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Abstract. Recent progress in development of single and multiple scattering models within the 
Geant4 toolkit is presented. Different options available to users are discussed. The comparisons 
with the data are shown. The trade of precision versus CPU performance is discussed with the 
focus on LHC detectors simulation. 

1. Introduction 
The Geant4 toolkit [1,2] is used as the main simulation engine for many HEP applications including 
ATLAS, CMS and LHCb experiments prepared for LHC [3-7]. The process of multiple scattering 
(MSC) of charged particles is an important component of Monte Carlo transport. At high energy it 
defines deviation of charged particles from ideal tracks limiting the spatial resolution of detectors. 
Scattering of low-energy electrons defines energy flow via volume boundaries directly affecting 
response and resolution of electromagnetic calorimeters. The default Geant4 MSC scattering model 
[8] has been significantly upgraded for Geant4 release 8.0 providing sampling calorimeter responses 
with the accuracy about 1% [9]. However, more precise simulation was achieved forcing more 
simulation steps of charged particles, which requires more CPU time [10].  
 The more detailed study of electron transport [11] shows that for the approach of the default 
MSC model the accuracy is limited. In order to provide alternative method of simulation new MSC 
model have been developed for Geant4 based on the same principles as MSC models of the Penelope 
[12] and EGSnrc [13] codes. For simulation of particle transport in the low-density media and as an 
alternative to MSC approach two single scattering models were introduced into the Geant4 toolkit. In 
this work the overview is presented on the status of Geant4 single and multiple scattering models.     

2. Geant4 multiple scattering 
Any Geant4 MSC model should provide the several basic functions for each Monte Carlo step of 
charged particle in a media: 
 

• propose step limit; 
• convert geometrical step length into “true” step length taking into account scatterings along the 

step; 
• sample scattering angle and turn particle direction at the end of the step; 
• sample a displacement of the end point.  
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These functions are applied sequentially in the Geant4 tracking algorithm. Before any step of a particle 
a loop performs over all physics processes to establish step limits. There are two types of such limits: 
  

• random step limit with a probability corresponding to the cross section of a process; 
• tracking step limit providing more precise simulation.     

 
The tracking step limit is mandatory only for the Geant4 transportation process, which stops a track at 
the geometry boundary between different volumes. For other processes this limit is optional but is 
essential to apply for achieving of a good simulation quality. For example, the process of ionisation 
limits step roughly by 20% of a particle range [1]. It was shown [11] that for precise simulation of 
electron transport small steps are required near boundaries between heavy and light materials and in 
Geant4 this limitation is provided by MSC models [9].  
 
All Geant4 MSC models use two main parameters to limit the step FR (range factor) and FG (geometry 
factor), which may be modified by a user. Additional parameter Fs = 0.3 (safety factor) is fixed. The 
step limit L is combined by using the following values: particle range R(T) where T is kinetic energy, 
inverse transport cross section λ(T) [12, 13], geometrical safety s [10], and distance to a geometrical 
boundary D 
 

ൌ ܮ min ሼܨோ · max ሺܴ, ,ሻߣ ௦ܨ  · ,ݏ ܨீ/ܦ  ሽ. 
 
Thus smaller value of FR will provide stronger step limitation and correspondingly more simulation 
steps. As a result, the simulation will be more CPU intensive. The geometry factor is used to insure 
minimal number simulation steps within each volume. Described algorithm of the step limitation is 
complicate and multi-parametric. In order to provide users a clear alternative set of parameters a 
special option G4MscStepLimitType is used which has only three variants: 
 

• Minimal,  FR = 0.2, FG is ignored, used in Geant4 electromagnetic physics builder option1 
(EMV option of Physics Lists); 

• UseSafety,  FR = 0.04, FG is ignored, default; 
• UseDistanceToBoundary, FR = 0.04, FG = 2.5, used in electromagnetic physics builder option3 

(EMY option of Physics Lists). 
 
The type of the step limitation can be selected by choosing corresponding Physics List or can be 
defined via UI command interface or via G4EmProcessOptions helper class. The effect of different 
step limitation options is demonstrated in the Fig.1 for energy deposition profile of low-energy 
electron beam in a semi-infinite media [14]. The single scattering model provides the most precise 
simulation, however, requires much more CPU, because samples each elastic scattering. The fastest 
variant of the Urban MSC model (EMV) using the Minimal step limitation overestimates energy 
deposition inside Tantalum. The strictest MSC step limitation (Opt3) using UseDistanceToBoundary 
is the closest to the data.    
 
The transformation of geometry step length to the true length is performed in all Geant4 MSC models 
in similar way by using the same formula as published in [12, 13]. The sampling of the scattering 
angle and of the displacement is different. After the sampling the same procedure is applied in all 
models: the value of the displacement d of the end point of the step is compared with the geometrical 
safety s. If d > s then the direction of the displacement is kept but its absolute value is set to s to be 
sure that end point of the track is kept inside the same volume. After this check of safety end point of 
the step is shifted, as a result, the relocation of the track is performed.  
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Figure 1. Radioactive dose profile of 0.5 MeV electron beam in Tantalum as a 
function of depth in the unit of electron range: points – data [15], curves – Urban 
MSC model with three step limitation options (red, green, yellow), Wentzel-VI MSC 
model (blue) and single scattering model (magenta). 

 

3. Urban multiple scattering model 
Urban MSC model [8] is the default model of Geant4. It is based on Lewis theory [16] and has 
separate parameterisations [17] of the central part of the scattering angle and of its tail. Various data 
on electron scattering are used for tuning of the function describing the tail of the scattering function. 
Urban MSC model is applicable to any particle type at any energy. The performance of the model is 
demonstrated in Fig.2, where results of simulation of sampling calorimeter of ATLAS barrel type are 
shown for different versions of Geant4 and different Physics List options.  
 
These results confirm conclusions following from the analysis of MeV-electron transport in Fig.1. It is 
shown in Fig.2 that in the case of the EMV option of Geant4 Physics lists (black squares and magenta 
crest in Fig.2) the energy deposition in sensitive layers of liquid Argon is underestimated by more than 
10%. Moreover, the results are very dependent on the value of the cut while with the default EM 
physics both the visible energy deposition and the resolution are stable for cuts below 1 mm. Thus, the 
same Urban MSC model provides different simulation accuracy by using different step limitation near 
the boundary between light and heavy materials. The correctness of Geant4 results with the default 
MSC model is independently confirmed by the analysis of the Fano theorem for the electron transport 
[11] and by comparisons with the published data on the sampling calorimeter response [9, 10]. 
 
It is worth to note that good stability and precision of the simulation was achieved by applying 
stronger step limitation, which requires more simulation steps and correspondingly more CPU. One 
method to improve simulation performance keeping precision is to apply production thresholds on 
secondary particles produced by Geant4 gamma processes (namely photoelectric effect and Compton 
scattering). It is implemented as EMX option of Geant4 EM physics (green triangles in Fig.2). In this 
case the dependence of the visible energy on the cut in range is visible above the cut value 0.1 mm, so 
one should be careful to select the best balance between the precision of the simulation and CPU 
performance. 
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Figure 2. The simulation of 10 GeV electron beam in the sampling calorimeter of the 
ATLAS barrel type as a function of the Geant4 production cuts: top – response, 
bottom – resolution. Physics List options: default – UseSafety option of step 
limitation, EMV – Minimal step limitation providing biased results, EMX – 
UseSafety option of step limitation and ApplyCuts option (enable production 
thresholds for secondary particles of gamma processes).  

4. Goudsmit-Saunderson multiple scattering model 
In general, Urban MSC model satisfies requirements of LHC experiments but the accuracy of the 
Penelope [12] and EGSnrc [13] electron transport is higher [11]. This is the main motivation of the 
development of the new Goudsmit-Saunderson MSC model, which is presented for the first time in 
this work. The new model is currently applicable only for electrons and positrons. It is fully based on 
the same theory [16] as Penelope and EGSnrc. Using the ELSEPA code [17] a data base of the total 
and transport cross sections of electrons and positrons was generated. This data are included inside 
G4LEDATA structure and will be distributed with Geant4. The sampling algorithm is similar to one of 
EGSnrc: each step of simulation is splitted into equal two sub-steps. The sampling of the probability 
density function is performed according to the Goudsmit-Saunderson theory [16]. The cases of zero 
scattering, one scattering, and many scatterings are treated separately. The first results with the new 
model (Fig.3) are promising but the CPU time is about two times more than for the Urban MSC 
model.  
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Figure 3. Simulation with the Goudsmit-Sounderson MSC model for the 
electron beam of 15.7 MeV scattering off thin Gold foils versus data [18].  

   

5. Geant4 single scattering models 
The first Geant4 single scattering model [19] has been developed in Vanderbilt University for space 
studies.  This model is applicable to protons and ions with energies below 100 MeV/A. The new single 
scattering model (CoulombScattering Model) is based on Wentzel scattering function [20] in 
formulation [12] of authors of the Penelope code. To apply the model at high energies the 
electromagnetic form-factor of the target nucleus is introduced using parameterisation [21]. Thus, this 
model is applicable to all particle type and complete energy region. It can be proposed to apply this 
model in low density media (vacuum or gas) when MSC approach has difficulties. It also is being used 
for validation of MSC models. For example, the data of MuScat experiment [22] for muon scattering 
off 10 different foils are well reproduced by the CoulombScattering model. Some comparisons were 
shown in our previous publications [11] and the result for the polyethylene target is shown in Fig.4. 
The CoulombScattering model provides the best value of χ2/n = 1.72 for 10 targets in comparison with 
the Urban model (χ2/n = 3.01) and the new Wentzel-VI model (χ2/n = 2.32) which will be described 
below. 

6. Combined single and multiple scattering model 
The new approach for simulation of elastic scattering has been developed recently in Geant4. It 
naturally combines single and multiple scattering models. The new model (Wentzel-VI MSC) was 
designed to sample multiple soft scatterings with angles θ < θmax, where θmax is the parameter of the 
model with the current default value 0.2 radian. Scatterings with angles above θmax are performed by 
the CoulombScattering model. So, both MSC and single scattering processes should be included in the 
Physics List simultaneously. The scattering function in both models has the same shape [12]. The 
sampling algorithm of the Wentzel-VI model is different from all models described above. At each step 
the average scattering angle is computed and if it is above 90 degree then the simulation is performed 
in two steps like in the case of the Goudsmit-Saunderson model. Normally this angle is smaller and the 
sampling is performed only in one step. For very small steps the central part of the scattering function 
(average angle θ0) is very narrow and a single scattering sampling is invocated using the restricted 
single scattering cross section for the interval of scattering angles 2θ0< θ < θmax.  
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Figure 4. Geant4 simulation of µ+ scattering off thin polyethylene target versus MuScat data 
[22]: top – scattering angle, bottom – relative difference of Monte Carlo and the data, hashed 
area shows one standard deviation. The WentzelVI MSC model (χ2/n = 1.69) and the single 
scattering model (χ2/n = 1.40) describe better the tail of the distribution than the Urban MSC 
model (χ2/n = 2.14).  

 
The focus of this new approach is to provide precise simulation of muons and hadrons as well as 
nuclear recoil in hard high-energy collisions. The first results (Fig.4) show good prospects. In 
particular, CPU performance of the new model is competitive with one of the Urban MSC model.   

7. Conclusions 
New MSC and single scattering models are included in the Geant4 toolkit providing the variety of 
configurations of the Geant4 physics applicable to different use-cases. The Urban MSC model is used 
as a default, in particular, for the Monte Carlo production for LHC experiments achieving simulation 
precision on level of 1%. The new theory based Goudsmit-Saunderson MSC model is promising to 
have higher accuracy for electron and positrons and to be on the same level of accuracy as well 
established models from Penelope and EGSnrc codes. 
 
The Wentzel-VI MSC and single scattering models are designed for precise simulation of muons and 
hadrons. The combination of these two models in Geant4 Physics List provides simulation of nuclear 
recoil above user defined energy threshold. Single scattering models alone can be used for validation 
of MSC model results and for simulation of transport in low density media, where traditional MSC 
approach is not valid.  
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Different configurations of scattering models per particle type, energy and use-case are available to 
users. The main goal of these developments is to provide the best accuracy of simulation with 
improved CPU performance. 
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