

Parallel plate avalanche counter (PPAC) development and performance test for Rare Isotope Science Project (RISP)

> Kwang Bok Lee C. Akers, Y.J. Kim, E.H. Kim, H.S. Lee, M.S. Ryu, J.H. Park

> > RISP, IBS 2017. 11. 15 ICABU2017

Movember 15 ~ 17, 2017 • HICO Gyeongju • Korea

RAON facility & KoBRA layout

- Detection system & PPAC
- PPAC structure

Content

- Delayboard, electrode and its assembly
- Performance test & analysis status
 - α of $^{241}Am,$ 3 MeV/u ^{12}C and ^{16}O beam
- Summary and outlook

RAON facility Layout

KOBRA detection system

Parallel Plate Avalanche Counter (PPAC)

32-segmented high purity germanium detector \rightarrow See 'PA-53: Development Status of Comptonsuppressed Super Clover Detector Array in RISP' @ Poster session

16 ch. silicon detector

Plastic detector

Ionization chamber

• Detectors measure beam position, time, energy for particle identification of Bp-TOF- ΔE method;

<u>PPAC: position for Bp</u>, Plastic detector: time for TOF, Silicon detector: $\Delta E \leftarrow 10 \times 10 \text{ cm}^2$, $20 \times 20 \text{ cm}^2$, $40 \times 20 \text{ cm}^2$ active area PPACs are developed

4

PPAC structure

Inside of PPAC

(covers opened)

Mylar

- PPAC is a gas detector using electron avalanche between electrodes
- * It has fast response of \sim few ns using <u>fast electron</u>
 - \rightarrow shows good performance even for <u>the high beam intensity</u>
- ✤ It operates for low energy experiment
 - \rightarrow needs to minimize interference in beam path;
 - thin Mylar of 2~3.5 µm for the electrodes
 - low gas pressure mode less than 10 Torr

Operating conditions

Signal example after amplifier

★ Gas available; Need pure quenching gas of C₄H₁₀(W = 23.7 eV), C₃F₈(W = 34.4 eV) due to lack of quenching properties at low gas pressure ★ HV; ≥ 100 V/mm, adjustable by beam energy & mass

 Read out avalanche signals from anode and cathode; <u>Anode for time</u> & triggering, <u>cathode for position</u> measurement

Readout method

Charge division; Resistive arrays gives charge difference, but few µs shaping time → charge pile-up effect at few kHz beam rate

Delay line;

LC delay makes time difference from either end using fast ns signal

ICABU2017, Geongju

 \rightarrow fast measurement for few <u>MHz beam rate</u>

Delay line readout

Electrode evaporation - cathode

Mechanical masking frame

- Ag evaporation on Mylar for cathode strip
- ✤ Cathode contacts to delay line, needs strip pattern to separate hit position
- Evaporate Ag/Al on the masking frame
- ✤ Take off the masking after evaporation
- This method is available for 10×10 cm² cathode
- ✤ It gets tricky technically for large area electrode
- ↔ Mechanical masking frame gets distorted larger than 20×20 cm²

ICABU2017, Geongju

Large area electrode - Photolithography

- Evaporate Ag/Al 30 nm on top of 3.5 μm thick Mylar for 40 × 20 cm²,
 2.5 μm thick Mylar for 20 × 20 cm² (~3 nm thickness uncertainty)
- Coat with photoresist & bake for dry
- Mount film mask, expose UV light
 Outside of mask, photoresist becomes soluble
- Develop and remove photoresist exposed to UV light
- Etch as pattern and remove the remaining photoresist

ICABU2017, Geongju

* Photolithography is a technique for complex integrated circuit, ~ few μm precision

Anode electrode

Uniformity of surface is quite important to prevent discharge

ICABU2017, Geongju

Detector assembly

Inside of PPAC, $40 \times 20 \text{ cm}^2$ PPAC (covers opened)

Cover with supporting wire, $40 \times 20 \text{ cm}^2 \text{ PPAC}$

- Single gap or double gap can be assembled
- Plastic bolts and nuts are used for electric insulation
- Housing has O-ring for gas shielding
- Peamps are put close at PPAC housing to reduce signal noise

ICABU2017, Geongju

Rare Isotop

²⁴¹Am source test

• 241 Am source test of $10 \times 10 \text{ cm}^2$ PPAC

- Position resolution ~ 0.55 mm (FWHM)
 - (KoBRA requirement; $\sim 1.00 \text{ mm} (\sigma)$)
- Time resolution ~ 450 ps (FWHM)

- Efficiency > 99%

C. Akers, et al., JKPS 70 (2017) 682-696

mask

25

2D position spectrum displaying lettering of 'RISP'

Vacuum chamber test

ICABU2017, Geongju

Rare Isotop

Beam test configuration

• Beam test of $20 \times 20 \text{ cm}^2 \text{ PPAC}$

- Tested at tandem accelerator of Kyushu University
- ^{12}C and ^{16}O beam @ 3 MeV/u
- Intensity up to 2×10^5 pps for 12 C and 2×10^6 pps for 16 O

Picture of experiment configuration

ICABU2017, Geongju

Beam test analysis

Summary and outlook

- Large area PPAC adopted photolithographic method for cathode electrode, for the first time
- ✤ 10 × 10 cm², 20 × 20 cm² and 40 × 20 cm² PPACs have been developed successfully
- Large area PPAC worked stably at high beam intensity of 2×10^6 pps 16 O
- ✤ PPAC and detection system will be commissioned in ~2019
- ✤ Day-1 experiment at KoBRA facility is planned in ~2020

