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Abstract

The GEANT4 software was developed by RD44, a world-wide collaboration of national institutes, laboratories and

large High-Energy Physics experiments. GEANT4 is a public software package composed of tools which can be used to

accurately simulate the passage of particles through matter. In this article, the first attempt to use GEANT4 to model a

reverse electrode germanium detector (REGe), and to improve also its efficiency calibration procedure, is presented. A

variance reduction algorithm based on a directional bias scheme is implemented into GEANT4 in order to accelerate

the efficiency computations. A fast optimisation method to model the detector geometry using standard point sources is

also presented and validated for point, Marinelli and air filter sources. The simulated full-energy peak efficiencies

agreed with the measured values to within 1% between 36 and 1460 keV for these three counting geometries.

r 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The Monte Carlo code GEANT3 was first
developed in FORTRAN at CERN to simulate
the passage of particles through matter [1]. The
new GEANT4 project [2] came up in 1994 to
improve the existing GEANT3 program. The
design choice of GEANT4 was an object-oriented
methodology and C++ language in order to
provide modular and flexible software. The
onding author. Tel.: +34-954550928; fax: +34-

ddress: shurtado@us.es (S. Hurtado).

- see front matter r 2003 Elsevier B.V. All rights reserve

/j.nima.2003.09.057
comparison of the simulation results using
GEANT3 and GEANT4 electro-magnetic physics
processes demonstrates that, in general, they are
very close [3]. However, in some cases GEANT4 is
more adequate and its physics is extended beyond
GEANT3. In GEANT3 the secondary radiations
(X-rays and Auger electrons) following photo-
electric effect are not considered. Moreover,
another limitation of GEANT3 is that it does
not simulate a particle when its energy is less than
10 keV: This means, for instance, that Ge X-rays
escape cannot be processed and this is very
important for a rigorous g-spectrometry simula-
tion. GEANT4 can overcome all this difficulties
d.
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since it includes low-energy electro-magnetic pro-
cesses [4] down to 250 eV: For these reasons, we
decided to develop a simulation package of the
low-level gamma-ray spectrometer REGe pre-
sented in our laboratory using GEANT4 for the
first time.

GEANT4 is a toolkit which the user must
implement by himself. Indeed, to build a simula-
tion package the user must implement several
classes to describe the detector geometry (materials
used, detector sensitive components, etc.), the
primary particle generator (particle type, and
energy, position and direction distributions), the
relevant particles and physics processes. A firm
knowledge of object-oriented programming is
required to implement all these user classes and
to overload standard GEANT4 functionality.

In order to check the application of the
GEANT4 simulation package to low-level gam-
ma-ray spectrometry, we have calculated the
precise full-energy peak (f.e.p.) efficiency calibra-
tion of our detector. Experimental efficiency
calibration is a difficult and time-consuming
procedure for each specific geometry. To overcome
such problem, different non-experimental methods
are currently used, such as semi-empirical compu-
tation [5–8] or Monte Carlo simulation [9–14].
Semi-empirical methods are based mostly on the
principle described by Moens et al. [15]. These
semi-empirical methods are simple and fast, but
usually not accessible for public use. They are also
restricted to limited source–detector geometries
because they involve some approximations and
simplifications in their calculations [15,16].

Analog Monte Carlo methods are based in
determining f.e.p. efficiency by simulating all
relevant physical processes taking place along the
path of a photon emitted by the source. The
history of each individual primary particle consists
of its emission by the source, interaction with the
detector and surrounding materials, production as
well as transport of secondary particles, and track
until the photon escapes or undergoes a photo-
electric interaction in the crystal, depositing all of
its energy. Since no approximations are needed,
there is no limitation on the source–detector
configuration. The main disadvantage of these
analog Monte Carlo calculations is that a large
number of histories (> 105–106 primary photons)
must be simulated to obtain a statistical uncer-
tainty of less than 1%. Therefore, analog Monte
Carlo methods need long computing times. It is
thus desirable to introduce a variance reduction
technique to improve its computational efficiency
(non-analog Monte Carlo method) [5]. In this
paper we introduce a simple variance reduction
scheme based on directional bias. The goal of this
method is to simulate only primary photons that
are emitted from the sample in directions towards
the detector active volume.

Moreover, all Monte Carlo codes generally give
computed values that deviate significantly (> 10%)
from the experimental efficiency data, due to
uncertainties associated to the values of the
detector parameters supplied by manufacturer
and/or incomplete charge collection in the crystal.
The incomplete charge collection can be overcome
solving the Poisson differential equation for the
potential and the electric field inside the detector
crystal [17]. But this procedure does not comple-
tely match the experimental and simulated values
of the efficiency. Therefore we have to optimise
some detector parameters (i.e. crystal-to-window
distance and dead-layer thickness) since these are
usually not sufficiently accurate in the manufac-
turer’s specification [9,11,12,18]. In this paper a
well determined procedure is developed to obtain a
suitable set of optimised parameters in order to
calculate the f.e.p. efficiency of a Ge detector for
point, Marinelli beaker and air filter geometries.
2. Experimental data

2.1. Experimental arrangement

Measurements were performed with a Canberra
n-type Reverse electrode Germanium (ReGe)
detector, with a relative photo-peak efficiency of
30% at 1332 keV: The nominal dimensions sup-
plied by the manufacturer are in Table 1. A
radiography of the detector was taken and we
check that there was not any displacement of the
crystal from the axis of the housing. A lead shield
(10 cm thick regular lead) and an inner copper
layer ð5 mmÞ surround the detector to protect it
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Table 1

Detector dimensions as specified by the manufacturer and as

optimised by Monte Carlo simulations

Detector parameter Nominal

(mm)

Optimised

(mm)

Ge crystal-to-Be window

distance ðDÞ
5 7.4

Ge crystal radius ðRÞ 27 27

Ge crystal length ðLÞ 55 55

Ge front dead layer ðtf Þ 3� 10�4 3� 10�2

Hole radius ðrÞ 0.5 0.65

Hole inner dead layer ðthÞ 0.5 1.0

Hole length ðlÞ 41 41

Be window thickness ðwÞ 0.5 0.5
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against environmental radiation. The preamplified
signals from the detector are sent to a Canberra
Spectroscopy Amplifier model 2020 and an Can-
berra ADC model 8701 connected to an
AccuspecTM card. Gamma-ray peaks are analysed
with Genie2KTM using a gaussian peak with a step
background fit.

2.2. Experimental efficiency calibration

The detector was calibrated using standard
point and solution sources. These sources include
four isolated emission radionuclides (210Pb; 241Am;
137Cs and 40K) and two cascade emission radio-
nuclides (133Ba and 152Eu).

The efficiency e for a given photon energy is
obtained from:

e ¼
N

TAp
Ci ð1Þ

where N is the number of net counts in the peak, T

is the measuring time, A is the radionuclide
activity, p is the photon emission probability [19]
and Ci are corrections factors due to dead time,
radionuclide decay and coincidence-summing cor-
rections. The dead time never exceeded 1%, so the
corresponding correction factor was obtained
simply using ADC live time. The radionuclide
decay was also taken into account. The statistical
uncertainties of the net peak areas were smaller
than 0.5%, since the acquisition time was long
enough and background subtraction was negligi-
ble. Such values were below or close to the
corresponding uncertainties of the photon emis-
sion probabilities. The main source of uncertainty
in the relative efficiency calculation was the
uncertainties in the activities of the standard
solutions (see Section 2.3). Coincidence-summing
effects are negligible in the reference measuring
geometry [20] described below, and they are also
not present for the isolated emissions of the
standard sources used in the other measuring
geometries.

Once the efficiencies have been fixed by applying
the correction factors, the overall efficiency curve
is obtained by fitting the experimental points to a
polynomial logarithmic function of fourth order
using a non-linear least-squares fit. The non-linear
least-squares analysis has been performed by
Levenberg–Marquardt method using the covar-
iance matrix of the experimental data [21]. In that
manner, the correlation between data points from
the same calibrated source has been included to
avoid the overestimation of experimental efficiency
uncertainties.

2.3. Point sources

Calibration sources were obtained using standard
solutions that contain: 210Pb ð105:870:4 Bq=gÞ
and 241Am ð32971 Bq=gÞ supplied by CIEMAT
(Madrid, Spain); and 137Cs ð53:770:8 kBq=gÞ;
133Ba ð29:7470:44 kBq=gÞ and 152Eu ð54:67
1:1 kBq=gÞ supplied by DAMRI (France). Point
calibration sources (P) were obtained by pipetting
and drying a volume of standard solutions over
aluminium planchets. The 40K source were ob-
tained by packing 10 g: of KCl from Merck.

The reference geometry was a point-like source
measured at 15:9 cm source-to-detector window
distance to avoid coincidence-summing effect. In
order to adjust the detector parameters, the
efficiency is also experimentally determined with
the isolated emission point sources at 3:6 cm in
front of the detector window, and at a distance of
8:2 cm from the side of the detector. The experi-
mental efficiency points for reference geometry are
shown in Table 2. The corresponding reduced
chi-square value is 0.5 for a polynomial fit, and
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Table 2

Calculated efficiencies and relative deviation RD(%) between

the experimental and computed efficiencies for the point

geometry at the reference position

Energy

(keV)

eexp eMC RD(%) eoptMC RD(%)

36.3 0.570(20) 0.671(4) 17.2 0.572(3) 0.07

46 0.617(11) 0.650(3) 5.34 0.614(3) �0.45

59 0.632(8) 0.651(3) 2.88 0.635(3) 0.34

81 0.637(14) 0.637(3) �0.04 0.632(3) �0.87

121 0.583(11) 0.588(3) 0.83 0.585(3) 0.19

276 0.339(8) 0.349(3) 2.90 0.335(4) �1.57

356 0.264(5) 0.275(4) 4.17 0.264(4) �0.71

661 0.146(2) 0.157(4) 7.32 0.146(4) �0.40

778 0.126(3) 0.138(5) 9.04 0.127(5) 0.19

964 0.104(3) 0.115(6) 10.64 0.106(6) 1.4

1112 0.094(3) 0.103(7) 9.41 0.095(7) 1.2

1460 0.077(2) 0.0821(7) 7.56 0.0756(7) �0.80

Mean 6.45 0.68

RMS 0.40 0.04

eexp indicates the experimental values, eMC refers to the

calculated efficiencies with nominal parameters, and eoptMC is

for optimised geometry method. Mean and RMS error of the

absolutes values of the deviations for the whole energy range

are shown in the last two rows.

Table 3

Calculated efficiencies and relative deviation RD(%) between

the experimental and computed efficiencies for Marinelli beaker

and air filter

Energy

(keV)

eexp eMC RD(%) eoptMC RD(%)

Marinelli beaker

36.3 2.22(10) 2.835(7) 27.3 2.217(6) �0.47

46.56 3.077(53) 3.396(8) 10.4 3.106(6) 0.93

59.53 3.635(55) 3.837(8) 5.5 3.630(6) �0.15

661.6 1.081(9) 1.117(6) 3.44 1.069(6) �1.08

1460.8 0.560(8) 0.608(3) 8.5 0.565(3) 0.81

Mean 11.0 0.69

RMS 0.79 0.03

Air filter

36.3 4.11(17) 5.004(7) 21.6 4.050(5) �1.5

46.56 4.76(6) 5.683(8) 19.4 4.800(6) 0.88

59.53 5.22(9) 5.899(8) 13.0 5.233(6) 0.27

661.6 1.206(18) 1.359(6) 12.7 1.206(6) �0.02

1460.8 0.608(81) 0.708(3) 16.2 0.609(3) 0.13

Mean 16.6 0.56

RMS 0.33 0.05

eexp indicates the experimental values, eMC refers to the

calculated efficiencies with nominal parameters, and eoptMC is

for optimised geometry method. Mean and RMS error of the

absolutes values of the deviations for the whole energy range

are shown in the last two rows.
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the resulting uncertainties are around 0.94% at
60 keV; 0.56% from 100 to 500 keV; and 0.28%
between 500 and 1500 keV:

2.4. Volume sources

The experimental detector efficiency was also
determined for 1 litre Marinelli beaker containing
water (M), and for polyethylene air filter (F)
geometries. The Marinelli beaker source was
placed at a distance of 0:9 cm above the detector
window. The Marinelli beaker’s dimensions were
12:5 cm diameter and 15:4 cm height, the dimen-
sions of its inner holder being 7:9 cm diameter and
7:6 cm ring height. The polyethylene filter was
folded four times to make a rectangular paralle-
lepiped of approximate size 5:9� 5:9� 0:6 cm3;
and it was located at 1:1 cm above the detector
window. Both geometries set-ups were homoge-
neously spiked using the previous isolated emis-
sion standard solutions supplied by CIEMAT and
DAMRI (210Pb; 241Am; 137Cs and 40K), which
activity was determined by gravimetry. The
resulting experimental points are shown in
Table 3.
3. Monte Carlo simulation

In GEANT4, the following electro-magnetic
processes needed for gamma-ray spectrometry
are included: Compton scattering, photo-electric
effect, Rayleigh effect, pair production, multiple
scattering, fluorescence and Auger effect, brems-
strahlung and ionisation. In GEANT4 a new code
of electro-magnetic interaction for low energy has
been developed [4] and valid energy range is
extended to 250 eV: This enhancement is based
on the use of experimental data parameterisations
using the following databases developed by the
Lawrence Livermore National Laboratory:
EPDL97 (Evaluated Photon Data Library),
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EEDL (Evaluated Electron Data Library) and
EADL (Evaluated Atomic Data Library). This
low threshold, together with the physics processes
available, allows us to use GEANT4 for simulat-
ing the energy response of our ReGe detector.

3.1. Model of the detector

The detector set-up was firstly modelled
using the technical dimensions supplied by the
manufacturer (see Fig. 2). The detector structure
can be easily described to the simulation
program using a variety of geometrical elements
available in GEANT4. A series of cones and
zero
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3.2. Variance reduction method

An analog Monte Carlo (MC) simulation may
require an unacceptable long time to produce
statistically relevant results. It is thus desirable to
reduce the computing time by introducing a
variance reduction technique: directional bias
method. The source photon emission is isotropic
in analog MC simulations. Therefore the solid
angle of the detector acceptance is small due to the
size of the detector crystal itself. Only a few
percent of the photons generated and tracked in
analog MC simulations will actually be directly
detected, so the non-analog MC simulation only
generates photons that are emitted in the direction
towards the detector crystal. We have to point out
that this technique is only valid for f.e.p. efficiency
calculations. For this purpose, we have implemen-
ted in GEANT4 a simplified algorithm based in
Ref. [5] to be used in our simulation. But we have
encountered some problems applying to our
geometry set-up the original equations present in
that work. In fact at some points surrounding the
detector crystal, the efficiency calculated using an
isotropic flux does not match the efficiency
calculated using the original directional bias
equations. Thus, we have modified the original
trigonometric equations to obtain a correct
efficiency calculation. Besides we have also im-
plemented new trigonometric equations in order to
extend the possible region of emission below the
detector crystal. This will be useful for simulate
measurement geometries like Marinelli beaker.

The trigonometric relations are shown in Fig. 1
where the geometry set-up is divided into five
zones. The detector crystal, with radius R and
height L; is situated at a distance z ¼ zero: For this
geometry set-up a sampling of the azimuthal angle
f and the polar angle y was calculated from the
maximum and minimum acceptance angles
ðfmin;fmaxÞ and ðymin; ymaxÞ:

y ¼ cos�1½cos ymin � n1ðcos ymin � cos ymaxÞ� ð2Þ

f ¼ n2ðfmax � fminÞ þ fmin ð3Þ

with n1 and n2 random numbers. The acceptance
angles for a photon, generated in the position
ðx; y; zÞ within the source, are obtained with the
next expressions:

ymin ¼

tan�1 r � R

L � ðz � zeroÞ

� �
if rXR and z

oðL þ zeroÞ

½zones III; IV�

p� tan�1 r þ R

ðz � zeroÞ � L

� �
if zXðL þ zeroÞ

½zones I; II�

0 if roR and z

ozero ½zone V�

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð4Þ
ymax ¼

p if roR and zX

ðL þ zeroÞ ½zone I�

tan�1 r þ R

jz � zeroj

� �
if roR and z

ozero ½zone V�

p� tan�1 r � R

jz � zeroj

� �
if rXR and ðz

�zeroÞX0 ½zones

II; III�

tan�1 r þ R

jz � zeroj

� �
if rXR and ðz

�zeroÞo0 ½zone IV�

8>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>:

ð5Þ
fmin ¼

0 if roR and ðr þ r1ÞpR

and z > ðL þ zeroÞ ½zone I�

0 if roR and ðr þ r2ÞpR

and zozero ½zone V�

fc � fr1 if roR and ðr þ r1Þ > R

and z > ðL þ zeroÞ ½zone I�

fc � fr3 if roR and ðr þ r2Þ > R

and zozero ½zone V�

fc � fr2 if rXR ½zone II; III; IV�

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð6Þ
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fmax ¼

2p if roR and ðr þ r1ÞpR

and z > ðL þ zeroÞ ½zone I�

2p if roR and ðr þ r2ÞpR

and zozero ½zone V�

fc þ fr1 if roR and ðr þ r1Þ > R

and z > ðL þ zeroÞ ½zone I�

fc þ fr3 if roR and ðr þ r2Þ > R

and zozero ½zone V�

fc þ fr2 if rXR ½zone II; III; IV�

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð7Þ

where

fc ¼
2pþ tan�1ðy=xÞ if xo0;

pþ tan�1ðy=xÞ if xX0:

(
ð8Þ

r1 ¼ jðz � zero� LÞ tan yj ð9Þ

r2 ¼ jðz � zeroÞ tan yj ð10Þ

fr1 ¼ cos�1½r2 þ r21 � R2=2r1r� ð11Þ

fr2 ¼ sin�1½R=r� ð12Þ

fr3 ¼ cos�1½r2 þ r22 � R2=2r2r�: ð13Þ

The parameters r1 and r2 represent, respectively,
the radius of the intersection between the y-cone
and the upper and lower plane of the detector
crystal. The angles fc; fr1; fr2 and fr3 are used to
calculate the position of the source point referring
to the detector centre axis in cartesian coordinates.
For a source point located at height z and radius r

(i.e. P1 in zone II and P2 in zone I), the above
expressions [2–7] give us the ranges ðfmin;fmaxÞ
and ðymin; ymaxÞ:

Since we have forced the photon to interact
within the acceptance angles we must weight the
quantities scored resulting from this interaction.
The weighting factor takes the form:

w ¼ ðcosðyminÞ � cosðymaxÞÞðfmax � fminÞ=4p: ð14Þ

Also, we require a reliable figure of merit (FOM)
to estimate the improvement of the variance
reduction technique in comparison with the iso-
tropic flux. The FOM is given by the expression
FOM ¼ 1=s2T ; where T is the computing time
used (CPU hours) and s is the variance associated
to the calculated result as can be seen in Section
3.3. In order to compare correctly the FOM values
for variance reduction technique and the isotropic
flux, the variance obtained is always around 0.5%
in both types of simulation. We obtained a FOM
value for each geometry using an isotropic
flux: ðFOMÞisoP ¼ 0:13; ðFOMÞisoM ¼ 0:08 and
ðFOMÞisoF ¼ 0:12; for point, Marinelli, and air
filter geometries, respectively. If we use the
variance reduction method the obtained FOM
values are: ðFOMÞbiasP ¼ 0:50 ðFOMÞbiasM ¼ 0:36
and ðFOMÞbiasF ¼ 0:47: The higher values for the
FOM reflects that the variance reduction techni-
que can improve the Monte Carlo simulation
doing it four times faster without affecting the
variance of the computed results.

3.3. Monte Carlo data analysis

In the Monte Carlo simulation the relevant
physical quantity is the energy deposited into the
detector crystal. The results obtained by non-
analog simulation are biased by the variance
reduction technique and a correction for this is
required. A particle history weight w is introduced
(see Eq. (14)) and calculated for each particle
history. If an event occurs, the weight w is added
to the corresponding energy in the histogram
rather than incrementing by one unit. In this way
the weight is implicitly included into the peak area
and so the expectation value of the f.e.p. efficiency
is preserved. In order to compare calculated and
experimental efficiencies it is necessary to simulate
the statistical fluctuations in the process of charge
carrier production and pulse electronic analysis.
For this purpose, a gaussian distribution with
parameters (mean %x and standard deviation s)
extracted from experimental data is applied to the
deposited energy E0 [10]. Firstly, we compute the
experimental resolution (FWHM) at the deposited
energy FWHMðE0Þ: The next step consists of
generate a random energy ðErÞ using a gaussian
distribution with %x ¼ E0 and s ¼ 2:355�
FWHMðE0Þ: If the random energy is in the
interval E072:96s; it belongs to the peak at energy
E0: Then the gaussian distributed spectrum is
processed by an algorithm written in C++ into
the ROOT [22] analysis framework. It performs a
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Fig. 2. Detector geometry. Dimensions given in Table 1 are

identified by the same letters in the figure.
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peak search process, and an area and step back-
ground calculation using the same mathematical
algorithm like in Genie2KTM: The weighted peak
area divided by the full number of photons emitted
of the energy of interest gives the f.e.p. efficiency.
In order to estimate the uncertainties associated to
the calculated efficiency, we make ten independent
runs ðm ¼ 10Þ of the Monte Carlo simulation for
each energy of emission. Thus, the final calculated
efficiency ðeÞ is given by the mean of the calculated
efficiencies ðekÞ for each simulation run at a
particular energy:

e ¼
1

m

Xm

k¼1

ek ð15Þ

and an estimation of the variance of the efficiency
ðsÞ is given by the expression [20]:

s2e ¼
1

m � 1

Xm

k¼1

ðek � eÞ2: ð16Þ

3.4. Monte Carlo simulation

The main disadvantage of the efficiency calcula-
tion by using Monte Carlo method is the not
sufficient reliability in detector parameters pro-
vided by the manufacturer. The efficiency values
computed with the supplied detector data (Table
1) deviate significantly (around 10%) from the
experimental data for all the measuring geome-
tries. In order to reject a problem of the physics
models a comparative simulation was carried out
using GEANT4 standard electro-magnetic physics
and GEANT4 low energy electro-magnetic phy-
sics. The results obtained were in good agreement
except, of course, at low energies. On the other
hand, the radiography of the detector reflected a
possible value (0.65–0:85 cm) of the crystal to
window distance bigger than the nominal value
given by the manufacturer ð0:5 cmÞ: Therefore the
detector parameters have to be optimised in order
to obtain better agreement among computed and
experimental data. The detector model constructed
in that way can be used to compute the efficiencies
for a new geometry set-up.

In Fig. 2 is shown a plan drawing of the REGe
detector with the most critical parameters that
affect the efficiency calculation. According to the
manufacturer, the detector radius ðRÞ and length
ðLÞ are known with sufficient confidence in
modern detectors ðR ¼ 2771 mm;L ¼
5571 mmÞ:

The main strategy consists of a comparison
between experimental and calculated f.e.p. effi-
ciency for different detector parameter set-ups at
the reference geometry. Firstly, the detector radius
is modified ðRmodÞ; and then, the optimum crystal-
to-window distance ðDoptÞ is calculated. Using this
optimum value the front dead layer thickness ðtoptf Þ
is varied until the best efficiency values are
obtained at the 36–81 keV range. Finally, the
detector length L and the parameters of the inner
inactive hole (th; h and r) are also checked.

The first step consists of determining the
thickness of the front dead-layer ðtf Þ and the
crystal-to-Be window distance ðDÞ; and also
checking R: To determine these parameters we
obtained the experimental efficiencies for the
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Fig. 3. Comparison of experimental (solid line) and calculated f.e.p. efficiency for different detector parameter set-ups at the reference

geometry. The 95% prediction bands are shown as dashed lines. The detector radius ðRmodÞ is modified, and then, the optimum crystal-

to-window distance ðDoptÞ is calculated. The front dead layer thickness ðtoptf Þ is varied until the best efficiency values are obtained at the

37–81 keV range. The parameter values for each Monte Carlo data sets are: MC data set 1 (Rmod ¼ R; Dopt ¼ D þ 2:4 mm;
t
opt
f ¼ tf þ 29:7 mm), MC data set 2 (Rmod ¼ R � 0:15 mm; Dopt ¼ D þ 2:4 mm; t

opt
f ¼ tf þ 22:2 mm), MC data set 3

(Rmod ¼ R � 0:25 mm; Dopt ¼ D þ 2:5 mm; t
opt
f ¼ tf þ 14:5 mm), MC data set 4 (Rmod ¼ R � 0:35 mm; Dopt ¼ D þ 2:5 mm;

t
opt
f ¼ tf þ 2:9 mm) and MC data set 5 (Rmod ¼ R � 0:5 mm; Dopt ¼ D þ 2:7 mm; t

opt
f ¼ tf ); being R; D and tf the nominal values of

the detector parameters.
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59:53 keV gamma-ray from 241Am (see Section
2.3) at two distances (15.9 and 3:6 cm) from the
beryllium window. Then we compute the efficien-
cies at these two distances while varying D for
different values of the modified detector radius
ðRmodÞ; and remaining tf fixed at its nominal value.
After comparing the ratio of computed efficiencies
at two distances with the experimental one, an
optimised value for D is obtained ðDoptÞ for each
value of Rmod: In order to select the correct value
of R; we measured the experimental efficiencies at
36:3 keV (X-ray from 137Cs), 46:53 keV ð210PbÞ;
53:15 keV ð133BaÞ; 59:53 keV ð241AmÞ and 81 keV
ð133BaÞ for a distance of 15:9 cm from the
beryllium window. Because the values of tf affects
only gamma-rays below a few hundred keV, we
compute the efficiencies at these five energies, for
each value of R and Dopt; to reach an exact
agreement while varying the thickness tf : Good
agreement required the detector radius to be fixed
at the nominal value, and the dead-layer to be
29:7 mm thick as shown in Fig. 3. As can be seen in
this figure the MC data 1 are the only values that
totally lie within the 95% prediction band. The
final values of these optimised parameters can be
shown at Table 1.

In order to check L dimension, we calculate the
efficiency of 137Cs and 241Am sources at 8:2 cm
from the side of the detector obtaining a good
agreement with its nominal value. Therefore, we
keep the detector length L fixed at the nominal
value provided by the manufacturer.

The three remaining parameters are the inner
dead-layer ðthÞ and the hole radius ðrÞ that affect to
high-energy gamma-rays above a few hundred
keV. The hole radius was selected as free
parameter, and not hole depth ðlÞ that remains
fixed, because according to L"epy [18] this para-
meter affects the efficiency much more than the
hole depth. We use the 1460:8 keV gamma-ray



ARTICLE IN PRESS

S. Hurtado et al. / Nuclear Instruments and Methods in Physics Research A 518 (2004) 764–774 773
from 40K and the 661:6 keV gamma-ray from
137Cs at a 15:9 cm distance for point source
geometry. We compute the efficiencies for the
two last energies while varying the values of r and
th: The optimum values of the parameters were
selected to obtain the best agreement between
experimental and calculated efficiencies at these
two high energies. The final detector dimensions
are shown in Table 1.
4. Results

The results for point geometry set-up are given
in Table 2 as the relative deviation (%) between
the computed and experimental efficiency 100�
ðeMC � eexpÞ=eexp for Monte Carlo method using
nominal and optimised detector parameters. The
mean and root mean square error (RMS) of
relative deviation are presented to estimate the
accuracy of each case. It can be noted that the
results obtained with the nominal detector para-
meters show significant deviations. The mean
discrepancy of 5% between the calculated and
experimental f.e.p. efficiency can be due to an
inadequate knowledge of the detector geometry
and to imperfect charge collection in detector
crystal. As commented before, in the present work
various detector parameters have been changed in
order to reduce the discrepancies between the
experimental and calculated efficiencies (see Table
1). The optimum value of tf is not implausible
because nominal dead layers depth are only
estimates, and imperfect charge collection can
affect the experimental efficiency at these energies.
It can be pointed out also that the final value of th
can be higher than the nominal value due to the
detector was warmed up after manufacture it. The
other modified parameter was the crystal-to-
window distance D: This parameter depends of
the assembly and can be several millimetres higher
than the nominal value provided by the manufac-
turer. In all the simulations we have taken into
account the bulletized edge of the crystal. This
characteristic was modelled using conical shapes
available in GEANT4.

Once the detector geometry has been adjusted,
the efficiency for other measurement geometries
was computed using the optimum parameter
values. The obtained calculated efficiencies are
shown in Table 3 for the isolated emission energies
(210Pb; 241Am; 137Cs and 40K). We can see that the
agreement between the experimental and calcu-
lated efficiencies is good at low and high-energy
range for Marinelli beaker and air filter. The mean
absolute values of the deviations between the
experimental and computed efficiencies using the
optimised parameters for the whole energy range is
reduced to 0.6% for these volume sources (see
Table 3). When using nominal detector parameters
the average of such deviations is around 10%. The
improvement is clearly apparent. Therefore, we
can conclude that the geometry optimisation
process is correct and can be applied to the
measurement of the specific activity of samples
with irregular shapes.
5. Conclusions

With the GEANT4 Monte Carlo code, we have
simulated the response of a low-level REGe
germanium detector. A set of new classes have
been developed into GEANT4. The analysis of the
simulation data was performed implementing
mathematical algorithms in a new C++ class.
Moreover, a variance reduction algorithm has
been validated and implemented into GEANT4
toolkit for f.e.p. efficiency calculation. Using this
algorithm the simulations are four times faster
than an isotropic one for different measurement
geometries. This algorithm can be applied to
real-time measurement conditions like in situ
spectrometry.

In addition, we have simulated with the
GEANT4 Monte Carlo code the efficiency re-
sponse of the REGe detector. In our simulations
we used first the nominal dimensions provided by
the manufacturer that do not reflect the efficiencies
at whole energy range. For that reason a fast
procedure for geometry optimisation have been
carried out with calibrated point sources. The
optimised detector parameters remain realistic. A
good agreement is reached between experimental
and computed efficiencies using the optimised
geometry for the three counting geometries.
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Therefore the Monte Carlo method allows us to
calculate the efficiency calibration curve for any
source geometry that can be present in low-level
background measurements.
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