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A B S T R A C T

Gamma–gamma angular correlation measurements are a powerful tool for identifying the angular momentum
(spin) of excited nuclear states involved in a 𝛾-ray cascade, and for measuring the multipole orders and
mixing ratios of transitions. Though the physical angular correlations are fully calculable from first principles,
experimental effects can make the extraction of coefficients and thus conclusions about spins and mixing ratios
difficult. In this article we present data analysis techniques developed for the clover detectors of the GRIFFIN
spectrometer at TRIUMF-ISAC combined with GEANT4 simulations in order to extract accurate experimental
results.

1. Introduction

A detailed understanding of nuclear structure benefits from a com-
parison between theoretical calculations and experimental observations
of the properties of excited states in atomic nuclei. In order to make
meaningful comparisons, it is essential to make a positive identification
of the angular momentum (spin) for the excited states under study.
Ground state nuclear spins (as well as those of meta-stable states) can be
assigned firmly with optical techniques such as laser spectroscopy [1]
or nuclear magnetic resonance [2]. In the case of excited states, ex-
perimental techniques for spin assignment utilize selectivity in the
particular reaction or decay (i.e. log(𝑓𝑡) values in beta decays) or angular
distribution measurements (i.e. angular distribution of transfer reaction
products) to constrain or positively assign spins.

In 𝛾-ray spectroscopy, spins can be identified or constrained based
on absolute and relative lifetimes and the angular distribution of the
emitted radiation. For a given transition, 𝛾 rays are emitted in an angular
distribution that is dictated by the electromagnetic multipoles of the
radiation involved. In an unpolarized sample though, these angular
distributions are rendered isotropic by the random orientation of the
ensemble of nuclei in the sample. In such a situation, one must rely
on measurements of the angle between two 𝛾 rays emitted sequentially
from the same nucleus in order to define the nuclear alignment. These
angular correlations have the form:

𝑊 (𝜃) =
∞
∑

𝑖=0,even
𝐵𝑖𝑖𝐺𝑖𝑖(𝑡)𝐴𝑖𝑖𝑃𝑖(cos 𝜃) (1)
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where 𝜃 is the angle between two successive 𝛾 rays, 𝐵𝑖𝑖 specify the initial
nuclear orientation, 𝐺𝑖𝑖(𝑡) are time-dependent perturbation factors that
account for extranuclear interactions which disturb the correlation, and
𝑃𝑖(cos 𝜃) are Legendre polynomials. The 𝐴𝑖𝑖 are a series of coefficients,
the values of which are influenced by the spins of the three states
involved as well as the multipole order and mixing ratio, 𝛿, for each
transition [3]. Here, we take the situation of an isotropic initial nuclear
orientation (𝐵𝑖𝑖 = 1) from excited states populated in 𝛽 decay of a
randomly-oriented source, and short excited state lifetimes (𝐺𝑖𝑖(𝑡) ≈ 1),
such that the angular correlation is described as:

𝑊 (𝜃) =
∞
∑

𝑖=0,even
𝐴𝑖𝑖𝑃𝑖(cos 𝜃). (2)

Cascades involving low spins and low multipolarities will be described
by only the lowest few terms of this sum; angular momentum consid-
erations will set higher-order coefficients to zero, effectively truncating
the series. For these reasons, Eq. (2) is often re-written as:

𝑊 (𝜃) = 𝐴00[1 + 𝑎2𝑃2(cos 𝜃) + 𝑎4𝑃4(cos 𝜃)] (3)

where

𝑎𝑖 = 𝐴𝑖𝑖∕𝐴00. (4)

In this article, as only cases involving cascades with an intermediate
state spin of 𝐽 = 2 are considered, angular momentum considerations
render this truncation exact. The same truncation is generally sufficient
in the majority of 𝛽-decay experiments, which usually involve the
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population of low spin states. We note also that for cascades in which
the second transition involves a higher multipolarity, the intermediate
lifetime will be longer and so the above assumption of 𝐺𝑖𝑖(𝑡) ≈ 1 will not
hold for such cases.

It is a simple procedure to fit an experimental distribution with
Eq. (3), but the data gathered by large arrays of detectors are distorted
by several experimental factors: uneven distribution of detectors in 𝜃,
different detector efficiencies, finite detector size, and the lifetimes of
intermediate states. These factors mean that the uncorrected coefficients
obtained from the fitted experimental data do not describe the true
physical angular correlation of the 𝛾 rays. These effects typically act to
attenuate the asymmetry in the observed angular distributions. Various
techniques have been developed to account for these effects in order
to extract accurate coefficients from experimental data. In cases where
the lifetime of the intermediate state is negligible (the 2+ states in 60Ni,
152Gd and 66Zn are sufficiently short-lived, see Table 2), the uneven
distribution of detectors and different efficiencies can be deconvoluted
from the data by counting the crystal pairs at various opening angles
and normalizing individual detector signals for the detector-specific,
energy-dependent (and sometimes time-dependent) efficiency. This data
processing can be difficult and time-consuming, especially for low-
statistics peaks or if the efficiency varies over time. In the past, an
accounting of the effects of finite detector size has been done by defining
attenuation factors 𝑄𝓁𝓁 , such that

𝑎𝓁 =
𝑐𝓁
𝑄𝓁𝓁

(5)

where 𝑐𝓁 is the coefficient of 𝑃𝓁 extracted from a fit of Eq. (3) to the
data. The 𝑄𝓁𝓁 values are specific to the detector size, shape, distance
from the source, and the energy of the particular 𝛾 ray. The attenuation
coefficients can be calculated in advance but such calculations depend
heavily on the particular detector array setup and the energies of the
specific 𝛾 rays involved in the cascade. Examples of such calculations
for detectors with simple geometry can be found in Refs. [4,5]. While
these factors can be calculated analytically for certain detector shapes,
the coefficients were often calculated numerically with Monte Carlo
simulations [4,6,7]. The use of a full simulation in the present work will
allow the calculation of differences in these coefficients due to changes
in the physical setup of the experiment and incorporate modern cross-
section information for the relevant materials.

In this article, we discuss the analysis procedures developed to
extract physically relevant angular correlation coefficients from data
collected with the high-purity germanium clover detectors used in the
Gamma-Ray Infrastructure For Fundamental Investigations of Nuclei
(GRIFFIN) [8,9], described briefly in Section 2. These methods are,
however, generally applicable to large arrays of 𝛾-ray detectors. First,
in Section 3, we present an adaptation of an event-mixing technique
to remove energy- and time-dependent efficiency differences between
the detectors. In Sections 4.1, 4.2, 4.3, and 4.4, we describe a series
of methods utilizing simulations to correct for the finite detector sizes
with increasing levels of parameterization and approximation. While
some methods reduce the achievable precision and accuracy of the
measured values they also dramatically reduce the computational cost
of each individual measurement. Finally, in Sections 5 and 4.5 we make
comparisons between the methods and summarize the results.

2. Experimental details - GRIFFIN

Since the analysis techniques described herein are demonstrated
through application to data recorded with the GRIFFIN spectrometer,
we give here a brief description of the facility and refer the reader to
other publications [8–10] for further details.

GRIFFIN is an array of 16 High-Purity Germanium (HPGe) clover
detectors arranged in a rhombicuboctahedron geometry (Fig. 1) around
the location at which the radioactive beam is implanted. Each clover

Table 1
Angles between HPGe crystal pairs in the GRIFFIN geometry with the HPGe detectors at a
source-to-detector distance of 11 cm. Two independent sets of crystal pairs at 86.2 degrees
have different geometries but angular differences that are the same to four decimal places.
The same is true for the two independent sets of crystal pairs at 93.8 degrees. See text for
more details of pair counting.

Angle (◦) Num. of Angle (◦) Num. of
Pairs Pairs

0.0 64 91.5 128
18.8 128 93.8 48
25.6 64 93.8 64
26.7 64 97.0 64
31.9 64 101.3 64
33.7 48 103.6 96
44.4 128 106.9 64
46.8 96 109.1 96
48.6 128 110.1 64
49.8 96 112.5 64
53.8 48 113.4 64
60.2 96 115.0 96
62.7 48 116.9 64
63.1 64 117.3 48
65.0 96 119.8 96
66.5 64 126.2 48
67.5 64 130.2 96
69.9 64 131.4 128
70.9 96 133.2 96
73.1 64 135.6 128
76.4 96 146.3 48
78.7 64 148.1 64
83.0 64 152.3 64
86.2 64 154.4 64
86.2 48 160.2 128
88.5 128 180.0 64

Fig. 1. A rhombicuboctahedron (bold outline) is the basis of the array geometry for the
GRIFFIN HPGe clovers. The front of each clover is placed against the square face. Each
clover contains four crystals, indicated by the thinner dividing lines on the square faces.
The crystal pairs 𝑖 − 𝑖𝑖𝑖 and 𝑖 − 𝑖𝑣 span the same range of opening angles, but the pairs
𝑖𝑖 − 𝑖𝑖𝑖 and 𝑖𝑖 − 𝑖𝑣 do not.

contains four electrically-independent crystals for a total of 64 individ-
ual HPGe crystals in the spectrometer. In typical operation, the TRIUMF-
ISAC facility provides beams of radioactive isotopes that are stopped
at the center of the array and subsequently decay. The distribution of
radioactivity on the tape has a diameter of less than 5 mm. In addition
to the HPGe clover detectors which detect the 𝛾 rays, ancillary detectors
are available which can detect emitted beta, alpha, proton, and neutron
radiation. The configuration of the HPGe clovers is also variable: the
clovers can be arranged in a close-packed, high-efficiency geometry
with the front face of each detector at a source-to-detector distance of
11 cm, or an optimized peak-to-total geometry with full Compton and
background suppression shields and the HPGe detectors at a distance of
14.5 cm from the source. Some ancillary detectors require the removal
of one or more clover detectors. The particular detector configuration
thus varies based on the experimental needs.
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Table 2
Details of the 𝛾 − 𝛾 cascades used in this work. Subscripts of 𝑖, 𝑥, 𝑓 are used to indicate the initial, intermediate, and final states, respectively. Mixing ratios are taken from Refs. [11–13].
The 𝑎2 , 𝑎4 values are calculated from the experimentally measured mixing ratios and known nuclear spins. The mixing ratios for the 𝑥 − 𝑓 transitions are all zero as all cascades have a
purely 𝐸2 multipolarity for this 𝑥 − 𝑓 transition.

Nucleus 𝐽 𝜋
𝑖 -𝐽 𝜋

𝑥 -𝐽 𝜋
𝑓 Mult. 𝜏 𝐸𝑖−𝑥

𝛾 𝐸𝑥−𝑓
𝛾 𝛿𝑖−𝑥 𝑎2 𝑎4

(𝑖 − 𝑥) (ps) (keV) (keV)
60Ni 4+-2+-0+ E2(+M3) 1.06(3) 1173.2 1332.5 −0.0025(22) 0.1005(13) 0.0094(3)
152Gd 3−-2+-0+ E1(+M2) 46.2(39) 778.9 344.3 0.003(6) −0.0691(47) 0
66Zn 1+-2+-0+ M1+E2 2.42(4) 2751.8 1039.2 −0.09(3) −0.147(35) −0.0061+0.0034

−0.0047
−0.12(2) −0.112(23) −0.0108+0.0033

−0.0038
66Zn 0+-2+-0+ E2 2.42(4) 1333.1 1039.2 – 0.357 1.143
66Zn 2+-2+-0+ M1+E2 2.42(4) 833.5 1039.2 −1.9(3) 0.30+0.05−0.04 0.256+0.015−0.021

−1.6(2) 0.34+0.04−0.03 0.23(2)

The HPGe crystals used in the GRIFFIN detectors are initially 60 mm
in diameter and 90 mm in length. The crystals are machined so that four
of them can be housed together in a single cryostat. The outer edges
of the HPGe crystals are tapered at an angle of 22.5 degrees over the
first 30 mm of their length to allow for close-packing of neighboring
clover detectors once mounted in the support structure of the GRIFFIN
spectrometer. The front face of the aluminum crystal housing has a
thickness of 1.5 mm and each crystal is positioned with its front face
7 mm from the exterior front-face surface of the housing. At the 11 cm
distance used for this work, each crystal has a width of approximately
14◦. The angle between adjacent crystals in the same clover is 18.8◦

(angle pair 𝑖 − 𝑖𝑖 in Fig. 1), and the angle between diagonal crystals in
the same clover is 25.6◦.

The HPGe data used in this work was collected in the close-packed
geometry with a full complement of 16 clover detectors and with
the inclusion of an ancillary array of plastic scintillators (SCEPTAR)
located between the source and the HPGe. Such a geometry contains
4032 possible crystal-pair combinations, resulting in 51 unique opening
angles ranging from 19◦ to 180◦. Because the two gamma rays measured
are distinguishable, we retain the distinguishability of crystal pairs so
that crystal pair (𝑗, 𝑘) is distinct from crystal pair (𝑘, 𝑗). An additional 64
‘‘pairs’’ of crystals with an angular difference of 0◦ can be included if
one considers the sum peaks that result when both 𝛾 rays of the cascade
interact, and are fully absorbed, in the same crystal. The number of
HPGe crystal pairs at each of the unique angular differences is shown
in Table 1. This set of angular differences is used for all the angular
correlations in this work. The average angular difference for 𝛾 rays
detected in pairs of HPGe crystals was examined in a GEANT4 [14,15]
simulation to explore the sensitivity of this angular difference as a
function of the 𝛾-ray energy which could modify the average interaction
location within the crystal volume. There is an energy-dependence to the
detection position within a crystal due to the reduced 𝛾-ray efficiency at
the center of the crystal where material has been removed for the central
core contact. However, as these effects are symmetric they cancel when
the average is calculated. The average angular differences obtained
from the simulation match very closely with the geometric calculation
between the centers of the front face of each crystal.

High-statistics data from the beta decays of 60Co, 152Eu, and 66Ga
were utilized to measure the five cascades in the daughter isotopes
detailed in Table 2. The 60Co and 152Eu decays were observed from com-
mercially available calibration sources mounted at the beam-
implantation location. A source of 66Ga (𝑇1∕2=9.49(3) hrs [13]) was
created through the delivery of a radioactive beam from ISAC and
observed for several half lives. The data shown here have not utilized
the addback of Compton scattered 𝛾 rays between crystals, nor have
the crystal pairs been grouped in any way beyond the unique angle
groupings listed in Table 1.

3. Treatment of the experimental data — event-mixing technique

An algorithm was developed based on the event-mixing ideas used
in Refs. [16–19] that allows the production of robust experimental
angular correlation distributions shortly after the data are collected,
with minimal explicit calibration.

3.1. Experimental angular correlation theory

The continuous physical angular correlation 𝑊 (𝜃) is distorted by
experimental effects and measured as a discrete experimental angular
difference distribution,𝑤(𝜃𝑖;𝐸𝑎, 𝐸𝑏). The relationship between these two
can be expressed as the following function:

𝑤(𝜃𝑖;𝐸𝑎, 𝐸𝑏) =
∑

𝑗,𝑘
𝐴𝑗𝑘(𝐸𝑎, 𝐸𝑏)𝐼𝑗𝑘(𝜃𝑖;𝐸𝑎, 𝐸𝑏) (6)

𝐴𝑗𝑘(𝐸𝑎, 𝐸𝑏) = ∫ 𝜀𝑗 (𝐸𝑎, 𝑡)𝜀𝑘(𝐸𝑏, 𝑡)𝑑𝑡 (7)

𝐼𝑗𝑘(𝜃𝑖;𝐸𝑎, 𝐸𝑏) = ∫

𝜃𝑖+𝛥𝜃

𝜃=𝜃𝑖−𝛥𝜃
𝑁𝑗𝑘(𝜃;𝐸𝑎, 𝐸𝑏)𝑊 (𝜃)𝑑𝜃 (8)

where 𝑤(𝜃𝑖;𝐸𝑎, 𝐸𝑏) is the discretized angular difference histogram be-
tween coincident 𝛾 rays with energies 𝐸𝑎 and 𝐸𝑏, 𝜃𝑖 is one of the
unique angles between crystal pairs, 𝑗 and 𝑘 are indices that iterate
over all pairs of crystals which satisfy 𝜃𝑖 = |𝜃𝑗 − 𝜃𝑘|, 𝜀𝑗 (𝐸𝑎, 𝑡) is the
energy-dependent, time-dependent efficiency of crystal 𝑗, 𝑁𝑗𝑘(𝜃;𝐸𝑎, 𝐸𝑏)
is a weighting distribution that describes the crystal pair response at
different angles 𝜃 that are subtended by this crystal pair, 𝑊 (𝜃) is the
theoretical angular distribution given in Eq. (2), and 𝛥𝜃 is a limit set
such that 𝑁𝑗𝑘(𝜃;𝐸𝑎, 𝐸𝑏) is zero outside of the range 𝜃𝑖 ± 𝛥𝜃. The time
integral in the definition of 𝐴𝑗𝑘 is performed over the full time of the
experiment.

A second experimental distribution, 𝑦(𝜃𝑖;𝐸𝑎, 𝐸𝑏) can be defined that
is related to a second theoretical distribution 𝑌 (𝜃), where 𝑌 (𝜃) is a
different angular correlation, but defined with the same general form
as 𝑊 (𝜃) was in Eq. (2):

𝑦(𝜃𝑖;𝐸𝑎, 𝐸𝑏) =
∑

𝑗,𝑘
𝐴𝑗𝑘(𝐸𝑎, 𝐸𝑏)𝐽𝑗𝑘(𝜃𝑖;𝐸𝑎, 𝐸𝑏) (9)

𝐽𝑗𝑘(𝜃𝑖;𝐸𝑎, 𝐸𝑏) = ∫

𝜃𝑖+𝛥𝜃

𝜃=𝜃𝑖−𝛥𝜃
𝑁𝑗𝑘(𝜃;𝐸𝑎, 𝐸𝑏)𝑌 (𝜃)𝑑𝜃. (10)

Dividing Eq. (6) by Eq. (9) results in:

𝑤(𝜃𝑖)
𝑦(𝜃𝑖)

=
∑

𝑗,𝑘 𝜀𝑗 (𝐸𝑎, 𝑡)𝜀𝑘(𝐸𝑏, 𝑡)𝐼𝑗𝑘(𝜃𝑖;𝐸𝑎, 𝐸𝑏)
∑

𝑗,𝑘 𝜀𝑗 (𝐸𝑎, 𝑡)𝜀𝑘(𝐸𝑏, 𝑡)𝐽𝑗𝑘(𝜃𝑖;𝐸𝑎, 𝐸𝑏)
(11)

where the explicit energy dependencies of the 𝑤 and 𝑦 distributions
have been omitted for conciseness. If it is assumed that the distribution
𝑁𝑗𝑘(𝜃;𝐸𝑎, 𝐸𝑏) is identical for all crystal pairs 𝑗, 𝑘 that have an opening
angle of 𝜃𝑖, then the sum and angle integral are entirely independent
and separable. The sums and 𝐴𝑗𝑘 factors within them therefore cancel
to leave

𝑤(𝜃𝑖)
𝑦(𝜃𝑖)

=
∫ 𝜃𝑖+𝛥𝜃
𝜃=𝜃𝑖−𝛥𝜃

𝑁𝑖(𝜃;𝐸𝑎, 𝐸𝑏)𝑊 (𝜃)𝑑𝜃

∫ 𝜃𝑖+𝛥𝜃
𝜃=𝜃𝑖−𝛥𝜃

𝑁𝑖(𝜃;𝐸𝑎, 𝐸𝑏)𝑌 (𝜃)𝑑𝜃
. (12)

If 𝑌 (𝜃) is isotropic then 𝑌 (𝜃) = 1, and,

𝑤(𝜃𝑖)
𝑦(𝜃𝑖)

=
∫ 𝜃𝑖+𝛥𝜃
𝜃=𝜃𝑖−𝛥𝜃

𝑁𝑖(𝜃;𝐸𝑎, 𝐸𝑏)𝑊 (𝜃)𝑑𝜃

∫ 𝜃𝑖+𝛥𝜃
𝜃=𝜃𝑖−𝛥𝜃

𝑁𝑖(𝜃;𝐸𝑎, 𝐸𝑏)𝑑𝜃
. (13)

Finally, in the limiting case that 𝑊 (𝜃) can be approximated as
constant over the range of 𝜃 = 𝜃𝑖 ± 𝛥𝜃, or if 𝑁(𝜃𝑖, 𝐸𝑎, 𝐸𝑏) is symmetric
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Fig. 2. Construction of an angular correlation normalized by event-mixing. (a) Coinci-
dences in the 1332 keV–1173 keV 4+ → 2+ → 0+ cascade in 60Ni as a function of angle
between detectors (black circles) and event-mixed coincidences in the same cascade (red
squares). The event-mixed graph has been scaled to the same area as the coincident graph,
but has a factor of ≈ 50 more events. (b) The two series from the top panel, now divided
by the number of crystal pairs at each possible angle. (c) Final angular correlation of the
cascade, using the event-mixing technique for normalization.

about 𝜃𝑖 and 𝑊 (𝜃) can be approximated as linear, then this equation
simplifies further to:
𝑤(𝜃𝑖)
𝑦(𝜃𝑖)

= 𝑊 (𝜃𝑖). (14)

In summary, the detector-, energy-, and time-dependent efficiencies
in 𝑤(𝜃𝑖) can be removed by dividing that distribution by a distribution
𝑦(𝜃𝑖;𝐸𝑎, 𝐸𝑏) that uses the same detector configuration. It is essential
that 𝑁𝑗𝑘(𝜃) is identical for all crystal pairs 𝑗, 𝑘 within the sum and that
𝑦(𝜃𝑖;𝐸𝑎, 𝐸𝑏) has the same efficiency as a function of energy and time,
uses 𝛾 rays of the same energies, and is isotropic. Such a distribution
construction will be addressed in Section 3.2.

This leaves primarily the impact of finite detector size. If this impact
is small, then the ratio of distributions will closely resemble 𝑊 (𝜃). If
this impact is large or the desired precision is particularly high, then
this final simplification cannot be assumed and further corrections must
be applied to the experimental data either by comparison to simulations
or otherwise modify the measured coefficients. Sections 4.1–4.4 present
methods for these corrections utilizing simulations.

3.2. Event-mixing plot construction

In data gathered from large arrays, a plot of coincident counts against
angular difference is dominated by the number of crystal pairs at each
angle, which in the case of GRIFFIN can vary from 48 to 128. Fig. 2a
shows the number of 1332–1173 keV coincident counts from the 60Ni
cascade as a function of cos(𝜃) (black circle data points), while Fig. 2b

Fig. 3. Angular correlations from the 1333 keV–1173 keV 4+ → 2+ → 0+ cascade in
60Ni as a function of angle between detectors, normalized by (a) number of crystal pairs
at each angle, (b) number of crystal pairs and individual detector efficiencies, and (c)
the event-mixing technique. In all panels, the dashed black line shows a scaled simulated
distribution. See text for more details. The 𝜒2/NDF values show the reduced 𝜒2 for each
experimental angular correlation in comparison with the full simulation. The red line
in panel (c) indicates the physical distribution for this cascade, before any experimental
effects are applied. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

shows the same data, but divided by the number of crystal pairs that
contribute to each angle (black circle data points). In both data sets,
the number of counts at an opening angle of 44.4◦ (128 crystal pairs)
is roughly twice the number of counts at an opening angle of 73.1◦

(64 crystal pairs). Fig. 3a shows the same distribution, but this time
in comparison to a simulated 4+ → 2+ → 0+ correlation from a full
GEANT4 simulation (black dashed line) as detailed in the following
section. The goodness-of-fit parameter between the full simulation and
the data is 𝜒2/NDF=7.96, where NDF is the number of degrees of
freedom.

In order to improve this, one needs to account for the different
relative efficiencies of each crystal. Ideally, since the individual angular
distributions of the 1332 and 1173 keV transitions are isotropic, each
HPGe crystal should detect the same number of 𝛾 rays. Any variations
in the number of counts seen by each crystal are due to different relative
efficiencies. If the counts from each detector are scaled to force the
1332 and 1173 keV angular distributions to be isotropic, this will correct
for the different relative efficiencies. An angular correlation with this
correction applied is shown in Fig. 3b. Making this correction improves
the 𝜒2/NDF value to 2.34.

The formalism developed in the previous section provides an alter-
native and more accurate way to make these corrections — by con-
structing an isotropic distribution from 𝛾 rays of the same energies and
dividing the two angular difference distributions. Experimentally, the
challenge is to construct a distribution 𝑦(𝜃𝑖;𝐸𝑎, 𝐸𝑏) with the appropriate
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characteristics. The 𝑦(𝜃𝑖;𝐸𝑎, 𝐸𝑏) distribution can be created with data
collected at the same time as the 𝑤(𝜃𝑖;𝐸𝑎, 𝐸𝑏) distribution. This will
satisfy the requirement that both histograms have the same efficiency as
a function of 𝛾-ray energy and time. To also ensure that the distribution
is isotropic and uses 𝛾 rays of the same energies, detected 𝛾-ray events
of the same energies originating from decays of different nuclei (but
the same nuclide) can be selected by pairing 𝛾-ray detections with an
unphysically large time difference. The large time difference guarantees
that the detections are uncorrelated with each other and thus provides
the required isotropic distribution.

Some care must be taken with respect to the selection of gamma
rays from different decays and the satisfaction of the time-dependent
efficiency criterion. If there are variations in efficiency as a function
of time, the events for event-mixing need to have a time difference
that is smaller than this time-dependent efficiency fluctuation. As an
illustrative example, if the efficiency were to change every thirty sec-
onds for some reason, the average time between 𝛾 rays that are selected
needs to be much less than thirty seconds. This average time, however,
also should be much longer than the lifetime of the intermediate state,
to ensure that the two 𝛾 rays are not from the same decay. Another
common example of time-dependent efficiency change would come
from observing the build up and decay of a radioactive sample with
a short half-life. We have not investigated the impact of mixing 𝛾-ray
detections with time differences that span such efficiency changes, but
anticipate that results from such an investigation would be different for
different experimental setups and sources of efficiency fluctuation.

The division of the histograms will increase the statistical error in the
final distribution. The impact of this can be made negligible by creating
a 𝑦(𝜃𝑖;𝐸𝑎, 𝐸𝑏) where each 𝛾-ray interaction is paired with many other
interactions. This increases the statistics and reduces the error in the
divisor histogram, avoiding an inflation of the overall error.

Fig. 2a shows a raw event-mixed histogram (red squares) in com-
parison to an associated prompt histogram (black circles). The raw
histograms look similar because they are both dominated by the number
of crystal pairs that contribute to each angular bin. Dividing out
this contribution produces the histograms shown in Fig. 2b that are
qualitatively different. Here, the isotropic nature of the event-mixed
spectrum is much more obvious. The division of these two histograms
produces the final angular correlation distribution shown in Fig. 2c.
The resulting angular correlation compares well with a full simulation
(𝜒2/NDF of 1.01) as shown in Fig. 3c.

The constraints of efficiency fluctuations, statistics, computation
time, and desired precision will weigh on experiments differently. In this
work, sources of effectively constant decay rate were used with count
rates ranging from 800 to 3500 Hz/crystal (the 60Ni source shown in
Figs. 2 and 3 had a rate of 800 Hz/crystal), so the time window was not
constrained by time-dependent efficiency changes. The time window for
event mixing was set between 2 μs and 200 μs, whereas true coincidence
events had time differences of less than 300 ns.

4. Extracting finite detector size effects with simulation

In order to extract the physical angular correlation coefficients
in Eq. (2), the slight differences in convolution of the detector response
as a function of opening angle (𝑁𝑖(𝜃)) and the physical angular correla-
tions must still be accounted for. Even in cases of angular correlations
that change slowly over the full opening angular range of a crystal
pair, these differences can be appreciable. Fig. 4 shows an experimental
angular correlation distribution from the 0+ – 2+ – 0+ cascade in 66Zn,
which has a strong 𝑃4 component and no ambiguity of mixing ratio. This
lack of ambiguity ensures that the physical angular correlation must be
the blue solid line included in Fig. 4, which obviously does not match
the experimental data.

To calculate the impact of finite detector size, Compton scattering,
and other effects due to 𝛾-ray interactions with the infrastructure as
well as any ancillary detectors, a Monte Carlo simulation of the full

Fig. 4. The 𝜒2/NDF between a full simulation of the 66Zn 0+ − 2+ − 0+ cascade (magenta
filled line) with 𝑎2 = 0.3571 and 𝑎4 = 1.1429 and data (black points) is 1.01. The blue solid
line is the angular correlation expected from theoretically calculated 𝑎2 , 𝑎4 coefficients
without corrections for finite detector size effects. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

Table 3
Results from the fitting of simulated templates to data from multiple cascades (Method

1). The mixing ratios, 𝛿, of the transition from an initial spin of 𝐽𝑖 to an intermediate spin
of 𝐽 = 2 were determined by a 𝜒2 analysis comparing simulated data over a wide range
of 𝛿 values.

Nucleus 𝐽𝑖 𝛿𝑓𝑖𝑡 𝛿𝑙𝑖𝑡. Ref.
60Ni 4 −0.002(2) −0.0025(22) [11]
152Gd 3 0.003(2) 0.003(6) [12]
66Zn, 1+ 1 −0.082(2) −0.09(3) [20]

−0.12(2) [21]
66Zn, 0+ 0 – –
66Zn, 2+ 2 −2.08(4) −1.9(3) [20]

−1.6(2) [21]

detector setup was created using the GEANT4 framework [8,15,22].
The GEANT4 radioactive decay and photon evaporation classes were
modified to reproduce the appropriate physical angular correlations in
user-specified 𝛾-ray cascades [23]. Those correlations were then used
as input to the full GRIFFIN Monte Carlo simulation [24] of the 0+–
2+– 0+ cascade in 66Zn. A fit to the high-statistics simulated data
provides a ‘template’ which includes all the attenuation effects of the
experimental setup. The template (magenta filled line) is compared to
the experimental data (black filled points) in Fig. 4. Here, the discrete
data points of the template are represented by a connected, filled
area to distinguish it from the data and still indicate the simulation
uncertainty. The statistical uncertainty of the simulation is represented
by the width of the colored line, while the statistical uncertainty of the
event-mixed angular correlation is indicated by the black error bars
on each point. A comparison of the template and the input physical
distribution shows the impact of the distortion due to experimental
effects. Similar examples are shown in the Appendix to demonstrate
the accuracy of the simulations for cascades in 152Gd and 60Ni.

With the importance of finite detector size effects and the efficacy of
the GRIFFIN Monte Carlo simulation established, the following sections
describe four methods for incorporating these effects and extracting
physically relevant information from the 𝛾 − 𝛾 angular correlation data.
In all cases, we show the efficacy of the methods with comparisons to
source data of the cascades described in Table 2, specifically extracting
mixing ratios, 𝛿, of transitions between the initial states (of spins 𝐽𝑖) to
the intermediate states (all of spin 𝐽𝑥 = 2). For Methods 2–4, we also
extract angular correlation coefficients 𝑎2 and 𝑎4.

4.1. Method 1: Direct comparison to GEANT4 simulation templates

One approach is to utilize the Monte Carlo simulation to construct
a series of templates –simulated distributions each with a unique set
of spin and mixing ratio inputs –that can be compared directly to
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data and used to determine mixing ratios. A goodness-of-fit parameter,
𝜒2/NDF, can be calculated for the comparison of each template to the
data. Following the recommendation of Ref. [25], spins with a 𝜒2/NDF
that fall below a 99% confidence limit are considered as possible
assignments; spins that do not reach this limit are excluded. To extract
the mixing ratio and its uncertainty, the 𝜒2 values for each possible
spin assignment are approximated by a parabola in the minimum. The
minimum value of the fitted parabola determines the best-fit mixing
ratio while the 1𝜎 uncertainties are extracted from the mixing ratios
which correspond to 𝜒2

min + 1 of the parabolic fit. The spin assignments
and mixing ratios extracted using this method are presented in Table 3.
All compare favorably to the literature values for these cascades, with
significant improvements in precision: the mixing ratio for the 152Gd
transition increases the precision by a factor of three and the mixing
ratios for the 1+1 → 2+1 and 2+2 → 2+1 transitions in 66Zn are roughly an
order of magnitude more precise.

4.2. Method 2: Evolution of the angular distribution coefficients

The method described in the previous section is effective but time
consuming as it requires a simulation to be performed for each combi-
nation of spins and mixing ratio that are to be trialled. Alternatively, one
can take advantage of the fact that Eq. (3) is simply a linear combination
of Legendre polynomials. If the angular correlations of pure Legendre
polynomials are simulated, the experimental data can be fitted with a
linear combination of those simulated histograms. This is an efficient
way to calculate the evolution of the attenuation effects across a range
of angular distribution coefficients for a single combination of 𝛾-ray
energies.

While it would be simpler to simulate pure Legendre polynomials,
the requirement that the angular distributions always be positive elim-
inates that option. Instead, the following distributions are defined and
simulated individually:

0(𝜃) = 1 (15)

2(𝜃) = 1 + 𝑃2(cos 𝜃) (16)

4(𝜃) = 1 + 𝑃4(cos 𝜃). (17)

A linear combination of the resultant histograms can be used to con-
struct an angular correlation histogram for any 𝑎2, 𝑎4 combination:

sum = 𝑥0 + 𝑦2 + 𝑧4 (18)

= 𝐴00[(1 − 𝑎2 − 𝑎4)0 + 𝑎22 + 𝑎44]. (19)

As an example, to construct an angular correlation histogram for a 0+–
2+–0+ cascade with 𝑎2 = 0.357, 𝑎4 = 1.143, and 𝐴00 = 1000, scaling
factors of 𝑥 = −500, 𝑦 = 357, and 𝑧 = 1143 are applied.

One can leverage this linear combination to fit the  distributions to
experimental data and directly extract 𝑎2 and 𝑎4 coefficients for compar-
ison to theory. Fig. 5 shows the best fit of simulated  distributions to
the 66Zn 2+−2+−0+ angular correlation. The coefficients extracted from
this fit are 𝑎2 = 0.272(7) and 𝑎4 = 0.258(10) in comparison to previously
reported values of 𝑎2 = 0.30+0.05−0.04 and 𝑎4 = 0.256+0.015−0.021 [20].

An alternative approach is to once again follow the methodology
recommended by Ref. [25]: assume spins and mixing ratios, calculate
theoretical 𝑎2 and 𝑎4 coefficients, construct an equivalent simulated
histogram from a linear combination of  distribution simulations, and
calculate a goodness-of-fit. In a fit with 51 opening angles and two
degrees of freedom for the fit (mixing ratio, and overall scaling factor),
this corresponds to 𝜒2/NDF = 1.53. Errors for each minimized mixing
ratio are again found from the limits of 𝜒2

min + 1. Fig. 6 shows the
𝜒2/NDF for such a fit to the data shown in Fig. 5, assuming that the
intermediate state spin is 𝐽 = 2 and the final state spin is 𝐽 = 0.
The black horizontal line indicates the 99% confidence interval. The
minimum 𝜒2 is identified with an initial state of 𝐽𝑖 = 2 and 𝛿 = −2.07(4).
All other spins are clearly rejected by this analysis. For comparison, the

Fig. 5. The best Method 2 distribution fit of the 66Zn 2+ − 2+ − 0+ cascade (red filled
line) and data (black points) has a 𝜒2/NDF of 0.97 and minimizes with 𝑎2 = 0.272(7) and
𝑎4 = 0.258(10). The residual of the fit is shown in the lower panel. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of
this article.)

Fig. 6. Using Method 2, a comparison of 𝜒2/NDF values for potential 𝐽𝑖 = 0 − 4 and all
possible mixing ratios (𝛿) shows that the best spin-mixing ratio fit to the 66Zn 2+ −2+ −0+

data using the -distribution is made with 𝐽𝑖 = 2 and 𝛿 = −2.07(4). The solid black line
indicates the 99% confidence limit — any spins with goodness-of-fit values below it are
considered possible assignments.

mixing ratio extracted by Method 1 was −2.08(4), but required a much
larger number of simulations to explore all possible spin combinations
and 𝛿 values, compared to the Method 2 approach of simulating only
the three 0, 2 and 4 distributions.

Similar examples to demonstrate the validity of this methodology
for other cascades in 66Zn, 152Gd, 60Ni are included in the Appendix.
The results from all of these cascades using Method 2 are summarized
in Table 4.

4.3. Method 3: Algebraic approximation of the angular distribution coeffi-
cients

As mentioned earlier, previous work has accounted for the effects
of a given experimental setup on the angular correlation via calcu-
lated attenuation coefficients, 𝑄𝓁𝓁 [4,5]. The physically relevant 𝑎𝓁
coefficients are obtained by correcting the bare coefficients obtained
from a fit of Eq. (3) to the experimental data with the attenuation
coefficients. In this method 3, an algebraic approximation is developed
and benchmarked in order to algebraically parameterize the attenuation
of angular correlation coefficients (𝑎2, 𝑎4) for a particular 𝛾 − 𝛾 cascade.

In execution, this method is very similar to method 2 described in
the previous section, but the -distribution simulations are replaced
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Table 4
Results from the use of Method 2 to fit the data. The 𝑎2, 𝑎4 values and 𝐽𝑖, 𝛿 values were determined independently, as described in the text. See Table 2 for details of the literature values
and Appendix for level schemes.

Nucleus 𝑎2,𝑓 𝑖𝑡 𝑎2,𝑙𝑖𝑡. 𝑎4,𝑓 𝑖𝑡 𝑎4,𝑙𝑖𝑡. 𝐽𝑖,𝑓 𝑖𝑡 𝐽𝑖,𝑙𝑖𝑡. 𝛿𝑓𝑖𝑡 𝛿𝑙𝑖𝑡.
60Ni 0.101(1) 0.1005(13) 0.008(2) 0.0094(3) 4 4 −0.002(2) −0.0025(22)

2 0.192(2)
152Gd −0.068(2) −0.0691(47) −0.002(3) 0.00000 3 3 0.004(2) 0.003(6)

4 3.29(4)
66Zn, 1+ −0.156(4) −0.147(35) −0.003(5) −0.0061+0.0034

−0.0047 1 1 −0.082(3) −0.09(3)
−0.112(23) −0.0108+0.0033

−0.0038 1 −0.12(2)
3 −0.108(4)
4 5.76(14)

66Zn, 0+ 0.33(3) 0.357 1.16(4) 1.143 0 0 – –
66Zn, 2+ 0.272(7) 0.30+0.05

−0.04 0.258(10) 0.256+0.015
−0.021 2 2 −2.07(4) −1.9(3)

0.34+0.04−0.03 0.23(2) 2 −1.6(2)

with attenuated Legendre polynomials that approximate the attenuation
of the experimental setup. This substitution allows the derivation of
a direct algebraic relationship between bare coefficients, 𝑐𝓁 , and the
physically relevant 𝑎𝓁 coefficients. This is an essential step towards the
final method considered in this work.

The individual  distributions used for the fit in Fig. 5 are shown in
Fig. 7. These discrete distributions can be reasonably well approximated
by functional forms of the Legendre polynomials:

0 = 𝛼 (20)

2 = 𝛼(1 + 𝛽𝑃2) (21)

4 = 𝛼(1 + 𝛾𝑃4) (22)

where 𝛼 is a common scaling coefficient and 𝛽 and 𝛾 are coefficients
to be fit to the 2 and 4 distributions, respectively. The form of
these equations are the result of an importance truncation based on
the magnitude of coefficients fitted using a complete set of Legendre
polynomials up to the tenth order. The inclusion of the terms in
Eqs. (20)–(22) were found to be necessary and appropriate for a good
description of the data. The inclusion of additional terms produced
fitted coefficients that were close to zero and returned minimal (if any)
improvement in the quality of the fit. This approximation ignores small,
bin-by-bin perturbations of the angular correlation in order to allow the
parameterization of larger, smoothly-varying features.

An example of this fitting is shown in Fig. 7, with Eqs. Eq. (20)–(22)
being used to fit the 66Zn 0+ – 2+ – 0+ 0 distribution. The 𝜒2/NDF
for the three fits are 1.02, 3.73, and 5.68, indicating a good fit for the
0 distribution and increasingly worse fits for the 2,4 distributions,
due principally to geometric attenuation effects not captured by the
smooth polynomial. To account for this additional variation, we inflate
the uncertainties on the 𝛽 and 𝛾 coefficients by the square root of the
𝜒2∕NDF for their respective distributions. In contrast to Methods 1 and
2, which directly compared simulated histograms to data histograms,
Method 3 fits the data as a function of cos(𝜃). Each data point represents
a geometric arrangement of two crystals that span a finite range of
angular differences. Simulations show this range to be approximately
±1.3◦. The value of 𝛼 is dominated by the number of events used in the
simulation and the coincidence-detection efficiency. The 𝛽 coefficient
is 0.9557(27) and the 𝛾 coefficient is 0.8498(54), indicating stronger
attenuation of the 𝑃4 component than the 𝑃2 component. This larger
attenuation is consistent with the idea that finite detector effects which
‘‘smear’’ out a distribution will have more impact on components that
change more rapidly as a function of the opening angle. The coefficients
from these fits, as well as similar fits to the other four cascades are shown
in Table 5.

Using the fitted 𝛽 and 𝛾 coefficients and their respective uncertain-
ties, an algebraic approximation can be made between the bare angular
correlation coefficients 𝑐𝓁 that result from a direct fit of Eq. (3) to the
experimental data and the physically meaningful 𝑎𝓁 parameters. The
sum function can be re-expressed as

sum ≈ (1 − 𝑎2 − 𝑎4)0 + 𝑎22 + 𝑎44. (23)

Fig. 7. Set of simulations produced which characterize the  distributions described by
Eqs. (20)–(22). (a) The 0 distribution and fit. (b) The 2 distribution and fit. (c) The 4
distribution and fit.

Table 5
Coefficient values for the algebraic approximations (Eqs. (20)–(22)) of the  distributions
fitted as part of Method 3. The uncertainties in the 𝛽 and 𝛾 coefficients have been inflated
during the fitting procedure as described in the text.

Nucleus 𝛽 𝛾
60Ni 0.9568(27) 0.8450(52)
152Gd 0.9540(30) 0.8424(69)
66Zn, 1+ 0.9567(25) 0.8542(47)
66Zn, 0+ 0.9557(27) 0.8498(54)
66Zn, 2+ 0.9563(30) 0.8472(56)
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Table 6
Results from the use of Method 3 to fit the data. The 𝑎2, 𝑎4 values and 𝐽𝑖, 𝛿 values were determined independently, as described in the text. See Table 2 for details of the literature values
and Appendix for level schemes.

Nucleus 𝑎2,𝑓 𝑖𝑡 𝑎2,𝑙𝑖𝑡. 𝑎4,𝑓 𝑖𝑡 𝑎4,𝑙𝑖𝑡. 𝐽𝑖,𝑓 𝑖𝑡 𝐽𝑖,𝑙𝑖𝑡. 𝛿𝑓𝑖𝑡 𝛿𝑙𝑖𝑡.
60Ni 0.102(2) 0.1005(13) 0.008(2) 0.0094(3) 4 4 −0.001(3) −0.0025(22)

2 0.191(3)
152Gd −0.068(3) −0.0691(47) 0.003(4) 0.00000 3 3 0.004(3) 0.003(6)

4 3.32(6)
66Zn, 1+ −0.155(6) −0.147(35) −0.001(6) −0.0061+0.0034

−0.0047 1 1 −0.082(4) −0.09(3)
−0.112(23) −0.0108+0.0033

−0.0038 1 −0.12(2)
3 −0.108(5)
4 5.78(19)

66Zn, 0+ 0.33(4) 0.357 1.16(4) 1.143 0 0 – –
66Zn, 2+ 0.272(12) 0.30+0.05

−0.04 0.257(12) 0.256+0.015
−0.021 2 2 −2.07(5) −1.9(3)

0.34+0.04−0.03 0.23(2) 2 −1.6(2)

Table 7
The value of the parameters representing the best fit of Eqs. (28) and (29) to the data and
errors presented in Table A.11. The uncertainties are derived from the error matrix of the
fit and are given at the 1𝜎 level.

𝛽 surface fit 𝛾 surface fit

𝐸0 30.0(7) 42.23(18)
𝐴 0.058(3) 0.0953(12)
𝐵 0.0199(7) 0.0296(7)
𝐶 0.89(2) 0.787(8)
𝜆𝑠 0.093(4) 0.131(2)
𝑘 0.035(2) 0.0069(3)
𝜆𝑒 0.67(4) 0.83(3)

The sum can also be approximated as

sum ≈ 𝑁[1 + 𝑐2𝑃2 + 𝑐4𝑃4] (24)

where 𝑐2 and 𝑐4 are bare angular correlation coefficients (a fit of Eq. (3)
to the experimental data) and 𝑁 is an overall scaling factor. In compar-
ing Eqs. (23) and (24), and incorporating Eqs. (20)–(22), the 𝑐2 and 𝑐4
coefficients can be expressed as functions of the physically relevant 𝑎2
and 𝑎4 coefficients as:

𝑐2 = 𝛽𝑎2 (25)

𝑐4 = 𝛾𝑎4 (26)

Comparing this to previous methods of simply calculating attenu-
ation coefficients 𝑄𝓁𝓁 for a particular detector geometry, we see that
𝛽 = 𝑄22 and 𝛾 = 𝑄44. The complex geometry of the individual
GRIFFIN crystals (co-axial HPGe crystals tapered on two sizes) and
their various relative orientations (which is different for each angular
group) discourages a global direct calculation, but a comparison to
a calculation with a simplified, approximate geometry can increase
confidence in this method. A calculation of the attenuation coefficients
𝑄22 and 𝑄44 following the procedures of Refs. [4,5], and assuming
axially-symmetric co-axial HPGe crystals, produces energy-dependent
coefficients for coincidence energies ranging from 68–5000 keV of
𝑄22 = 0.923 − 0.941 and 𝑄44 = 0.761 − 0.814. The values for the 𝛽 and 𝛾
coefficients in Table 5 are within these ranges but can vary by as much
as 5% when comparing the coefficients calculated for specific energies
to those determined in this work.

Fitting Eq. (24) (as a continuous function) to the data allows the
extraction of the 𝑐2 and 𝑐4 parameters which can then be related
algebraically to 𝑎2 and 𝑎4. The error propagation for 𝑎2 and 𝑎4 must
incorporate the errors in the 𝛽 and 𝛾 coefficients as well as any
covariance between 𝑐2 and 𝑐4 found in the fit of Eq. (24). Using standard
error propagation techniques, the final covariance matrix for 𝑎2 and 𝑎4
is:
[

𝛽−4𝑐22𝑣𝛽 + 𝛽−2𝑣𝑐2 (𝛽𝛾)−1 𝑣𝑐2 ,𝑐4
(𝛽𝛾)−1 𝑣𝑐4 ,𝑐2 𝛾−4𝑐24𝑣𝛾 + 𝛾−2𝑣𝑐4

]

(27)

where 𝑣𝛽 , 𝑣𝛾 , 𝑣𝑐2 , and 𝑣𝑐4 are the variances of 𝛽, 𝛾, 𝑐2, and 𝑐4, respec-
tively, and 𝑣𝑐2 ,𝑐4 = 𝑣𝑐4 ,𝑐2 is the covariance between 𝑐2 and 𝑐4 [26]. The

coefficients extracted from a fit to the 66Zn 2+ – 2+ – 0+ experimental
data are 𝑎2 = 0.272(12) and 𝑎4 = 0.257(12). These compare well to
the coefficients from the previous Method 2 of 𝑎2 = 0.272(7) and
𝑎4 = 0.258(10). Some information is lost in this approximation and the
results show a modest reduction in precision. Similar 𝑎2 and 𝑎4 values
extracted from fits to other cascades are shown in Table 6.

Similarly to the previous methods, this approach can again be used
to extract possible 𝐽𝑖 and 𝛿 values. In this case, a particular 𝐽𝑖 and 𝛿
value are used to calculate 𝑎2 and 𝑎4 coefficients, which are then used
to calculate 𝑐2 and 𝑐4 coefficients that specify a particular polynomial
that can be fit to the data. At each point, uncertainty from the data is
added in quadrature with an uncertainty from the theory, propagated
from uncertainties in the 𝛽 and 𝛾 coefficients. The goodness-of-fit metric
𝜒2/NDF is then extracted and minimized, producing a figure that is
essentially identical to Fig. 6. The minimum 𝜒2 for the 2+ – 2+ –
0+ cascade in 66Zn is identified with an initial state of 𝐽𝑖 = 2 and
𝛿 = −2.07(5). All other spins are again rejected by this analysis. For
comparison, the mixing ratio extracted by Method 1 was −2.08(4) and
the mixing ratio extracted by Method 2 was −2.07(4). The results of these
fits are shown in Table 6.

4.4. Method 4: Parameterization of the 𝛾-ray-energy dependence

The 𝛽 and 𝛾 parameters found using the previous section exhibit
a relatively smooth dependence on the two transition energies. This
is hinted at by the values in Table 5. In a 𝛾–𝛾 cascade, the energy
dependence for each of the 𝛽 and 𝛾 coefficients is given by the product of
two factors, each describing the energy dependence of the experimental
detector setup [4] for the energies involved in the cascade. If the
evolution of the 𝛽 and 𝛾 coefficients as a function of the cascade 𝛾-
ray energies can be characterized, then there is no need to perform
separate simulations for cascades involving different energies. In order
to explore this behavior, the  distributions defined in Eqs. (15)–(17)
were simulated for a series of cascades involving a range of energy
pairs

(

𝐸1, 𝐸2
)

. Values of the 𝛽 and 𝛾 coefficients, and their associated
uncertainties were determined following a global fit of Eqs. (20)–(22) to
the  distributions and are given in Table A.11. The energy dependence
is easily seen in Fig. 8, which shows simulated points with 𝐸1 = 68 keV
and varying 𝐸2. A sharp transition is seen around 𝐸2 ≈ 30–40 keV for
both 𝛽 and 𝛾, and at larger energies, both values level off.

These sets of
(

𝐸1, 𝐸2, 𝛽
)

and
(

𝐸1, 𝐸2, 𝛾
)

points define two surfaces.
The energy dependence of the attenuation coefficients was assumed to
be identical regardless of order in the cascade, and the surfaces were fit
using the product of two one-dimensional functions

𝑓 (𝐸1, 𝐸2) = 𝑔(𝐸1) × 𝑔(𝐸2), (28)

where the function 𝑔(𝐸) describes the contribution to the attenuation
from a 𝛾 ray of energy 𝐸 and is given by

𝑔(𝐸) = 𝐴 × 1
1 + 𝑒−𝜆𝑠(𝐸−𝐸0)

+ 𝐵 × arctan
(

[

𝑘(𝐸 − 𝐸0)
]𝜆𝑡

)

+ 𝐶. (29)
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Fig. 8. 𝛽 and 𝛾 coefficients as a function of the 𝛾-ray energy of one transition for cascades
with the other transition at 68 keV. The red band indicates the projection of Eqs. (28)–(29)
and the confidence interval at these energies. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

It should be noted that this fitting function does not have a direct
physical interpretation, rather, it was chosen to fit the data and satisfy
the requirement that it has well-defined limiting behavior when the 𝛾-
ray energy is very small or very large. The parameter 𝐸0 is the point
at which the sigmoidal portion of Eq. (29) reaches half its maximum
amplitude, the parameters 𝐴 and 𝐵 scale the two functions which define
the shape of the surface and the parameter 𝐶 is a constant offset. The
steepness of the rise and overall shape of the surface are controlled by
the rate constant 𝜆𝑠, the multiplicative constant 𝑘 and the exponent 𝜆𝑡.
All parameters were free to vary during the fit.

Best-fit surfaces of the 𝛽 and 𝛾 coefficients to the data in Table A.11
are shown in Fig. 9. The fitted coefficients are presented in Table 7.
Method-4-measured uncertainties on the 𝛽 and 𝛾 coefficients at the
1𝜎 level for a given (𝐸1, 𝐸2) pair are determined from the 68.3%

Fig. 9. Behavior of the 𝛽 and 𝛾 coefficients as a function of the two 𝛾-ray energies involved
in the cascade.

confidence interval of the best-fit surface given by Eq. (28), which is
calculated using standard techniques available under the ROOT data
analysis framework [27]. One-dimensional projections of simulated 𝛽
and 𝛾 coefficient values with 𝐸1 = 68 keV are shown in Fig. 8. Fig. 8
shows projections of the fit to Eq. (28) along with projections of the
corresponding confidence intervals when 𝐸1 = 68 keV.

Angular correlation coefficients 𝑎2 and 𝑎4 as well as mixing ratios
𝛿 for Method 4 are determined using the same error propagation
procedure described for Method 3 in Section 4.3. Examples for the
cascades in 66Zn, 152Gd, 60Ni are included in Appendix. The results
generated using Method 4 are presented in Table 8.

4.5. Discussion of the methods

In this article four methods are presented for the correction of the
attenuation effects of finite detector size in order to extract accurate

Table 8
Results from the use of Method 4 to fit the data. The 𝑎2, 𝑎4 values and 𝐽𝑖, 𝛿 values were determined independently, as described in the text. See Table 2 for details of the literature values
and Appendix for level schemes.

Nucleus 𝑎2,𝑓 𝑖𝑡 𝑎2,𝑙𝑖𝑡. 𝑎4,𝑓 𝑖𝑡 𝑎4,𝑙𝑖𝑡. 𝐽𝑖,𝑓 𝑖𝑡 𝐽𝑖,𝑙𝑖𝑡. 𝛿𝑓𝑖𝑡 𝛿𝑙𝑖𝑡.
60Ni 0.102(2) 0.1005(13) 0.008(2) 0.0094(3) 4 4 −0.001(3) −0.0025(22)

2 0.191(3)
152Gd −0.069(3) −0.0691(47) 0.003(4) 0.00000 3 3 0.004(3) 0.003(6)

4 3.34(6)
66Zn, 1+ −0.155(6) −0.147(35) −0.001(6) −0.0061+0.0034

−0.0047 1 1 −0.083(4) −0.09(3)
−0.112(23) −0.0108+0.0033

−0.0038 1 −0.12(2)
3 −0.107(5)
4 5.78(19)

66Zn, 0+ 0.33(4) 0.357 1.16(4) 1.143 0 0 – –
66Zn, 2+ 0.271(12) 0.30+0.05

−0.04 0.256(12) 0.256+0.015
−0.021 2 2 −2.07(5) −1.9(3)

0.34+0.04−0.03 0.23(2) 2 −1.6(2)
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Table 9
Comparison of the angular correlation coefficients (𝑎2 , 𝑎4) and multipole mixing ratios (𝛿) for the initial to intermediate transitions determined with the four methods presented in this
work.

60Ni 152Gd 66Zn, 1+ 66Zn, 0+ 66Zn, 2+

𝑎2 Literature: 0.1005(13) −0.0691(47) −0.147(35) 0.357 0.30+0.05
−0.04

−0.112(23) 0.34+0.04
−0.03

Method 1:a1 0.1002(13) −0.069(2) −0.156(3) 0.271(6)
Method 2: 0.101(1) −0.068(3) −0.156(4) 0.33(3) 0.272(7)
Method 3: 0.102(2) −0.068(3) −0.155(6) 0.33(4) 0.272(12)
Method 4: 0.102(2) −0.069(3) −0.155(6) 0.33(4) 0.271(12)
Raw fit: 0.097(1) −0.057(2) −0.148(4) 0.31(3) 0.260(8)

𝑎4 Literature: 0.0094(3) 0 −0.0061+0.0034
−0.0047 1.143 0.256+0.015

−0.021
−0.0108+0.0033

−0.0038 0.23(2)
Method 1:a2 0.0094(2) 0.000(0) −0.0051(3) 0.265(2)
Method 2: 0.008(2) 0.002(3) −0.003(5) 1.16(4) 0.258(10)
Method 3: 0.008(2) 0.003(4) −0.001(6) 1.16(4) 0.257(12)
Method 4: 0.008(2) 0.003(4) −0.001(6) 1.16(4) 0.256(12)
Raw fit: 0.007(2) 0.003(3) −0.001(5) 0.98(3) 0.218(10)

𝛿 Literature: −0.0025(22) 0.003(6) −0.09(3) – −1.9(3)
−0.12(2) – −1.6(2)

Method 1: −0.0019(22) 0.0032(23) −0.0822(24) – −2.078(42)
Method 2: −0.0015(23) 0.0036(23) −0.0819(27) – −2.073(39)
Method 3: −0.0013(28) 0.0038(27) −0.0828(36) – −2.072(46)
Method 4: −0.0023(28) 0.0039(27) −0.0828(36) – −2.073(46)
Raw fit: −0.0071(27) 0.0161(25) −0.0884(24) – −2.113(44)

a1,2 The values of the 𝑎2 and 𝑎4 coefficients are not measured directly in Method 1 but can be calculated by propagating the experimentally measured value and uncertainty for the mixing
ratio, 𝛿.

𝛾 − 𝛾 angular correlation coefficients. The full 51 unique angles avail-
able in the geometry of the spectrometer are utilized without further
grouping, binning or folding. In all methods the experimental data is
first processed with an event-mixing technique (Section 3) to correct for
any detector-, 𝛾-ray-energy-, and time-dependent efficiency variations
between individual crystals in the array. The angular correlation coef-
ficients and multipole mixing ratio determined using each method for
five cascades are compared in Table 9.

The first method (Method 1, Section 4.1) involves comparing the
experimental data to a series of simulated templates representing differ-
ent spin and mixing ratio combinations for that particular 𝛾 − 𝛾 cascade.
The simulation of the experimental setup captures all the effects that
act to attenuate the experimental angular correlation with respect to
the theoretical angular correlation.

This is in many respects a brute-force approach and up to forty
simulation templates may be needed to assign the spin and identify the
best-fit mixing ratio of a transition if the spins in the cascade are not
known ahead of time. Typically, a minimum of fifteen templates are
required if the spins are already known.

In the second method (Method 2, Section 4.2) the evolution of the
attenuation effects across all possible values of the angular distribution
coefficients (𝑎2, 𝑎4) is reproduced for a particular 𝛾 − 𝛾 cascade with
a linear combination of three independent simulations. This linear
combination is then fitted to the experimental data. In this method only
three simulations are required for each 𝛾−𝛾 cascade, one for each of the
0, 2 and 4 distributions (Eqs. (15)—(17)). This dramatically reduces
the computational investment required for making each measurement
without sacrificing precision. A distinct set of simulations must be
generated for each particular combination of 𝛾-ray energies or for a
different experimental setup as the evolution of the effects due to these
factors is not yet taken into account.

In the third method (Method 3, Section 4.3) an algebraic approxima-
tion is developed such that this evolution is algebraically parameterized
across all possible values of the angular distribution coefficients for a
particular 𝛾 − 𝛾 cascade. In practice this method is very close to the
procedure of Method 2 but each -distribution simulation is replaced
with an algebraic approximation using 𝛼, 𝛽, 𝛾 parameters. This approx-
imation ignores some of the detailed geometric effects on attenuation
and introduces a modest reduction in the precision of the results but is
an essential step in the development of Method 4.

Fig. 10. A comparison of minimized 𝑎2 and 𝑎4 values extracted from fitting the 66Zn
0+ − 2+ − 0+ data with methods described in the paper. The expected 𝑎2 and 𝑎4 values
are indicated by the star. Minimized 𝑎2, 𝑎4 values and 1𝜎 confidence intervals are shown
for a bare fit of Eq. (3) (filled square, green dotted ellipse), Method 2 (open triangle, red
solid ellipse), Method 3 (open diamond, blue dashed ellipse), and Method 4 (open square,
purple dot-dashed ellipse).

A fourth method (Method 4, Section 4.4) is to further parameterize
the behavior of the coefficients of the algebraic approximation (𝛽 and 𝛾)
as a function of the two 𝛾-ray energies. Once this dependence is known,
no further simulations are required for additional angular correlation
measurements made with the same experimental setup. This allows
simple corrections to be applied to the bare coefficients obtained from
fitting the experimental data with Eq. (3) in order to convert them
directly to the true unattenuated angular distribution coefficients for
comparison with theory.

Fig. 10 compares the extraction of 𝑎2 and 𝑎4 using Methods 2, 3,
and 4 with a naive fit of the data and the literature value for the 66Zn
0+ − 2+ − 0+ cascade. For this set of spins, both transitions are pure 𝐸2
multipolarity (both mixing ratios must be zero) and thus angular cor-
relation coefficients are well-defined. The bare fit (filled square, green
dotted error ellipse) is significantly different from the theoretical value
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Table 10
Comparison of the computational investment required to measure five multipole mixing
ratios in five 𝛾 − 𝛾 cascades of known spins. Each individual GEANT4 simulation requires
45 CPU days to complete. Values with an asterisk are required only to initially characterize
the energy-dependence of a particular experimental setup but require no simulations for
subsequent measurements.

Method Number of Computational time
simulations (CPU days)

1 75 3375
2 15 675
4 72* 3240*

(filled star). All other methods used here are a significant improvement
in the accuracy of the angular correlation coefficients. All methods 2,
3 and 4 (open triangle with the red solid error ellipse, open diamond
with the blue dashed error ellipse and open square with the purple dot-
dashed error ellipse, respectively) agree within 1𝜎 with the theoretical
value. Similar figures for the 152Gd, 60Ni, and other 66Zn cascades are
included in Appendix and Table 9 shows a comparison of 𝑎2, 𝑎4 values
for all methods.

The results for the mixing ratios shown in Table 9 indicate that
Methods 1–4 produce results which are consistent with the literature
values. In contrast, bare fits of the data produce mixing ratios that
are inconsistent with the literature values for 3 out of the 4 cascades
measured (Table 9). Without accounting for the finite detector size
attenuation effects on the angular correlation, the allowed spins may
also be susceptible in some cases to having an incorrect assignment.

The computational effort required for each method is significantly
different. As an example, we consider a GRIFFIN experiment to measure
five multipole mixing ratios in five 𝛾 − 𝛾 cascades where all spins are
known. A comparison between the methods is made in Table 10. Method
1 requires a very large amount of computations as it is necessary to run
at least 15 simulations for each 𝛾 − 𝛾 cascade. Methods 2 and 3 both
require 3 simulations per 𝛾−𝛾 cascade. Method 4 requires an initial set of
simulations (in this work 72 were used) to be made to map the evolution
of the attenuation effects as a function of 𝛾-ray energy. However, once
this is completed for a given experimental setup, it is not necessary
to perform further simulations for future measurements with the same
setup. Finally, here we have truncated Eq. (2) after the 𝑎4 coefficient,
but cascades with higher intermediate spins will need to retain more
coefficients. In general, one will need to retain coefficients up to order
2𝐽𝑥 where 𝐽𝑥 is the spin of the intermediate state. These additional terms
will linearly increase the number of simulations needed for Methods 2
and 4, but not Method 1.

5. Summary

In this work a series of methods are presented for the extraction
of physical coefficients from 𝛾 − 𝛾 angular correlation data making
use of the full granularity and angular coverage of the GRIFFIN spec-
trometer. The use of event-mixed histograms allows for the systematic
elimination of time- and energy-dependent relative efficiency variations
between individual detectors. Using a Monte Carlo simulation within
the GEANT4 framework, a set of three simulated  distributions can be
used to correct for the finite detector size effects on an arbitrary angular
correlation. The best-fit values of 𝑎2, 𝑎4, as well as spins and mixing
ratios, can be extracted by fitting a linear combination of these simulated
distributions. By ignoring detailed geometric attenuation effect, an
algebraic approximation of the  distributions can be used to extract
the same quantities. Finally, by characterizing the 𝛽 and 𝛾 parameters
for a particular experimental setup but a wide range of energies, future
measurements with the same setup require no additional simulations to
extract the same quantities, with only slight reductions in accuracy and
precision.

Future work will expand the application of these techniques. The
event-mixing strategy can be (and has been) applied to other types

Table A.11
Results from the fitting of simulated  distributions covering a wide range of 𝛾−𝛾 cascade
energies. The uncertainties in the 𝛽 and 𝛾 coefficients are given at the statistical 1𝜎 level.
𝐸𝛾 − 𝐸𝛾 𝛽 𝛾

68–20 0.87521(96) 0.7114(12)
68–30 0.88712(33) 0.70514(43)
68–40 0.90844(26) 0.73539(34)
68–50 0.92580(25) 0.78237(32)
75–68 0.93205(24) 0.78644(31)
90–68 0.93431(24) 0.78880(31)
100–20 0.87911(95) 0.7197(12)
100–68 0.93733(24) 0.79610(32)
120–68 0.93678(24) 0.79468(31)
135–68 0.93742(24) 0.79568(32)
150–68 0.93805(25) 0.79775(32)
200–68 0.94029(26) 0.80128(34)
300–68 0.94340(29) 0.81066(37)
500–68 0.94196(33) 0.80930(43)
779–68 0.94486(38) 0.81714(50)
779–344 0.95396(47) 0.84243(61)
1039–833 0.95627(65) 0.84723(85)
1332–1172 0.95684(76) 0.84949(99)
1333–1039 0.95571(74) 0.84976(96)
2752–68 0.94535(57) 0.82352(74)
2752–1039 0.95666(95) 0.8542(12)
2752–2013 0.9584(12) 0.8557(15)
5000–68 0.94742(76) 0.82441(99)
5000–1039 0.9578(13) 0.8567(17)
5000–4990 0.9584(23) 0.8607(30)

of measurements at other facilities, though care should first be taken
to confirm its functionality in new applications (i.e. different data
acquisition triggers, different initial nuclear alignment). Angular corre-
lations can be constructed with data in different ways such as using the
‘‘addback’’ of 𝛾 rays that Compton scatter from one crystal to another
in the same clover, having the angular correlation folded about the
symmetric axis at 𝜃 = 90◦, or having similar angles grouped together
in order to improve the statistics within a single angular bin. Initial
tests have shown that the methods discussed in this article will be
applicable in all of these situations, with appropriate modification of
the simulated distributions. The extension of these methods to utilize
Maximum Likelihood approaches for the treatment of low-statistics
experimental datasets will also be considered.

Finally, it is worth reiterating that the methods presented in this
work are not specific to the GRIFFIN spectrometer but can be applied
to any complex detector array for which a detailed GEANT4 simulation
has been developed.
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Appendix. Additional examples

Examples illustrating and comparing the results obtained with the
different analysis methods presented in the main text are provided
here (Figs. A.11–A.20). Experimental details of the cascades can be
found in Table 2. Also provided are the results from fitting simulated 
distributions for a wide range of energies used for the parameterization
of Method 4 (Table A.11).
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Fig. A.11. Plots for the 66Zn 0+ − 2+ − 0+ 1333.1 keV–1039.2 keV cascade. (a) The best Method 2 fit of the 66Zn 0+ − 2+ − 0+ cascade (red filled line) and data (black points) has a
𝜒2/NDF of 0.98 and minimizes with 𝑎2 = 0.33(3) and 𝑎4 = 1.16(4). The residual of the fit is shown in the lower panel. (b) The best Method 3 fit of the 66Zn 0+ −2+ −0+ cascade (blue line)
and data (black points) has a 𝜒2/NDF of 1.05 and minimizes with 𝑎2 = 0.33(4) and 𝑎4 = 1.16(4). The residual of the fit is shown in the lower panel. (c) A comparison of 𝜒2/NDF values
for potential 𝐽𝑖 = 0 − 4 and all possible mixing ratios (𝛿) shows that the best fit to the 66Zn 0+ − 2+ − 0+ data using Method 2 is made with 𝐽 = 0. (d) A comparison of 𝜒2/NDF values for
potential 𝐽𝑖 = 0− 4 and all possible mixing ratios (𝛿) shows that the best fit to the 66Zn 0+ −2+ −0+ data using Method 4 is made with 𝐽 = 0. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

Fig. A.12. Plots for the 66Zn 0+ − 2+ − 0+ 1333.1 keV–1039.2 keV cascade. (a) The best Method 1 fit (magenta filled line) to the data (black points) has a 𝜒2/NDF=1.01. (b) A partial
level scheme showing the experimental details of this cascade. (c) A bare fit of Equation ?? to the data (green line) minimizes with 𝑎2=0.31(3) and 𝑎4=0.98(3). (d) A comparison of
minimized 𝑎2 and 𝑎4 values extracted from fitting the 66Zn 0+ − 2+ − 0+ data with methods described in the paper. The expected 𝑎2 and 𝑎4 values are indicated by the star. Minimized 𝑎2,
𝑎4 values and 1𝜎 confidence intervals are shown for a bare fit of Equation ?? (filled square, green dotted ellipse), Method 2 (open triangle, red solid ellipse), Method 3 (open diamond,
blue dashed ellipse), and Method 4 (open triangle, purple dot-dashed ellipse).. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)
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Fig. A.13. Plots for the 66Zn 1+ − 2+ − 0+ 2751.8 keV–1039.2 keV cascade. (a) The best Method 2 fit (red filled line) to the data (black points) has a 𝜒2/NDF of 1.18 and minimizes with
𝑎2 = −0.156(4) and 𝑎4 = −0.003(5). The residual of the fit is shown in the lower panel. (b) The best Method 3 fit (blue line) to the data (black points) has a 𝜒2/NDF of 1.01 and minimizes
with 𝑎2 = −0.156(5) and 𝑎4 = 0.002(5). The residual of the fit is shown in the lower panel. (c) A comparison of 𝜒2/NDF values for potential 𝐽𝑖 = 0 − 4 and all possible mixing ratios (𝛿)
shows that the best fit to the data using Method 2 is made with 𝐽 = 1,3 and 4 with 𝛿 of −0.082(3), -0.108(4) and 5.76(14), respectively. (d) A comparison of 𝜒2/NDF values for potential
𝐽𝑖 = 0 − 4 and all possible mixing ratios (𝛿) shows that the best fit to the data using Method 4 is made with 𝐽 = 1,3 and 4 with 𝛿 of −0.083(4), -0.107(5) and 5.78(19), respectively. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. A.14. Plots for the 66Zn 1+ − 2+ − 0+ 2751.8 keV–1039.2 keV cascade. (a) The best Method 1 fit (magenta filled line) to the data (black points) has a 𝜒2/NDF=1.06. The residual of
the fit is shown in the lower panel. (b) A partial level scheme showing the experimental details of this cascade. (c) A bare fit of Eq. (3) to the data (green line) minimizes with 𝑎2=-0.148(4)
and 𝑎4=-0.001(5). (d) A comparison of minimized 𝑎2 and 𝑎4 values and 1𝜎 error fitted to the data with methods described in the paper. The expected 𝑎2 and 𝑎4 values are indicated by
the star, with the black line representing values within the 𝛿 uncertainty. Minimized 𝑎2, 𝑎4 values and 1𝜎 confidence intervals are shown for a bare fit of Eq. (3) (filled square, green
dotted ellipse), Method 2 (open triangle, red solid ellipse), Method 3 (open diamond, blue dashed ellipse), and Method 4 (open square, purple dot-dashed ellipse). (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. A.15. Plots for the 66Zn 2+ − 2+ − 0+ 833.5 keV–1039.2 keV cascade. (a) The best Method 2 fit (red filled line) to the data (black points) has a 𝜒2/NDF of 0.97 and minimizes with
𝑎2 = 0.272(7) and 𝑎4 = 0.258(10). The residual of the fit is shown in the lower panel. (b) The best Method 3 fit (blue line) to the data (black points) has a 𝜒2/NDF of 1.00 and minimizes
with 𝑎2 = 0.272(10) and 𝑎4 = 0.258(10). The residual of the fit is shown in the lower panel. (c) A comparison of 𝜒2/NDF values for potential 𝐽𝑖 = 0 − 4 and all possible mixing ratios (𝛿)
shows that the best fit to the data using Method 2 is made with 𝐽 = 2 with 𝛿 = −2.07(4). (d) A comparison of 𝜒2/NDF values for potential 𝐽𝑖 = 0 − 4 and all possible mixing ratios (𝛿)
shows that the best fit to the data using Method 4 is made with 𝐽 = 2 with 𝛿 = −2.07(5). (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

Fig. A.16. Plots for the 66Zn 2+−2+−0+ 833.5 keV–1039.2 keV cascade. (a) The best Method 1 fit (magenta filled line) to the data (black points) has a 𝜒2/NDF=0.98. The residual of the
fit is shown in the lower panel. (b) A partial level scheme showing the experimental details of this cascade. (c) A bare fit of Eq. (3) to the data (green line) minimizes with 𝑎2=0.260(8)
and 𝑎4=0.218(10). (d) A comparison of minimized 𝑎2 and 𝑎4 values and 1𝜎 error fitted to the data with methods described in the paper. The expected 𝑎2 and 𝑎4 values are indicated by
the star, with the black line representing values within the 𝛿 uncertainty. Minimized 𝑎2, 𝑎4 values and 1𝜎 confidence intervals are shown for a bare fit of Eq. (3) (filled square, green
dotted ellipse), Method 2 (open triangle, red solid ellipse), Method 3 (open diamond, blue dashed ellipse), and Method 4 (open square, purple dot-dashed ellipse). (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. A.17. Plots for the 152Gd 3− − 2+ − 0+ 778.9 keV–344.3 keV cascade. (a) The best Method 2 fit (red filled line) to the data (black points) has a 𝜒2/NDF of 1.06 and minimizes with
𝑎2 = −0.068(3) and 𝑎4 = −0.002(3). The residual of the fit is shown in the lower panel. (b) The best Method 3 fit (blue line) to the data (black points) has a 𝜒2/NDF of 1.04 and minimizes
with 𝑎2 = −0.068(3) and 𝑎4 = 0.003(4). The residual of the fit is shown in the lower panel. (c) A comparison of 𝜒2/NDF values for potential 𝐽𝑖 = 0 − 4 and all possible mixing ratios (𝛿)
shows that the best fit to the data using Method 2 is made with 𝐽 = 1 with 𝛿 = 0.004(2). (d) A comparison of 𝜒2/NDF values for potential 𝐽𝑖 = 0 − 4 and all possible mixing ratios (𝛿)
shows that the best fit to the data using Method 4 is made with 𝐽 = 3 with 𝛿 = 0.004(3). (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

Fig. A.18. Plots for the 152Gd 3− −2+ −0+ 778.9 keV–344.3 keV cascade. (a) The best Method 1 fit (magenta filled line) to the data (black points) has a 𝜒2/NDF=1.06. The residual of the
fit is shown in the lower panel. (b) A partial level scheme showing the experimental details of this cascade. (c) A bare fit of Eq. (3) to the data (green line) minimizes with 𝑎2=-0.057(2)
and 𝑎4=0.003(3). (d) A comparison of minimized 𝑎2 and 𝑎4 values and 1𝜎 error fitted to the data with methods described in the paper. The expected 𝑎2 and 𝑎4 values are indicated by
the star, with the black line representing values within the 𝛿 uncertainty. Minimized 𝑎2, 𝑎4 values and 1𝜎 confidence intervals are shown for a bare fit of Eq. (3) (filled square, green
dotted ellipse), Method 2 (open triangle, red solid ellipse), Method 3 (open diamond, blue dashed ellipse), and Method 4 (open square, purple dot-dashed ellipse). (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. A.19. Plots for the 60Ni 4+ − 2+ − 0+ 1332 keV–1173 keV cascade. (a) The best Method 2 fit (red filled line) to the data (black points) has a 𝜒2/NDF of 1.03 and minimizes with
𝑎2 = 0.101(1) and 𝑎4 = 0.008(2). The residual of the fit is shown in the lower panel. (b) The best Method 3 fit (blue line) of the data (black points) has a 𝜒2/NDF of 1.05 and minimizes
with 𝑎2 = 0.102(2) and 𝑎4 = 0.008(2). The residual of the fit is shown in the lower panel. (c) A comparison of 𝜒2/NDF values for potential 𝐽𝑖 = 0 − 4 and all possible mixing ratios (𝛿)
shows that the best fit to the data using Method 2 is made with 𝐽 = 2,4 with 𝛿 = 0.192(2) and -0.002(2), respectively. (d) A comparison of 𝜒2/NDF values for potential 𝐽𝑖 = 0 − 4 and all
possible mixing ratios (𝛿) shows that the best fit to the data using Method 4 is made with 𝐽 = 2,4 with 𝛿 = 0.191(3) and -0.001(3), respectively. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

Fig. A.20. Plots for the 60Ni 4+ − 2+ − 0+ 1332 keV–1173 keV cascade. (a) The best Method 1 fit (magenta filled line) to the data (black points) has a 𝜒2/NDF=1.01. The residual of the
fit is shown in the lower panel. (b) A partial level scheme showing the experimental details of this cascade. (c) A bare fit of Eq. (3) to the data (green line) minimizes with 𝑎2=0.097(1)
and 𝑎4=0.007(2). (d) A comparison of minimized 𝑎2 and 𝑎4 values and 1𝜎 error fitted to the data with methods described in the paper. The expected 𝑎2 and 𝑎4 values are indicated by
the star, with the black line representing values within the 𝛿 uncertainty. Minimized 𝑎2, 𝑎4 values and 1𝜎 confidence intervals are shown for a bare fit of Eq. (3) (filled square, green
dotted ellipse), Method 2 (open triangle, red solid ellipse), Method 3 (open diamond, blue dashed ellipse), and Method 4 (open square, purple dot-dashed ellipse). (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)
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