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Quantization Effects in Radiation Spectroscopy
Based on Digital Pulse Processing

Valentin T. Jordanov, Senior Member, IEEE, and Kalina V. Jordanova, Member, IEEE

Abstract—Radiation spectra represent inherently quantized
data in the form of stacked channels of equal width. The spectrum
is an experimental measurement of the discrete probability density
function (PDF) of the detector pulse heights. The quantization
granularity of the spectra depends on the total number of channels
covering the full range of pulse heights. In analog pulse processing
the total number of channels is equal to the total number of digital
values produced by a spectroscopy analog-to-digital converter
(ADC). In digital pulse processing each detector pulse is sampled
and quantized by a fast ADC producing a certain number of
quantized numerical values. These digital values are linearly
processed to obtain a digital quantity representing the peak of the
digitally shaped pulse. Using digital pulse processing it is possible
to acquire a spectrum with the total number of channels greater
than the number of ADC values. Noise and sample averaging are
important in the transformation of ADC quantized data into spec-
tral quantized data. Analysis of this transformation is performed
using an area sampling model of quantization. Spectrum differen-
tial nonlinearity (DNL) is shown to be related to the quantization
at low noise levels and a small number of averaged samples.
Theoretical analysis and experimental measurements are used to
obtain the conditions to minimize the DNL due to quantization.

Index Terms—ADC, differential nonlinearity, pulse shaping,
quantization, radiation spectroscopy.

I. INTRODUCTION

R ECENTLY, we have developed a concept of a radiation
spectrometer that acquires and stores radiation spectra

at the highest possible total number of channels per spectrum.
That is, for example, all spectra are acquired and stored as 32k

channel spectra regardless of the analog-to-digital con-
verter resolution used by the spectrometer. At any time the high
channel count (e.g., 32k) spectrum can be transformed using
software to a new spectrum with a lower number of channels
without any loss of information while a copy of the original
spectrum is preserved. Such a transformation is straightforward
and could eliminate the outdated hardware “conversion gain”
setting. Furthermore, it would give the user the flexibility to
view and choose channel resolution [1], [2] with a single spec-
trum acquisition. Technically, this is easily achievable due to
the abundance of storage memory and readily available software
routines in modern microprocessor-based spectrometers.
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In classical analog spectrometers the maximum achievable
channel count per spectrum is equal to the number of the quanti-
zation levels of the analog-to-digital converter (ADC), which is
typically , where is the number of ADC bits. Thus, if the
ADC has 13 bits then the storage of 8k channels into the
spectrum space of 32k channels will require either a multiplica-
tion by a factor of four of the ADC digital values or artificially
spreading out the counts of one channel over four channels. In
the first case the resulting 32k spectrum will have differential
nonlinearity of 100% since every 3 of 4 consecutive channels
will always have zero counts. In the second case there will be
distortion of data for the 32k spectrum. However, in both cases
spectra can be binary scaled down to an 8k spectrum identical
to the original 8k spectrum.

In radiation spectroscopy based on digital pulse processing
(DPP), however, the total number of spectrum channels can
be greater than the maximum number of ADC quantization
levels without introducing the effects of spreading the data over
more channels, namely the 100% differential nonlinearity or
distorting the spectra as in the case of classical analog spec-
troscopy. In this paper we attempt to present the quantization
effects and conditions which allow such an improvement of
the channel resolution. This discussion relates to the specifics
of radiation spectroscopy and may not be applicable to other
fields.

II. QUANTIZATION

A. Quantizer

The quantization is a nonlinear operation which converts con-
tinuous physical quantities into numerical values. In this work
we adopt some of the definitions and annotations defined in ref-
erence [3]. The mathematical operator that performs quantiza-
tion is called a quantizer. In the field of signal processing the
quantizer transforms an input signal into numerical values
by assigning to each numerical value a certain amplitude range
of the continuous input signal . The range of the input signal
corresponding to a single numerical value is the quantum size
, also referred to as the basic unit of quantization or quantum

step size. If is the same (constant) for all numerical values over
the entire range of the quantized input signal then the quantiza-
tion is uniform. Thus, the differential nonlinearity of a uniform
quantizer is equal to zero. In the analysis of this work we will
consider a uniform quantizer.

By definition there is always a difference between the quan-
tizer input signal and the quantizer output signal . This dif-
ference is often referred to as quantization error. The quantiza-
tion error is systematic, uniquely defined and fully predictable
for a given quantizer. Therefore, the quantization error can not
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Fig. 1. Measurement of a constant voltage using ADC samples.

be treated the same way as random noise [3], [4]. Nevertheless,
the subject of quantization error and quantization noise has been
extensively studied for more than half a century [5] due to the
unique relationship between sampling, quantization and digital
signal processing.

B. Sampling and Analog-to-Digital Conversion

Sampling in signal processing is the operation of capturing in-
stant values (samples) of the input signal. Note that the sampled
values are physical quantities. The sampled values are quan-
tized resulting in numerical values corresponding to the values
of the sampled signal. This process of sampling and the associ-
ated quantization is well known as analog-to-digital conversion.
Analog-to-digital conversion is an important technique making
it possible to use mathematical operations on a digitized signal
to perform non-physical signal processing: digital signal pro-
cessing. In this work we consider quantization as a result of
analog-to-digital conversion generating integer numbers with a
quantum size of one.

Fig. 1 shows a measurement example of a constant, noiseless
voltage of 1.7 V. The voltage signal is digitized using an ADC
with a quantum size of 1 V. The input signal of 1.7 V is sam-
pled and quantized 10 times over a given period of time. The
quantization output is “1” for all samples. As the quantum size
is 1 V the systematic quantization error is 0.7 V for all samples.
The average of these ten samples also has a quantization error
of 0.7 V.

A more realistic signal is shown in Fig. 2, in which the signal
is accompanied by noise. Sources of noise in the signal are: the
generators of the signals, the signal conditioning electronics,
the ADC and other internal and external sources coupled to the
measurement system.

The signal at the input of the ADC can be represented
as a superposition of two components—a measured noiseless
signal (signal of interest) and noise as depicted in Fig. 2(a).
Fig. 2(b) shows an example of analog-to-digital conversion of
the same 1.7 V signal in the presence of noise. In this example
white noise is added to the constant signal of 1.7 V. The quan-
tization error of each sample is between 0 and 1 V as expected
from the definition of the quantization. The average of the ten
samples is 1.5 V which indicates a 0.2 V measurement error of
the average. Thus, the topic we will be discussing is the cause
of the reduced quantization error of the measurement with noise

Fig. 2. Measurement of a constant voltage in the presence of noise.

compared to the case without noise—an observation made and
question raised by Lakatos in his early work on digital signal
processing in radiation measurement [6].

The sampling and quantization operations are independent
from the input signal. Therefore, the quantizer will always con-
vert 1.7 V to a digital “1” regardless of the input signal com-
position. It is important to note that the properties of the ADC
are not dependent on the presence of noise or its level relative
to the measured signal. The reduced quantization error of the
average of the ten samples is due to the mathematical operation
of averaging and should not be regarded as an improved ADC
resolution. In this paper we are going to explore the effect of
averaging, weighted or conventional, on the quantization error
of the pulse-height measurement in the presence of noise. This
analysis uses a statistical approach to address the random noise
effects on the quantization and the measurement as a whole.

III. AREA SAMPLING

Consider a signal that is a superposition of random white
noise with zero mean added to a noiseless measured constant
value of interest as shown in Fig. 2(b). The measurement goal
is to estimate using the average of multiple quantized samples
of the “noisy” signal . Obviously, the quantized output will be
spread out over multiple numerical values because of the ran-
domness of the signal , which can be viewed mathematically
as a random variable. The random variable is characterized by
a probability density function (PDF) which has the same
shape as the PDF of the noise and mean equal to the signal of
interest . Multiple measurements of will yield a quantized
output which is also a random variable with PDF . The
PDF determines the uncertainty of the measurement of
and depends on the quantization parameters as well as the PDF

of the input signal . The relationship between and
can be obtained from the definition of quantization.

Let the quantum size be such that the range to
of the input signal is quantized to a digit of the

quantization output as shown in Fig. 3. In other words, is
the quantized measure of in units .
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Fig. 3. Probability density function transformation in the process of quantiza-
tion.

The probability that the input signal will be converted into
quantized output will be the probability that takes any
of the values between and .

The probability of a quantization outcome in repeated
quantization trials of the measured signal is the area (integral)
of the PDF over the interval to .
As the integral is a single value the continuous PDF is
transformed into a discrete PDF . The probability that
will be quantized into the digit is:

(1)

Similarly, the probabilities that the signal of interest will
be converted to other quantized values can be obtained by inte-
grating the PDF over the corresponding quantization in-
terval with width . Thus, the quantization, in a statistical con-
text, can be viewed as an operation that transforms the contin-
uous PDF of the input to the discrete PDF of the quantized
output . This transformation and the underlying theory has
been developed by Widrow [3, p.27, and references therein] and
is referred to as “area sampling”.

The function is a discrete probability density function
but can be also considered a continuous PDF consisting
of a sequence of Dirac impulses spaced at unit intervals and
weighted by the area as defined by (1).

The discrete probability density function depends on the
signal of interest and for every there is a corresponding
PDF of the quantization output . Thus, the probability that
a measured value will produce a quantization output is
defined by the PDF . Note that is not a random
variable. Fig. 5 depicts the as a function of in a
single quantization interval . The noise in this example
is Gaussian with standard deviation . The PDF pat-
tern of will cyclically repeat with period , that is

for every , .

Fig. 4. Discrete probability density function of the quantized output.

Fig. 5. Discrete PDF of the quantization output.

Some important properties of the discrete PDF are
worth mentioning. At both ends of the quantization interval

and the neighboring digits (e.g., 0 and 1; 0 and )
are equally probable as expected from the definition of quan-
tization. The highest probability for to be converted to any
numerical value is when (middle of each quantization
interval): for every . The dependence
of on may cause differential nonlinearity and/or dis-
tortion in DPP acquired spectra.

For every the discrete PDF has the mean

(2)

and variance

(3)

Fig. 6 shows a plot of the mean (2) of the discrete PDF
for different noise contributions of . The mean is

the measure of when a very large number of measurement
trials is carried out. Thus, the measurement error can be found
by the difference between and as depicted in Fig. 6.
Our numerical simulation indicates that a noise with
makes this error diminish.



JORDANOV AND JORDANOVA: QUANTIZATION EFFECTS IN RADIATION SPECTROSCOPY 1285

Fig. 6. Mean of the discrete PDF (top) and the error (bottom) relative to the
continuous PDF.

Fig. 7. Relative change of the variance and the standard deviation of the dis-
crete PDF in the presence of Gaussian noise.

Combined, the area sampling definition and (3) indicate that
the variance of the quantized output , increases pro-
portionally to the increase of the variance, of the noise .
If than depends very little on and is only a func-
tion of . Fig. 7 shows the relative increase of the variance
and the standard deviation due to quantization. At high noise
levels relative to the quantum size the noise contribution dom-
inates and reduces the effect of the quantization on the overall
measurement uncertainty. It will be shown experimentally that
the ratio is critical for reducing the quantization effects on
the spectrum DNL and the spectral peak resolution. This reduc-
tion is primarily due to the improved estimation accuracy of the
mean of the measured pulse heights obtained as a weighted av-
erage over multiple quantized values.

IV. PULSE-HEIGHT ANALYSIS

Radiation spectroscopy is a complex measurement technique
with the ultimate goal of determining sources of radiation
and their strengths. This measurement comprises different
components, a radiation detector being the most important.
Spectroscopy radiation detectors produce signals that are
proportional to the energy deposited by ionizing particles

interacting with the detector. The signal corresponding to a
single interaction in the detector usually has a short duration.
Semi-conductor detectors and gas-filled spectroscopy detectors
respond to particle interaction by producing current pulses
with typical durations from a few nanoseconds to a few mi-
croseconds. In general, the total charge carried by these current
pulses is proportional to the energy deposited in the detector.
Scintillation detectors respond by emitting light as exponen-
tially decaying pulses with decay time constants typically in
the nanosecond-microsecond range. The total light emitted is a
measure of the energy deposited into the scintillation detector.
The generation of the detector signals is subject to statistical
variations due to the random nature of charge transport or
scintillation light emission.

Measurement of the detector pulses is further complicated by
the presence of electronic random noise. This noise is gener-
ated independently from the generation of the detector signal.
Thus, noise is always present in a spectroscopy system. To re-
duce the effect of the noise on the spectroscopy measurement,
noise filtering techniques are commonly used. Noise filters are
often called pulse shapers. Pulse shapers transform detector cur-
rent pulses into voltage or digital pulses. Pulse shapers are in
most instances linear systems that produce pulses whose peak
amplitudes are proportional to the energy deposited into the ra-
diation detector.

Radiation spectroscopy requires a plurality of detector pulses
to estimate the energy deposition into the detector. The time
sequence of the detector interactions is a random process.
Therefore, radiation spectrometers process a random sequence
of pulses whose peak amplitudes carry information about the
energy deposited into the detector.

The spectroscopy information is derived from a measurement
of the peak amplitudes (pulse-height) of the shaped detector
pulses, a measurement often referred to as pulse-height anal-
ysis (PHA). It is important to note that the spectroscopy infor-
mation is carried by the pulse heights and requires no knowl-
edge and/or measurement of the frequency components of the
signals. This is a major difference from other signal processing
fields such as communication, speech recognition, video trans-
mission etc. In these applications the frequency is a major com-
ponent of the information carried by the signals. Sampling and
quantization theories have been extensively developed for these
fields and may be confusing or of little value when applied to
the pulse-height analysis. For example, frequency aliasing does
not in general affect the pulse-height measurement. Thus, imple-
mentation of anti-aliasing filters makes little sense and in some
instances, may degrade the accuracy of the pulse height mea-
surement by reducing the magnitude and the bandwidth of the
noise.

Classical spectroscopy systems use analog shaping tech-
niques and a peak detector-stretcher to sample the pulse heights.
The peak values are then digitized by an ADC. In this case
a single sample-quantization operation is performed for each
shaped detector pulse. The quantization result is used to address
a spectrum channel. Normally a channel is assigned to each
discrete value of the ADC. Channels are counters that count the
number of each ADC value occurrence for the duration of the
spectrum acquisition. Thus, the channels of the radiation spectra
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are quantized data. Each channel corresponds to a certain range
of pulse heights called the channel width. The channel width is
the quantum size of the spectrum. In the classical spectroscopy
system the channel width is equal to the quantum size of the
ADC. Thus, radiation spectra are inherently quantized data.
In fact, radiation spectra represent experimental, area sampled
discrete PDFs as defined by (1).

Radiation spectroscopy based on DPP utilizes fast sampling
ADCs. Pre-shaped pulses are sampled and quantized (digitized)
and the final phase of the shaping is performed in the digital do-
main. Both time-invariant and time-variant linear digital filters
can be used. As in the case of classical spectroscopy a single
point amplitude measurement (digital peak value) is performed
to determine the corresponding spectroscopy channel. The dig-
ital peak is a weighted sum of the digitized signal values nor-
malized so that the measured amplitude range of the pre-filtered
signal generates digital peak values corresponding to a certain
range of spectroscopy channels. As stated earlier the quantum
size of the spectrum is not necessarily the same as the quantum
size of the ADC. In other words the digital pulse processing in
radiation spectroscopy may transform quantized data with one
quantum size into quantized data with a different quantum size.

V. PULSE-HEIGHT QUANTIZATION

We will limit our analysis to a practical case of linear digital
pulse shapers with a finite impulse response (FIR) [7]. Let us
define an FIR, , of a time invariant digital pulse shaper with
coefficients from 0 to - , where ,

and for and . Let be
the noiseless instant value of the detector signal applied together
with the noise and sampled as . As by
definition we will use to indicate the quantization of in
the presence of noise . The digital shaper response to the
digital signal can be expressed as a convolution sum:

(4)

If the peak value of a single, digitally shaped pulse occurs
samples after an interaction in the radiation detector at

time 0 ( for ), the peak value can be obtained
from (4)

(5)

This simple equation is the mathematical expression of the
pulse-height measurement in radiation spectroscopy based on
FIR time invariant digital pulse shapers. The equation is similar
for time variant digital shapers, except that the summation be-
gins from the sample at which the shaper switches its impulse
response to process the incoming detector pulse.

It is clear that is a random variable because it is a result
of a weighted sum of random variables . In most cases the
peaking interval is the same for all pulses, so we use
in place of . The multiplication by the constant of the
discrete random variable will create a new random variable

with PDF as shown in Fig. 8.

Fig. 8. Discrete PDF transformation by constant multiplication.

Let us make the following assignment in (5)
. To obtain the PDF we will make the assumption

that all samples are uncorrelated. The PDF of the peak
measurement will be the convolution of all PDFs of
the random variables :

(6)

where “ ” denotes convolution.
Obtaining an analytical expression for may not be

possible or will require a tedious mathematical exercise. Numer-
ical computation is more suitable for calculating the PDF but
special attention should be paid to the numerical precision. Nev-
ertheless, some important properties of the pulse height PDF

can be identified from (4):
1) The pulse height PDF is a discrete PDF.
2) If all nonzero values are equal to or greater than one

then the variance of the pulse height PDF is greater than
the variance of any PDF of the digital samples .

3) If all coefficients are integers then the minimum separa-
tion of the pulse height PDF nonzero values is equal to the
greatest common divisor of all coefficients.

4) If all nonzero are equal then the minimum separation
is equal to . This is the case of simple averaging or box
car averaging.

Properties 3) and 4) along with the gain normalization factor
of the digital filter determine the quantum size of the pulse
height measurement when properly scaled to match the energy
range. Note that, this quantum size determines the maximum
number of achievable channels with non-zero probability
to record counts. There is a reduced ability to improve the
spectrum quantum size when the FIR has a small number of
coefficients and/or the variance of the noise is small compared
to the quantum size of the ADC. In such circumstances the
spectrum exhibits large differential nonlinearity. In fact, if the
FIR has only one coefficient the quantum size of the spectrum
will be less than or at most equal to the quantum size of the
ADC—this is the case of the classical analog based PHA.

To illustrate the reduction of the quantum size of the pulse-
height measurement we will consider a time-variant FIR filter
which averages N quantized samples of a step input signal. This
is a case similar to the example illustrated in Fig. 2(b). Let all

and . First, let the channel width be equal to the
quantum size of the ADC. In this case the averaging filter has
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digital gain N. Using (5) the peak value (average value) can be
expressed as:

(7)

is a random variable with discrete PDF which will
have a unit quantum granularity. From the definition of convolu-
tion the mean which is one-to-one mapping
of the ADC quantization output to the spectrum channel num-
bers. The quantization granularity of the discrete PDF ,
however, is . Let us constrain to take only integer values
so that the peak values can be used to address the corresponding
spectrum channels. The division by can be viewed as a
transformation from a discrete domain with quantum size
to the discrete domain of the spectrum channels with quantum
size 1. This transformation is very similar to the quantization of
continuous signals except that a range of discrete values within
the quantum size is assigned to a single digit. In this example N
values within and will result in a single
digit of . In a similar fashion as area sampling a single value
of the discrete pulse-height PDF will be the sum of
consecutive discrete values of the discrete PDF .

Next we increase the digital resolution by a factor of .
Equation (7) transforms to

(8)

The digital resolution gain comes with a gain of the pulse-
height mean , while the quantum size of is pre-
served. Because is always an integer and is a discrete
PDF with the same quantum granularity as , the quantum
size transformation requires that is an integer to avoid in-
troduction of differential nonlinearities.

When there is no possibility to increase spectral digital
resolution without introducing 100% differential nonlinearity.
At it will be possible to double the number of channels
relative to the number of the ADC discrete values.

In view of the early discussions about the mean and the vari-
ance of the discrete PDF it is important to maintain the noise
level high enough to achieve a broad pulse-height PDF. The
broadening of the pulse-height PDF also depends on the number
of the averaged values. At lower noise levels and small number
of averaged values the pulse-height PDF may not be adequate
to provide a uniform probability for all pulse-heights over the
full ADC input range.

From (5) and (6) the variance of the peak value can be ob-
tained. If the variance of the noise is large enough then the vari-
ance of the peak value can be expressed as

(9)

As expected the variance is independent of the measured
signal. It only depends on the variance of the quantized output
which is furthermore a function of the input noise . This
allows us to conduct experiments with uniformly distributed
pulse-heights to study the spectrum differential nonlinearity
independent of the noise level.

Fig. 9. Discrete PDF transformation by constant multiplication.

Fig. 10. Exponential pulses with different noise contributions.

VI. EXPERIMENTAL DATA

The goal of the experiments was to study the effect of the
discrete PDF and the noise on the differential non-
linearity of the spectrum with quantum size smaller than the
quantum size of the ADC. Fig. 9 shows a simplified block dia-
gram of the experiment.

A tail pulse generator produces exponential pulses with a
decay time constant of and uniformly distributed ampli-
tudes. Noise from the noise generator is added to the tail pulses
and the resulting signal is applied to a digital pulse processor im-
plementing a digital triangular shaper as described in [7]. The
tail pulses are sampled at 80 MHz by a 14-bit ADC with the
lower 6 bits masked resulting in an 8-bit quantization. This re-
duces the relative noise contribution of the amplifiers, the ADC
itself, etc. This bit reduction also significantly reduces the con-
tribution of the ADC differential nonlinearity. Fig. 10 shows test
pulses at different noise levels (standard deviation ) relative to
the quantum size of the 8-bit ADC.

Series of spectra was acquired using the full bandwidth of the
noise generator at different settings of the digital pulse shaper
and at different noise levels. Spectra were acquired at a quanti-
zation gain of channels from an 8-bit ADC. However,
the differential nonlinearity was estimated from scaled down 1k



1288 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 59, NO. 4, AUGUST 2012

Fig. 11. Differential nonlinearity as a function of the peaking time and the noise
contribution.

spectra, which is a more realistic case. The results are summa-
rized in Fig. 11.

As expected from the theoretical analysis, at very low levels
of the input noise the spectra exhibited large DNL and at very
short peaking times some channels did not record counts or
recorded a statistically insignificant number of counts. At noise
levels the DNL becomes small, within the statistical limit
of the DNL measurement. This confirms the earlier discussion.

We also operated the ADC at 12-bits (masking the lowest two
bits) without adding artificial noise. The only noise was associ-
ated with the electronics and the tail pulse generator. The pulse
generator produced a fixed pulse amplitude at the middle of
the ADC range. Three spectra were acquired with total channel
lengths of 8k, 16k and 32k channels corresponding to a quantum
size reduction by a factor of 2, 4 and 8 respectively. The gener-
ator tail pulse was shaped by a digital triangular shaper with a
peaking time equal to 128 samples. The full width at half max-
imum (FWHM) of the spectral peak was measured. The FWHM
was 1.73 channels for the 8k spectrum, 3.36 for the 16k spec-
trum and 6.75 for the 32k. These results along with the DNL
measurement indicate that a quantum size reduction is achiev-
able without a significant quantization impact on the quality of
spectral data.

VII. CONCLUSION

In this paper we made an attempt to explain and discuss some
quantization effects in digital pulse processing in radiation spec-
troscopy. It should be emphasized that the differential nonlin-
earity analysis in this work is related to the combined effects
of noise and quantization only. Some related topics were left
out of the scope of this paper simply because of space limita-
tion. The differential nonlinearity of the quantizers, the noise
bandwidth, artificial dithering [8], and ADC boundary effects
are only a few of the very important subjects that require fur-
ther consideration. Nevertheless, the following observations and

some design suggestions could be made based on the discussion
in this manuscript:

1) Digital pulse height analysis can be viewed as a transfor-
mation of the quantized ADC data into quantized spectral
data. In this transformation the quantum size of the spectra,

, may be smaller than the quantum size of the ADC,
, resulting in more channels than the total number of

ADC quantization values.
2) Quantization affects the differential nonlinearity and the

overall quality of acquired spectra when the ADC quantum
size is reduced to a smaller spectrum quantum size.

3) In order to minimize the quantization effects on the ac-
quired spectra the standard deviation\sigma of the random
noise at the input of the ADC must be greater than the quan-
tization step of the ADC. As a rule of thumb is
desirable.

4) The upper noise cutoff frequency at the input of the ADC
should be maintained high enough, so that the effective
“noise modulation” of the quantization output can be
achieved. Analog signal conditioning circuits with the
highest possible bandwidth should be preferred over high
frequency limiting filters such as low-pass networks,
anti-aliasing filters, etc. which reduce both the noise am-
plitude variance and the noise upper cutoff frequency.

5) The number of ADC samples used to calculate the pulse
heights must be sufficiently large to mitigate the quantiza-
tion effects. Employing ADCs with high conversion speed
is essential when digital pulses with short rise times are
synthesized.

The above considerations may not be fully applicable when
other constraints such as timing, ballistic deficit correction etc.
are considered.

The experimental results and the examples in this work cover
only a specific class of available techniques and unique hard-
ware implementation. Caution should be exercised in scaling or
directly applying the presented results.
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