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Development of a Real-Time Pulse Processing
Algorithm for TES-Based X-Ray Microcalorimeters

Hui Tan, Wolfgang Hennig, William K. Warburton, W. Bertrand Doriese, and Caroline A. Kilbourne

Abstract—We report here a real-time pulse processing algorithm
for superconducting transition-edge sensor (TES) based x-ray
microcalorimeters. TES-based microcalorimeters offer ultra-high
energy resolutions, but the small volume of each pixel requires
that large arrays of identical microcalorimeter pixels be built to
achieve sufficient detection efficiency. That in turn requires as
much pulse processing as possible must be performed at the front
end of readout electronics to avoid transferring large amounts of
data to a host computer for post-processing. Therefore, a real-time
pulse processing algorithm that not only can be implemented
in the readout electronics but also achieve satisfactory energy
resolutions is desired. We have developed an algorithm that can
be easily implemented in hardware. We then tested the algorithm
offline using several data sets acquired with an 8 8 Goddard TES
x-ray calorimeter array and 2 16 NIST time-division SQUID
multiplexer. We obtained an average energy resolution of close to
3.0 eV at 6 keV for the multiplexed pixels while preserving over
99% of the events in the data sets.

Index Terms—Algorithm, microcalorimeters, optimal filter, real-
time pulse processing, transition-edge sensors.

I. INTRODUCTION

L ARGE ARRAYS of superconducting transition-edge-
sensor (TES) x-ray microcalorimeters have been devel-

oped in recent years for high-resolution x-ray spectroscopy.
Multiplexed readout of these large arrays using supercon-
ducting quantum interference devices (SQUIDs) is generally
required in order to decrease the heat loads and design com-
plexity by reducing the number of wires running to the low
temperature stages of the instrument [1]. Typically, multiplexed
data stream from these arrays are first demultiplexed and then
saved to computer hard drives in the form of triggered data
records for later optimal filtering and analysis. It is clear that as
microcalorimeter arrays become larger and larger, the amount
of data that needs to be stored becomes prohibitively limited
by available data bandwidth, especially for those spaceflight
instruments where data has to be telemetered to the ground.
Thus, it is hugely advantageous to process pulses right in the
readout electronics in real time and to only transmit or store a
limited data record for each event.
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Fig. 1. Sketch illustrating XIA’s filter algorithm for computing pulse height of
microcalorimeter pulses.

Real-time microcalorimeter pulse processing based on
optimal filtering [2] has been reported in various systems.
Calorimeter Digital Processor (CDP) was developed for the
Astro-E/Astro-E2 missions [3]. A full software implementation
of the CDP, the Software Calorimeter Digital Processor (SCDP),
has been deployed in the XRS/EBIT and the EBIT/ECS ex-
periments at Lawrence Livermore National Laboratory [4].
A Digital Signal Processing System has also been developed
for the X-ray Microcalorimeter onboard ASTRO-H [5]. Op-
timal-filter based data processing algorithms generally give
excellent energy resolution, but are limited by the requirement
for long record length and thus their throughput is generally
low [6].

We have developed a digital pulse processing algorithm that
gives similar energy resolution as optimal filter does but can
achieve much higher throughput [7]–[9]. We have previously re-
ported the filter algorithm for processing TES based gamma-ray
microcalorimeter pulses. That filter achieved an energy resolu-
tion of 28.2 eV (FWHM) at 97 keV with an input count rate of

3 cps, which was comparable to the energy resolution of 29.7
eV (FWHM) obtained by optimal filter. In this study, we adapted
this filter towards high resolution TES X-ray microcalorimeter

data acquired with an 8 8 Goddard TES X-ray calorimeter
arrays and NIST time-division SQUID multiplexers.

II. METHODS

A. A Brief Review of the Filter Algorithm

Fig. 1 illustrates the filter algorithm that XIA developed for
processing microcalorimeter pulses. A running sum filter, RS,
which is the summation of digitized trace data samples,
is continuously updated upon the arrival of each new digitized
trace data point. At the same time, a baseline filter, B, which is
the summation of digitized trace data samples, is also con-
tinuously updated and used as a measurement of the baseline
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Fig. 2. Sample pulse shape for the Goddard/NIST TES X-ray microcalorimeter
array.

of incoming traces. When a pulse is detected through a sepa-
rate trigger filter, RS starts to measure contributions from both
the baseline and the incident radiation event which generates the
pulse. XIA’s algorithm looks for the time when RS reaches its
maximum. At that time, RS is stored, and B , the contribution to
the running sum from the baseline, is computed by scaling the
baseline measurement immediately prior to the detection of the
pulse with the running sum length , i.e., .
The pulse height is then represented by the value of filter re-
sponse , or J/ , where J is the net area under
the pulse when RS reaches its maximum as shown in the upper
half of Fig. 1. To estimate B for a pulse sitting on the tail part
of the previous pulse, e.g., the second pulse in Fig. 1, the shape
of the preceding pulse’s tail needs to be known in detail.

B. Pulse Shape for the Goddard/NIST TES X-Ray
Microcalorimeter Array

Fig. 2 shows a sample pulse shape for the Goddard TES X-ray
calorimeter array. This X-ray pulse is critically damped with a
time constant of . We notice that there is an undershoot
near the end of the pulse, as shown by the insert (right) in Fig. 2.
This undershoot certainly complicates the computation of pulse
height of a second pulse if it arrives near the undershoot region
of this pulse, since we have to be able to characterize in detail
this undershoot curve if we want to derive the pulse height of
the second pulse accurately.

For this study, we chose to reject this type of pulses if they
arrive too close to their preceding pulses for two reasons. First,
the whole duration of one X-ray pulse is approximately 5 ms
(measured from the start of the pulse to the time when the pulse
returns to pre-trigger baseline level). A non-paralyzable detector
with dead would produce a maximum output count
rate of 73 cps at an input count rate of 200 cps [10]. This might
still be sufficient for most TES X-ray microcalorimeter applica-
tions. Moreover, the count rate for the data sets in this study
is 2 counts/s. With dead , the pile-up rejection
loss would be less than 1%. Second, due to the non-linearity
of the microcalorimeter detectors, overlapping pulses produce
non-uniform pulse heights even if same radiation energy is de-
posited in the detector. Removing these pulses from the energy
resolution measurements will help us truly evaluate the perfor-
mance of our filter algorithm.

Fig. 3. Data flow in the implementation of XIA’s microcalorimeter filter algo-
rithms.

Fig. 4. Timing diagram for the implementation of XIA’s microcalorimeter filter
algorithm.

We also notice that there are occasional small “bumps” in the
baseline of the sample pulse, as shown by the insert (left) in
Fig. 2. They are too small to be detected by the regular trigger
filter. If they are included in the baseline measurements, accu-
racy of the computed baseline will suffer and energy resolution
will deteriorate. Thus, another trigger filter is needed to specifi-
cally detect and remove these small pulses from being included
in baseline calculations.

C. Implementation of XIA’s Microcalorimeter Filter
Algorithms

Fig. 3 shows the data flow in the implementation of XIA’s
microcalorimeter filter algorithm. There are two trigger filters,
one for detecting pulses and pile-ups, and the other for rejecting
small pulses or sudden jumps when computing baseline. A run-
ning sum filter with length continuously updates its sum
value as new trace data comes in. Similarly, a baseline aver-
aging filter with length continuously updates the baseline
value except when there is a pulse present or the baseline expe-
riences a large jump. The two delay FIFOs are used to compen-
sate for the delays of the trigger filter response. If a pulse passes
the pile-up rejection test, its running sum maximum and cor-
responding baseline value are latched and properly scaled, and
the pulse height is computed by subtracting the baseline from
the running sum maximum. The resulting pulse height is then
binned into on-board histogram memory and can also be stored
in list mode data memory for offline analysis, e.g., long term
gain drifting correction, etc.

Fig. 4 illustrates a timing diagram for the implementation of
XIA’s microcalorimeter filter algorithm. At the top of the figure
three pulses are shown, the second pulse being piled-up with the
first pulse. The trigger filter detects the arrival of the pulses by
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Fig. 5. Effect of running sum length for the XIA microcalorimeter filter on
energy resolution.

generating fast triggers. A pile-up flag is set to logic HIGH when
the second pulse arrives but is cleared to logic LOW when no
more pulse shows up within its pile-up inspection period .
The maximizer for the running sum filter is activated at the ar-
rival of each pulse and stops after the running sum length
has expired. A pulse is considered to be “good” if the pile-up
flag is logic LOW from the time when the pulse arrives to the
time when the maximizer for the running sum filter stops. There-
fore, the first and third pulses shown in Fig. 4 are good pulses
and will have their pulse height values computed, whereas the
second pulse is piled-up and will be rejected. Baseline averaging
filter stops running during the pile-up inspection periods.

III. RESULTS AND DISCUSSIONS

We have applied our microcalorimeter filter algorithm in
offline mode to four sets of high resolution TES X-ray mi-
crocalorimeter data recorded for Constellation-X/ IXO
technology demonstrations in the spring of 2008. The data
consist of streamed feedback and error data. The total size of
these four data sets on hard disk is 564 GB.

A. Optimizing Running Sum Length

In order to achieve the best possible energy resolution with
our microcalorimeter filters, we need to choose an optimal run-
ning sum length . For TES microcalorimeter detectors, we
believe a simple average of certain number of digitized samples
around the peak of a TES pulse after subtracting its preceding
baseline will produce an accurate measurement of such pulse.
This of course implies that we are making an assumption that
all TES pulses, or at least for those near the region of interested
energies, have nearly identical pulse shape. This assumption in
some sense is consistent with optimal filtering in which aver-
aged pulse templates are used for processing microcalorimeter
pulses.

Fig. 5 shows the scan of different running sum lengths.
During the scan the pile-up rejection period was set to
87.04 ms and the baseline averaging length was set to 174.08
ms. Energy resolution for both channel pairs improves as the
running sum length increases, which implies more averaging
of trace data points suppresses further the noise associated with
trace data. The energy resolution improves with increasing sum

Fig. 6. Effect of baseline averaging length for the XIA microcalorimeter filter
on energy resolution.

length until about 350 and changes little when sum length is
near 400 to 450 . However, when the sum length increases
further to over 500 , the energy resolution starts to get worse,
which means additional averaging of trace data points is not
helping the energy resolution anymore. Therefore, an optimal
setting for the running sum length for these particular detector
channels is 400 to 450 .

B. Optimizing Baseline Averaging Length

Another important parameter to optimize our mi-
crocalorimeter filter to obtain the best possible energy res-
olution is the baseline averaging length . Fig. 6 shows the
scan of different baseline averaging lengths. During the scan
the pile-up rejection period was set to 4.08 ms and the
running sum length was set to 435.2 . As expected, en-
ergy resolution for both channel pairs improves as the baseline
averaging length increases since the more trace data points used
for baseline averaging, the better on removing high frequency
noise components in the baseline computation. However, after
baseline averaging length reaches approximately 200 ms,
the benefit of further baseline averaging to improve energy
resolution is limited. When also taking into account the im-
plementation of the baseline averaging filter in real hardware,
the longer the filter, the more memory resources are needed.
Therefore, a trade-off has to be made in order to achieve both
good energy resolution and the ability to implement the base-
line averaging filter in hardware. Fig. 6 demonstrates that the
downside of reducing the baseline averaging length to 100
ms is still very small.

C. Optimizing Pile-Up Rejection Length

For our filter, minimal pile-up rejection length is defined as
the duration from the time when a pulse arrives to the time
the pulse fully decays back to its pre-trigger baseline level.
However, much longer pile-up rejection length is not needed for
our filter since the filter only need a small portion of trace near
the pulse peak to derive its pulse height. In fact, longer pile-up
rejection length will produce higher pile-up loss while bene-
fiting energy resolution very little. This is reflected in Fig. 7,
which shows the scan of different pile-up rejection lengths

. During the scan the baseline averaging length was
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Fig. 7. Effect of pile-up rejection length for the XIA microcalorimeter filter on
energy resolution.

set to 174.08 ms and the running sum length was set to
435.2 . For both channel pairs, pile-up loss rises steadily as

increases, but the energy resolution changes very little.
Therefore, pile-up loss can be minimized when is set to
its minimally required value.

D. Correcting Gain Drift Over Time

A common issue among the four data sets is the gradual drift
of the pulse baseline with time. The general trend is that the
baseline increases with time. Correspondingly, pulse height de-
creases. We used the following method to correct this type of
gain drift over time. First we computed the raw pulse height
value for each event and stored the pulse height value and time-
stamp for each event in files. Then we plotted the pulse height
values versus timestamps. On that plot, we identified the
peak of the Mn doublet, and then fitted with a 4th order poly-
nomial function the data points of the peak’s pulse height
values versus the timestamps. Finally, we corrected the pulse
height values for all events, i.e., events of both and
peaks, using the fitted polynomial function.

E. Measured Energy Resolution and Event Acceptance Rate

Utilizing the optimal settings that were found above for the
XIA filter, we measured the energy resolution and event accep-
tance rate for the four data sets. Here we define the event accep-
tance rate as the ratio of the number of accepted events by the
filter to the total number of events in the data set.

In order to compare results of XIA filter to those of optimal
filter, we used another four sets of data and analyzed them using
optimal filter. We call these four sets of data “matching” data
sets to the four data sets that were analyzed by the XIA filter
since these “matching” data sets were acquired under the same
detector conditions and around the same time as the four data
sets analyzed by the XIA filter. However, these “matching” data
sets are “records” instead of raw streamed data. Each record has
16384, 8192 and 6144 frames, or a length of 44.564 ms, 44.564
ms and 50.135 ms, for 2 4, 2 8 and 2 12 multiplexing,
respectively.

Fig. 8 shows the comparison of energy resolution and accep-
tance rate between optimal filter and XIA filter for 2 4, 2 8
and 2 12 multiplexing, respectively. It also shows the predicted

Fig. 8. Comparison of energy resolution and acceptance rate between optimal
filter and XIA filter for 2 � 4, 2 � 8 and 2 � 12 multiplexing.

TABLE I
COMPARISON OF RESULTS BETWEEN XIA FILTER AND OPTIMAL FILTER

energy resolution based on noise model. Optimal filter gener-
ally gives better energy resolution than XIA filter, or on average

0.3 eV better as shown in Table I. However, the XIA filter con-
stantly gets much higher acceptance rate than optimal filter: over
99% for XIA filter versus 92% for optimal filter. At higher
count rates, XIA filter is expected to achieve even higher output
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count rates than optimal filter does, since XIA filter’s dead time
can be as short as the pulse duration.
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