

Enhanced α-γ Discrimination in Co-doped LaBr₃:Ce

Kan Yang and Peter R. Menge

Saint-Gobain Crystals Hiram Ohio, USA

Vladimir Ouspenski

Saint-Gobain Recherche

Aubervilliers, France

CRYSTALS

IEEE Nuclear Science Symposium & Medical Imaging Conference Seattle, WA • 8 -15 Nov. 2014

Outline

Introduction

- Co-doped LaBr₃:Ce
- Radiation background in LaBr₃:Ce
- Radiation background in co-doped LaBr₃:Ce
- Pulse shape analysis
- Potential applications

Co-doped LaBr₃:Ce

Ca and Sr co-doped LaBr₃:Ce

- Better light output and energy resolution¹⁻³
- Better proportionality¹⁻³
- Mechanical properties not affected⁴
- Additional longer decay component^{1,2}

Samples for this research

Ruggedized hermetic package sapphire window

Sample	Dopant	Size	Relative L.O.	ΔΕ/Ε @ 662keV
Α	5% Ce	ø1" X 1"	100%	3.4%
В	5% Ce + 0.5% <mark>Ca</mark>	ø1" X 1"	137%	2.9%
С	5% Ce + 0.5% <mark>S</mark> r	ø1" X 1"	129%	2.8%

[1] M. S. Alekhin, D. A. Biner, K. W. Krämer, and Dorenbos, P., Journal of Applied Physics, 113, 224904 (2013)

[2] M. S. Alekhin, J. T. M. de Haas, I. V. Khodyuk, K. W. Krämer, P.R. Menge, V. Ouspenski, and P. Dorenbos, Applied Physics Letters, 102, 161915 (2013)

[3] K. Yang, P.R. Menge, J.J. Buzniak, V. Ouspenski, NSS/MIC, 2012 IEEE , vol., no., pp.308,311, Oct. 27-Nov. 3 (2012)

[4] A. Benedetto, S. Valladeau, D. Richaud, V. Ouspenski, R. Gy, poster 094, SORMA XV (2014)

Radiation Background in LaBr₃:Ce

¹³⁸La: γ (1436 keV + 789 keV) + β

²²⁷Ac: mainly α (5.0 – 7.4 MeV)

SAINT-GOBAIN

CRYSTALS

L.P. Ekström and R.B. Firestone, WWW Table of Radioactive Isotopes, database version 2/28/99, http://ie.lbl.gov/toi/index.htm Gamma-ray spectrum catalogue, Ge and Si Detector Spectra 4th Edition, Idaho National Engineering & Environmental Laboratory, 1999

Radiation Background in LaBr₃:Ce

Radiation Background in Co-doped LaBr₃:Ce

Radiation Background in Co-doped LaBr₃:Ce

Gamma Equivalent Energy of α increases significantly.

SAINT-GOBAIN CRYSTALS

Pulse Shape Discrimination

Pulse Shape Discrimination

Pulse Shape Discrimination

Change in Pulse Shapes

Possible Explanation

Increased α GEE

- Compared to gamma and beta, charged particles produce more low energy charge carriers with higher excitation density (*dE/dx*).
- Both Ca and Sr co-doping increase the relative light yield of LaBr₃:Ce for low energy electrons
- Higher light yield for charged particles

Enhanced α-γ PSD

• <u>Higher light yield</u>: PSD Resolution $\propto \frac{1}{\sqrt{N}}$

M. S. Alekhin, J. T. M. de Haas, I. V. Khodyuk, K. W. Krämer, P.R. Menge, V. Ouspenski, and P. Dorenbos, Applied Physics Letters, 102, 161915 (2013)

R.T. Williams, J.Q. Grim, Q. Li, K.B.Ucer and W.W. Moses, Phys. Status Solidi B 248, No. 2, 426–438 (2011)

SAINT-GOBAIN

CRYSTALS

New information: Ca and Sr co-doping may change the branching ratio for different quenching routes in LaBr₃:Ce. The excitation-densitysensitive exciton-exciton annihilation (bi-molecular decay) could be enhanced.

Alpha Background Suppression

CRYSTALS

13

⁶LiF-LaBr₃(Ce, Sr) Neutron Detector

Proof-of-Concept Detector

$n + {}^{6}Li \rightarrow t$ (2.75 MeV) + α (2.05 MeV)

- LaBr₃ surrounded with ⁶LiF as a neutron conversion layer and light reflector
- Range of α in LiF = 6.6 μ m;
- Range of t in LiF = 28.1 μm
- Thickness of LiF layer is not optimized.

SAINT-GOBAIN

Neutron Response

CRYSTALS

Summary and Outlook

- Both Ca and Sr co-doped LaBr₃:Ce shows significantly increased GEE for charged particles and enhanced α-γ PSD.
- α background in co-doped LaBr₃:Ce can now be completely eliminated by PSD (FOM > 1.5).
- With a ⁶LiF conversion layer, Sr co-doped LaBr₃:Ce can be used as a high-performance detector for both neutron and gamma.
- Thickness of ⁶LiF and geometry of LaBr₃:Ce will be further optimized to improve detection efficiency and reduce energy straggling.

Thank you for your attention.