, seeded local-
ized averaging, spectrum acquisition.

I. INTRODUCTION

U NIQUE radioactive elements and their associated decay
chains produce unique energy spectra. This property has

motivated extensive study in the ability to identify radioactive
material based on its energy spectrum [1]–[3]. The main objec-
tive of the radiation spectroscopy is to record a spectrum from
a radiation detector, and a standard method of recording a spec-
trum is a multi-channel pulse height analyzer (MCA). The spec-
trum provides information about both the incident radiation and
the response of the radiation detector. However, to accurately
identify a radioactive material, we would like accurate informa-
tion solely on the incident radiation.

An example of radiation spectrum is shown in Fig. 1. The hor-
izontal axis is the channel number. The vertical axis represents
the channel content—number of counts. There are different fea-
tures in the spectra that are associated not only with the energy
of the detector events but also with the detector itself and the
signal processor properties. The most important characteristic
of the spectroscopy system is the resolution (energy, time, etc.).
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The full-width at half-maximum (FWHM) of the spectral peaks
is a measure of the spectroscopy system capability to resolve
incident radiation. The FWHM depends on various factors such
as statistical fluctuations of the detector signal, noise contribu-
tion of the signal processor, external interference, temperature
and long term drifts, etc [4].

Statistical fluctuations determine the theoretical limit of the
energy resolution for a given detector. The effect of the other
sources can be reduced by using appropriate noise filtering and
other electronic techniques. One way to reduce the detector sta-
tistical fluctuations is to use averaging of more than one pulse
height in the process of spectrum acquisition. In this paper, we
analyze a spectrum acquisition technique called Seeded Local-
ized Averaging (SLA), that allows for a real time reduction of
the FWHM in acquired spectra [5], [6]. In addition to demon-
strating the benefits of SLA through both experimental and sim-
ulated examples (see Fig. 1), we prove basic theoretical proper-
ties of the transformation.

There are methods to post-process the acquired energy
spectra using spectral-deconvolution that reduce peak FWHM
[7]. Those methods are based on modeling the observed energy
spectrum as a function of two random variables, the input en-
ergy spectrum and the detector response function. The detector
response function can be modeled as a joint probability distri-
bution on input pulse heights to output pulse heights. At least
three such methods exist, using regularisation [8], maximum
likelihood [9], and maximum entropy [10]. However, modeling
the detector’s energy-response function for spectral-deconvo-
lution “can be a very computing-intensive task [7].”

The main difference between SLA and spectral-deconvolu-
tion methods is that SLA is a real-time spectrum acquisition
technique which requires no knowledge of the detector response
function. In other words, SLA can be carried out in hardware, in
real time, as pulse heights are measured by the detector. In ad-
dition, because SLA uses averaging to reduce instrument noise,
SLA does not require an explicitly formulated noise model for
the detector. This is practically advantageous, because SLA can
be readily used with varying detector equipment. On the other
hand, having a computationally-intensive, data-driven model of
the noise from a specific instrument may result in cleaner post-
processing spectra.

The remainder of this paper is structured as follows. In
Section II, we describe Seeded Localized Averaging, its vari-
ants, and its basic theoretical properties. In Section III, we
demonstrate some specific examples of the SLA transformation
to different distributions and its sensitivity to its input param-
eters. In Section V, we draw some conclusions. The detailed
proofs of the properties of SLA are left to Appendix A.
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Fig. 1. Comparison of conventional spectrum acquisition to a spectrum acquired with seeded localized averaging (SLA). Fig. 1(a) shows a low energy spectrum
example from NaI(Tl) scintillation detector and Am241 radiation source. Both spectra have the same total number of counts. The spectrum on the left was acquired
with conventional pulse height analysis, the spectrum on the right was acquired using SLA. The full-width half-maximum of the peak is significantly reduced.
Fig. 1(b) also shows conventional pulse height analysis (left) and SLA (right) using an old fluorescent watch dial source, Ra226, and a NaI(Tl) scintillation detector.
Both spectra have the same total number of counts. SLA again reduces the FWHM.

II. DESCRIPTION OF SEEDED LOCALIZED AVERAGING

In conventional spectroscopy, the increment of the spec-
troscopy channels is based on a single pulse height mea-
surement. That is, every pulse height measurement causes
increment of the channel content.

In order to improve energy resolution, Seeded Localized Av-
eraging uses the average of a predetermined number of pulse
heights to determine a channel to increment. The essential fea-
ture of SLA and the fundamental difference from the conven-
tional pulse height analysis method is the use of more than one
pulse height measurement to increment the spectroscopy chan-
nels. That is, the channel number is derived and the channel
content increments only after the average of two or more pulse
heights is obtained.

Using simple pulse height averaging of all measured pulse
heights destroys the differential between distinct energy peaks
in the spectrum. Therefore, SLA implements a selective ap-
proach to carry out the averaging, averaging only over a narrow
window of pulse heights. The window size naturally alters the
results, and has to be carefully chosen in order to preserve the
spectral information. The window size selection should be made
taking into account the FWHM of the spectrum obtained by the
conventional pulse height analyzer.

Selection of an appropriately narrow averaging window is not
sufficient by itself; it is also necessary to select the position of
the averaging window. If the averaging window has a fixed posi-
tion, the post-averaging spectrum would simply be a step-func-
tion of the original spectrum, not providing any decrease in the
FWHM. Thus, the key to SLA is that it alters the position of the
averaging window as the averaging is performed.

The SLA process has two parameters, the size of the aver-
aging window, and the predetermined number of pulse heights
to average. Simply, in SLA, when the first pulse height is mea-
sured, it creates an averaging range around it based on the aver-
aging window. For example, if the averaging window is 3 and a
pulse height of 100 is measured, the averaging range is from 97
to 103. When a second pulse height is measured that falls within
that averaging range, the two pulse heights are averaged and the
center of the averaging range is moved to the computed average.
For example, suppose the second pulse height measured is 98.
The second pulse height is within the averaging range created by
the first pulse height. The averaging range is re-centered at the
average of the two pulse heights, 99, and now spans 96 to 102.
The process is repeated until a fixed number of pulse heights
have been averaged, as specified by the SLA parameter. For ex-
ample, if the number of pulse heights to average is 2, the running
example has averaged two pulse heights, and we output 99 as a
channel increment.
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Fig. 2. Example of SLA implementation. The averaging window in this example is set to 3, making the search range encompass a total width of seven chan-
nels—three from each side of the pulse height channel and the pulse height channel itself. Figs. 2(a) and 2(c) show a seeding operation, when there is no average
sum within the search range. The rest of the figures illustrate the average sum build-up process. The number of pulse heights to average in this example is set to
four. This number is reached in Fig. 2(e) which illustrates the process of incrementing the spectrum memory channels.

Fig. 2 graphically depicts an implementation of SLA. To im-
plement SLA, the averaging of the pulse heights is done using an

averaging memory. The averaging memory has similar structure
as spectral memory; it has channels that typically have the same
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width as the spectral channels. Each of the averaging memory
channels holds two values: average sum and average number.

Since there may be multiple averaging ranges active at the
same time, it is easier to think of SLA’s averaging window pa-
rameter as specifying a search range around the recently mea-
sured pulse height.

Initially, the entire content of the averaging memory is set to
zero. When a pulse arrives its pulse height is used to center the
search range. The average number is checked within the search
range. If all channels within the search range hold zero than
the pulse height becomes the seed of new average sum. The
pulse height seeds the average sum, and the average number is
incremented by one Fig. 2(a).

After some average sums are seeded, when a pulse height is
measured, not all channels in the search range will hold zero.
If there is only one channel with non-zero average sum in the
search range, then the measured pulse height is added to the
average sum of that channel. If more than one channel has
non-zero average sum in the search range, the measured pulse
height is added to the average sum of the channel closest to the
measured pulse height. If the measured pulse height is exactly
between two channels containing average sums, a fair coin is
flipped and the pulse height is added to one of the two channels.
Every time a pulse height is added to the average sum, the
average number is incremented by one. Then, an average pulse
height is computed by dividing the average sum by the average
number. If the average pulse height points to a new channel
in the averaging memory, the average sum and the average
number are moved to this new channel. The old average sum
and average number locations are set to zero Fig. 2(b).

Eventually, the average number of an averaging channel
reaches the predetermined number of pulse heights to average.
At that point, the average sum is divided by the average number.
The result of this division is an average pulse height that is used
to point to the channel of the spectral memory. The channel of
the spectral memory increments. The locations of the average
sum and the average number are set to zero Fig. 2(e).

A. Theoretical Properties of SLA

Theoretically, SLA can be viewed as a probability density
function (pdf) transformation. The energy spectrum produced
by the directly measured pulse heights describes a probability
density over energy levels. SLA takes as input such a probability
density, and transforms it to a new probability density over the
same energy levels.

Let the energy spectrum before SLA describe pdf and
associated cumulative distribution function (cdf) . Let
be the averaging window parameter. Let be the number of
pulse heights to average parameter, and for simplicity let us fix
it to 2. Let be a random variable (r.v.) describing the initial
pulse height measured; with a pdf and cdf . The pulse
height specifies an averaging range, . Let

be a r.v. describing the second pulse height to fall within the
averaging range. The distribution of has the same pdf as
but restricted to the interval and normalized
so that it integrates to 1. The energy channel incremented at the
end of SLA is the average of the two measured pulse heights,
corresponding to the random variable . An
input probability density function, , completely specifies
the distributions of and , and the SLA transformation
produces the probability density function of .

For the remainder of this section, we describe the theoretical
properties of SLA, and what they mean practically. The proofs
of these properties are relegated to the appendix. We discuss the
properties with the parameter fixed to 2, for simplicity. For a
larger value of , we would have , where the
distribution of for is the same as that of but
restricted to the interval
and normalized so that it integrates to 1. Properties for those
versions of the SLA transformation can be derived in a similar
manner as the ones stated here.

It is possible to explicitly characterize the pdf and cdf re-
sulting from the SLA transformation, in terms of the parameter

and the initial pdf, and cdf, , regardless of their spe-
cific shapes.

Lemma II.1: The random variable has cdf

and pdf

The most basic, desirable property of the SLA transforma-
tion is not to shift the locations of peaks in the energy spectrum.
This is clearly not true for an arbitrary setting for the parameters.
For example, setting to infinity and to a very large constant
makes to SLA transformation take a simple average of mea-
sured pulse heights, regardless of their location. For those pa-
rameter settings, the SLA transformation would produce a delta
function at the mean of the original distribution, . Using the
characterization of Lemma II.1, it is possible to show that SLA
does not shift or alter the symmetry of the original distribution.

Lemma II.2: If is symmetric about , then is also
symmetric about . As a corollary, if is symmetric with
mean , then is also symmetric with the same mean, .

Intuitively, the above lemma states that regardless of the pa-
rameter values for SLA, the SLA transformation does not shift
the distribution, and maintains symmetry. In particular, if the
original distribution were a single Gaussian peak, the resulting
distribution would have the same mean, maintaining the peak
location, and would also be symmetric.

The second basic, desirable property of the SLA transforma-
tion is that it reduces FWHM of the original distribution, sharp-
ening the peaks. For a single Gaussian peak, the FWHM is re-
lated to the variance of the distribution. We can characterize
SLA’s impact the variance of with the following lemma.

Lemma III.3: If is symmetric and increasing towards its
mean, , then has a smaller variance than .

Intuitively, the above lemma states that for any distribution
that looks like a single peak, in other words is symmetric and
increasing towards the mean, the SLA transformation reduces
the variance, and thus the FWHM. Intuitively, for distributions
with multiple peaks, if is small, at a local level of radius ,
the distribution behaves like a distribution with a single peak.
In Section III, we show explicit examples of these theoretical
results that help in their interpretation.
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Fig. 3. The Seeded Localized Averaging transformation applied to a standard normal distribution. Fig. 3(a) depicts the original Gaussian pdf, and the resulting pdfs
from several variants of SLA, all with � � � but with varying averaging window, �. The figure demonstrates the decrease in the FWHM. Fig. 3(b) demonstrates
agreement between a simulated histogram of SLA with � � �, � � � applied to a standard normal against the theoretical distribution as specified by Lemma II.1.

Fig. 4. SLA variance reduction when applied to a standard normal distribution.
The horizontal axis shows different values of the averaging window parameter,
�. The parameter � is fixed at 2. The vertical axis shows the variance of the
resulting distribution. The results agree with theoretical arguments showing that
the variance of the output distribution must be between 1 and 0.5.

III. EXAMPLES OF SEEDED LOCALIZED AVERAGING

To get a better understanding of the SLA transformation,
Fig. 3 depicts the transformation as applied to a standard normal
distribution. Fig. 3 depicts the original distribution, and the
resulting transformed distributions from SLA with fixed to
2 and different values of . The decrease in the FWHM of the
peak is evident in the figure. Fig. 3(b) depicts the theoretical
distribution resulting from SLA with and versus a
histogram derived through simulation.

Different values of provide different levels of variance re-
duction, as can be seen in Fig. 3(a). We can understand what
levels of variance reduction are possible, both theoretically and
practically. Theoretically, as goes to zero, is approximately
equal in value to , and thus , providing no variance
reduction. As goes to infinity, has the same distribution
as , and thus is the sum of two indepen-
dent, identically distributed Gaussians divided by two. Because
of standard results on the sums of Gaussians, if is standard
normal, the variance of is , providing a factor of 2 vari-
ance reduction. As increases, this variance reduction would
be greater. Fig. 4 depicts the variance reduction of SLA when
changing the parameter and holding fixed to 2.

For a symmetric distribution without a peak, such as the uni-
form distribution, SLA maintains both the mean and symmetry,

as guaranteed by Lemma II.2. The result of the SLA transfor-
mation on the uniform distribution is depicted in Fig. 5. When
the averaging window, , is equal to 1, the SLA transformation
outputs the average of two independent identically distributed
uniform variables, giving the familiar triangular shaped distri-
bution in Fig. 5(a). Fig. 5(b) demonstrates agreement between
a simulated histogram of SLA with , applied to
the uniform against the theoretical distribution as specified by
Lemma II.1.

Finally, consider a distribution with two peaks, such as a mix-
ture of two Gaussians. Fig. 6 depicts the SLA transformation
acting on a mixture of two standard normals, one centered at -2
and the other at 2. For small values of , the SLA transform re-
duces the FWHM, as shown for the value 1. For larger values
of , the original distribution no longer locally (an interval with
radius ) acts as a distribution with one peak. Thus, for larger
values of , 4 in the example, we see a new peak introduced at 0,
the mean of the original distribution. For any distribution, there
is a value of small enough so as not to introduce such arti-
facts. And, even for large values of , the SLA transform main-
tains the mean of the original pdf and symmetry as guaranteed
by Lemma II.2.

IV. SLA SIMULATIONS AND EXPERIMENTAL TESTS

Analytical solutions of the PDF transformation due to SLA
become complicated when a larger number of pulse heights
are averaged. Numerical simulations allow investigation of the
properties of SLA by synthesizing artificial peaks that model
real spectroscopy peaks. These simulations allow for control-
ling parameters such as FWHM and the total number of counts
under the peak. To illustrate this, an example of two overlapping
peaks is shown in Fig. 7(a). A random number generator pro-
duces a sequence of pulse heights that can be processed either
conventionally (MCA) or using SLA. The two Gaussian peaks
P1 and P2 in Fig. 7 are obtained using an MCA technique. In
this example P1 represents exactly 1 million counts while P2
has counts that are fraction of the P1 counts. This fraction of
counts is indicated in percentage in Fig. 7(a). The FWHM MCA
of both peaks is 50 channels. The space between the centroids
of the peaks is exactly 1.5 FWHM MCA. The same sequence
of pulse heights is processed by SLA routine with averaging
window of 0.5 FWHM MCA. The number of averaging pulse
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Fig. 5. The Seeded Localized Averaging transformation applied to a uniform distribution. Fig. 5(a) depicts the original uniform pdf, and the resulting pdfs from
several variants of SLA, all with � � � but with varying averaging window, �. Fig. 5(b) demonstrates agreement between a simulated histogram of SLA with
� � �, � � ���� applied to the uniform against the theoretical distribution as specified by Lemma II.1.

Fig. 6. SLA applied to a mixture of two Gaussian distributions. The original
pdf is of two standard normals, centered at 2 and ��. When � is sufficiently
small, about 1 in this example, the FWHM of both peaks is reduced, and the dip
between the peaks is exaggerated. When � becomes larger, the original pdf no
longer behaves like a single peak locally. With � � �, the output density’s pdf
has a peak at 0, the mean of the original density. Because the original distribution
is symmetric, the output distribution is also symmetric, following the theoretical
result of Lemma II.2.

heights is variable in general (Table I), however, Fig. 7(b) shows
an example of an SLA spectrum averaging 16 pulse heights. To
preserve the total number of counts SLA with pipeline pulse
height recycling is used [11].

One important question about SLA is its ability to preserve
the relative area of the peaks in the process of PDF transfor-
mation. While a theoretical or in-depth experimental analysis
of the relative peak area is out of the scope of this paper, we
provide some quick check simulation analysis for this question.
We consider two separate simulations. In the first, we consider
peaks with centroid spacing less than 3 FWHM MCA, and in
the second we consider peaks with centroid spacing more than
3 FWHM MCA.

For close peaks, with centroid spacing less than 3 FWHM
MCA, the simulation shown in Fig. 7 allows for performing a
quick check on the peak area ratio (P2/P1) using simple count
integration in the regions of interest (ROI). A set of SLA spectra
using different numbers of pulse heights to average are recorded
and the P2/P1 ratio is calculated (see Table I). Table I also shows
the dependence of FWHM SLA on the number of pulse heights
to average. For this particular example it is evident that SLA
improves not only the FWHM but the peak area ratio which

Fig. 7. A simulation of SLA for two Gaussian peaks of differing sizes. In this
example P1 represents exactly 1 million counts while P2 has counts that are
fraction of the P1 counts, as indicated in Fig. 7(a). Both peaks have a FWHMA
MCA of 50 channels, and the space between their centroids is 1.5 FWHM MCA.
Fig. 7(a) depicts spectra acquired using MCA. Fig. 7(b) depicts spectra acquired
with SLA, an averaging window of 0.5 FWHM MCA, and averaging 16 pulse
heights. To preserve the total number of counts SLA with pipeline pulse height
recycling is used [11].

can be viewed as a direct sequence of the resolution improve-
ment. Specifically, consider the example where P2 has 10% of
the counts of P1. Because the two peaks are close and overlap,
the ratio of the ROI for P2/P1 in an MCA acquired spectrum
is not 10% but about 14%. On the other hand, when 16 pulse
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TABLE I
THE BEHAVIOR OF SLA AS WE VARY THE NUMBER OF PULSE HEIGHTS TO AVERAGE. THE FIRST ROW OF THE SLA WHEN ONLY 1 PULSE HEIGHT IS AVERAGED,

WHICH IS EQUIVALENT TO STANDARD MCA SPECTRUM ACQUISITION. THE COLUMNS ON THE RIGHT HAND SIDE OF THE STUDIES FOR DIFFERENT SPECTRA

DEPICTED IN FIG. 7(A). FOR EXAMPLE, A COUNT RATIO OF P2/P1 OF 10% MEANS THAT P2 HAS 10% OF THE COUNTS OF P1. BECAUSE THE TWO PEAKS ARE

VERY CLOSE AND OVERLAP, WHEN INTEGRATING THE REGIONS OF INTERESTS (ROI) UNDER EACH PEAK, THE RATIO NEED NOT BE 10%. FOR EXAMPLE,
AN MCA ACQUIRED SPECTRUM WHEN THE COUNT RATIO IS 10% RESULTS IN AN ROI AREA RATIO OF 13.97%. SLA IMPROVES THE FWHM AND

ACHIEVES AN ROI AREA RATIO OF P2/P1 THAT IS CLOSER TO THE ORIGINAL COUNT RATIO WHEN COMPARED TO MCA

Fig. 8. X-ray fluorescent spectrum of the Mn K-lines obtained with a silicon
drift detector. SLA reduces the FWHM from 145 eV (MCA) to 85 eV (SLA).
The peaks are more than 3 FWHM MCA, and the ratio of the peak areas under
MCA and SLA are identical.

heights are averaged for an SLA acquired spectrum, the ratio of
the ROI for P2/P1 is 10.8%. More detailed results are available
in Table I.

The study in Fig. 8 considers peaks with centroids spaced at
distance larger than 3 FWHM MCA. The figure shows an x-ray
fluorescent spectrum of the Mn K-lines obtained with a silicon
drift detector. The resolution obtained with MCA is 145 eV.
The resolution of the SLA spectrum is 85 eV and exceeds the
statistical limit of the conventional spectroscopy using silicon
detectors. The peak areas and the ratio between K-alpha and
K-beta peaks obtained with MCA and SLA are identical.

V. CONCLUSIONS

Fig. 2 compares spectra obtained with conventional spec-
troscopy system and spectroscopy system using SLA. The
figure shows the improvement in FWHM when the SLA tech-
nique is used.

This paper demonstrates both a practical and theoretical de-
scription of the Seeded Localized Averaging transformation.
The theoretical description leads to proofs of the fundamental
properties of SLA, and investigation of the SLA transformation
and its sensitivity on basic examples such as a Gaussian peak
(Figs. 3 and 4), the uniform distribution (Fig. 5), and a mixture
of two Gaussians (Fig. 6). For a symmetric distribution with a
single peak, the SLA transformation always maintains the mean,
maintains symmetry, and reduces the FWHM. For distributions
with multiple peaks, if the averaging window is small enough,
SLA reduces the FWHM. Simulations and experimental results

have shown advantages of using SLA to improve the FWHM of
the spectral peaks.

One drawback of SLA is the reduced number of counts in
the channels compared to the conventional method. The total
number of the counts in the SLA spectra is reduced by a factor
equal to the predetermined maximum number of pulse heights in
the average sum (the parameter ). Some techniques are avail-
able to mitigate this effect [11]. For example, a large number of
pulse height measurements may be collected, and then repeat-
edly, randomly sub-sampled to apply the SLA transformation.
However, the theoretical analysis of such techniques is beyond
the scope of this presentation.

SLA provides a real-time processing method for reducing
detector noise, with provable theoretical guarantees, and con-
tributes to a related body of work on spectral-deconvolution
methods.

APPENDIX

RANDOM VARIABLE DEFINITIONS

Let be SLA averaging window. Let have a pdf and
cdf . Let , which depends on , have the same pdf as

but restricted to the interval and normalized
so that it integrates to 1.

We define the seeded localized average as the random variable
.

PDF and CDF of Seeded Localized Averaging:
Lemma A.1: The random variable has cdf:

Proof: We can split the event into two mutually
exclusive events. The first event is , in which
any value of makes . The second event is that
is bigger, but is small enough that is less than anyway:
this happens when and

. The two terms in the cdf expression in the
lemma reflect the probabilities of these two mutually exclusive
events, where is the pdf of
in the interval .
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Lemma A.2: The random variable has pdf:

Proof: We begin with the definition of pdf and the result of
Lemma A.1:

where we have used the fundamental theorem of calculus to
take derivatives, and a change of dummy variables completes
the theorem statement.

PROPERTIES OF SEEDED LOCALIZED AVERAGING:

Lemma A.3: If is symmetric about , then is
also symmetric about .

Proof: We show that . We start with
the left hand side and the definition of from Lemma A.2:

Now, we substitute to get

(1)

We continue with the right hand side

and we substitute to get

(2)

Because is symmetric about , for any value we have
, and thus the numerators of (1) and (2) are

equal. Also because is symmetric about , for any values
and we have , and
thus the denominators of (1) and (2) are equal. Intuitively, the
property simply says
that the area under the curve in the interval
is the same as the area in the interval .

Because both the numerators and denominators of (1) and (2)
are equal, we have that .

Corollary A.4: If is symmetric with mean , then
is also symmetric with the same mean, .

Proof: Follows from Lemma A.3.
Lemma A.5: If is symmetric and increasing towards

its mean, , then has a smaller variance than .
Proof: Without loss of generality, we assume . The

lemma statement then reduces to showing
. We begin by using linearity of expectation

where the inequality is because is a restricted version of .
To show the lemma statement, the only thing that remains is

to show . We have

(3)

Because is symmetric and increasing towards the mean
(0, since we assume ) we have: 1) if then

and 2) if then
. Thus, continuing from (3),

completing the proof.
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