

Silicon Photomultiplier (SiPM): a flexible platform for the development of high-end instrumentation

Romualdo Santoro* and M. Caccia Università dell'Insubria, Como (Italy)

Photons detectors: SiPM

- SiPM is a High density (up to 10⁴/mm²) matrix of diodes with a common output, working in Geiger-Müller regime
- Common bias is applied to all cells (few % over breakdown voltage)
- Each cell has its own quenching resistor (from $100k\Omega$ to several M Ω)
- When a cell is fired an avalanche starts with a multiplicative factor of about 10^{5} - 10^{6}
- The output is a fast signal ($t_{rise} \sim ns$; $t_{fall} \sim 50 ns$) sum of signals produced by individual cells
- SiPM works as an analog photon detector: signal proportional to the number of fired cell

Wide range of products

- Different geometry
 - single chip (i.e. 1x1, 3x3 and 6x6 mm²)
 - array: (i.e. linear or squared) with common or separate output
- Different Fill factor
 - Pixel size (from 10 to 100 μm)
 - different technology (with/witout trenches)

New 15 µm

New 10 µm

Wide range of products

- Different geometry
 - single chip (i.e. 1x1, 3x3 and 6x6 mm²)
 - array: (i.e. linear or squared) with common or separate output
- Different Fill factor
 - Pixel size (from 10 to 100 μm)
 - different technology (with/witout trenches)
- Long list of parameters to be measured
 - QE, PDE
 - Gain vs voltage and temperature
 - DCR, After pulse and cross-talk
 - time resolution

PhotoDet 2015, Jul

- To reproduce the typical measurements done in the lab and to better understand the results especially when:
 - you characterize new sensors
 - you define new protocols
- To investigate new applications trying to better identify the sensor requirements

By the way, it isn't the real world! There are a series of assumptions and measurements to be done on SiPMs

1. Light (poissonian statistics)

Simulation Parameters:

- Event = 10^5
- $\mu = 10$ Photons

- 1. Light (poissonian statistics)
- 2. Detector characteristics: number of pixel, eff, Xtalk

Simulation Parameters:

- number of cells = 3600
- eff = 38%
- ► Xtalk=20%

- 1. Light (poissonian statistics)
- 2. Detector characteristics: number of pixel, eff, Xtalk
- 3. Number of pixel Hit due to Phe and Xtalk

*Conv = S. Vinogradov et al. (NSS/MIC), 2009 IEEE

This fit nicely but I could also try the N.Borel (Erlang) see Thomas Bretz talk at this conference

- 1. Light (poissonian statistics)
- 2. Detector characteristics: number of pixel, eff, Xtalk
- 3. Number of pixel Hit due to Phe and Xtalk
- 4. Signal characteristics:
 signal tau, noise and cell2cell variation

Simulation Parameters:

- $\tau_{signal} = 60nSec$
- Cell2Cell Variation=0.1phe
- ► SNR=10

- 1. Light (poissonian statistics)
- 2. Detector characteristics: number of pixel, eff, Xtalk
- 3. Number of pixel Hit due to Phe and Xtalk
- 4. Signal characteristics:
 signal tau, noise and cell2cell variation
- 5. DCR and AfterPuls + correlated xTalk

Simulation Parameters:

- DCR=300 kHz
- ► Xtalk=20%
- AfterPulse (AP)=20%
- τ_{AP} =80 (slow) and 15 (fast) @ 50% ratio

- 1. Light (poissonian statistics)
- 2. Detector characteristics: number of pixel, eff, Xtalk
- 3. Number of pixel Hit due to Phe and Xtalk
- 4. Signal characteristics:
 signal tau, noise and cell2cell variation
- 5. DCR and AfterPuls + correlated xTalk
- 6. Analysis tool

- 1. Light (poissonian statistics)
- 2. Detector characteristics: number of pixel, eff, Xtalk
- 3. Number of pixel Hit due to Phe and Xtalk
- 4. Signal characteristics:
 signal tau, noise and cell2cell variation
- 5. DCR + AfterPuls + correlated xTalk
- 6. Analysis tool

Example of light

SiPM for homeland security

- MODES_SNM has been founded by the European Commission within the Framework Program 7
- The Main Goal is the development of a system with detection capabilities of "difficult to detect radioactive sources and special nuclear materials"
 - Neutron detection with high γ rejection power
 - γ-rays spectrometry
- Other requirements
 - Mobile system
 - Scalability and flexibility to match a specific monitoring scenario
 - Remote control, to be used in covert operations

Modular Detector System for Special Nuclear Material

Two main Goals

- The demonstrator: a fully integrated system based on high pressure scintillating gas readout by PMT
 - ► Fast neutron (⁴He)
 - Thermal neutron (⁴He with Li converter)
 - Gamma (Xe)
- The proof of principle of PMT replacement with the innovative SiPM

MODES_SNM System overview

Modular system optimized for:

- Fast neutron (⁴He)
- Thermal neutron (⁴He with Li converter)
- Gamma (Xe)

Baseline technology

- The Arktis technologies is based on high pressurized ⁴He for the neutrons detection
- The main key features of ⁴He
 - Reasonably high cross section for n elastic scattering
 - Good scintillating properties
 - Two component decays, with τ at the ns and μ s levels
 - Cheaper and easier to be procured wrt ³He

	Z	Photons/ MeV	Peak emission
⁴ He	2	15'000	70 nm
⁴⁰ Ar	18	40'000	128 nm
¹³¹ Xe	54	46'000	175 nm
Nal(TI)	11,53	40'000	415 nm

- 4.4 cm diameter x 47 cm sensitive length
- 180 bar ⁴He sealed system maintaining gas purity

R. Chandra et al., 2012 JINST 7 C03035

SiPM and the proof of principle

- A short tube (19 cm) used for the proof of principle
- Filled with ⁴He at 140 bar, an integrated wavelength shifter and two SiPMs mounted along the wall (by ARKTIS)
- Two SIPMs read-out through the Hamamatsu electronic board (C11206-0404FB)
- 2-channels 3-stage amplification with leading edge discrimination (SP5600A – CAEN)
- Digitizer with a sampling rate of 250 Ms/s 12 bit digitization (V720 – CAEN)

Counting measurements

Test performed measuring:

Background, n and γ counting rate using ²⁵²Cf and ⁶⁰Co source in contact

Two triggering scheme:

- Leading edge discrimination in coincidence
- Leading edge and delayed gate of each single SiPM in coincidence
 - Few parameters to be optimized:
 - Leading and trailing threshold
 - Delay time (ΔT)
 - Gate aperture

2nd Trigger Scheme

ΔT

doi=10.1109/ANIMMA.2013.6727974 (2013)

Result for the different trigger scheme @ 28°C

Counting rate [Hz]	no source	⁶⁰ Co in contact	²⁵² Cf in contact
Leading edge discrimination (Ch0 n Ch1) @31mV [Hz]	0.05	1.32	10.18
Delayed trigger, single detector [delay 700 <u>ns</u> , long gate 2 µs]	0.02	0.05	12.27
Delayed trigger, Ch0 ∩ Ch1	0.01	0.01	8.61

An amazing result, corresponding to a γ rejection power at the 10⁶ level

PhotoDet 2015, July 6-9, Mosco

SiPM VS PMT counting measurements

- Trigger: leading edge discrimination in coincidence among the 2 channels in the tube
 - Threshold set to have low bkg counting rate
 - No γ-rejection algorithm
 - Same strategy for both tubes
- The counting rate was measured at different distances from the ²⁵²cf source

SiPM for beam profilometry @ CNAO

fondazione CNAO

Centro Nazionale di Adroterapia Oncologica per il trattamento dei tumori

- Protons (250MeV) and carbon ions (4.8 GeV) beam
- Three treatments rooms

Measurement of the beam profile: wide dynamic range (≈ 4 order of magnitude)

- Scintillating fiber (d=1mm)
- SiPM (1x1mm²)
- ▶ 1st stage amplification
- Digitizer for signal integration

- Proton beam @ 117 MeV
- Intensity $\approx 2*10^8$ / spill (1 sec long)
- duty cycle = 20%

Two methods investigated:

Integration mode:

 asynchronous long (≈ ms) integration windows

Proof of principle

 σ and linearity are compatible with the ones measured with the film technique

- Proton beam @ 117 MeV
- Intensity $\approx 2*10^8$ / spill (1 sec long)
- duty cycle = 20%

Two methods investigated:

 Integration mode: asynchronous long (≈ ms) integration windows

- Proton beam @ 117 MeV
- Intensity $\approx 2*10^8$ / spill (1 sec long)
- duty cycle = 20%

Two methods investigated:

2. Counting mode: Leading-edge discrimination, Threshold set to have DCR
(a) Hz level

> If were are not saturating we get more than 4 orders of magnitude

Proof of principle

PhotoDet 2015, July 6-9, Moscow, Troitsk

- Proton beam @ 117 MeV
- Intensity $\approx 2*10^8$ / spill (1 sec long)
- duty cycle = 20%

Two methods investigated:

2. Counting mode: Leading-edge discrimination, Threshold set to have DCR @ Hz level

1400

1200

1000

Different beam energy and intensity!

N = 1262

μ= 98

σ= 13**.**1

Few personal considerations ...

- There is a growing interest for this new class of detector both in scientific & industrial communities
- A good requirements definition and a deep knowledge of the detector characteristics could make the difference when exploring for new applications
- Some times a simple and flexible setup plus a fast simulation may help in identifying the way to go

