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CHAPTER

ONE

DEFINITION OF TERMS USED IN THIS GUIDE

Several terms used throughout the Physics Reference Manual have specific meaning within GEANT4, but are not
well-defined in general usage. The definitions of these terms are given here.

• process - a C++ class which describes how and when a specific kind of physical interaction takes place along a
particle track. A given particle type typically has several processes assigned to it. Occasionally “process” refers
to the interaction which the process class describes.

• model - a C++ class whose methods implement the details of an interaction, such as its kinematics. One or more
models may be assigned to each process. In sections discussing the theory of an interaction, “model” may refer
to the formulae or parameterization on which the model class is based.

• Geant3 - a previous physics simulation tool written in Fortran, and the direct predecessor of GEANT4. Although
some references are still made to Geant3, no knowledge of it is required to understand this manual.

• Verification - in terms of physics modelling we define verification of testing a model at the thin target level to
determine if it performs as expected normally in terms of double differential cross-sections. This is as much a
computational unit test as a theoretical investigation.

• Validation - a comparison between a physics model and real experimental data. This may be at the microscopic
(thin target) level whereby the experiment have provided derived cross sections from their data, or at a larger
macroscopic (thick target) level whereby experimental data are directly compared with experiment.

3
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CHAPTER

TWO

MONTE CARLO METHODS

The GEANT4 toolkit uses a combination of the composition and rejection Monte Carlo methods. Only the basic for-
malism of these methods is outlined here. For a complete account of the Monte Carlo methods, the interested user is re-
ferred to the publications of Butcher and Messel, Messel and Crawford, or Ford and Nelson [BM60][MC70][NHR85].

Suppose we wish to sample 𝑥 in the interval [𝑥1, 𝑥2] from the distribution 𝑓(𝑥) and the normalised probability density
function can be written as :

𝑓(𝑥) =

𝑛∑︁
𝑖=1

𝑁𝑖𝑓𝑖(𝑥)𝑔𝑖(𝑥)

where 𝑁𝑖 > 0, 𝑓𝑖(𝑥) are normalised density functions on [𝑥1, 𝑥2] , and 0 ≤ 𝑔𝑖(𝑥) ≤ 1.

According to this method, 𝑥 can sampled in the following way:

1. select a random integer 𝑖 ∈ {1, 2, · · ·𝑛} with probability proportional to 𝑁𝑖

2. select a value 𝑥0 from the distribution 𝑓𝑖(𝑥)

3. calculate 𝑔𝑖(𝑥0) and accept 𝑥 = 𝑥0 with probability 𝑔𝑖(𝑥0);

4. if 𝑥0 is rejected restart from step 1.

It can be shown that this scheme is correct and the mean number of tries to accept a value is
∑︀

𝑖𝑁𝑖.

In practice, a good method of sampling from the distribution 𝑓(𝑥) has the following properties:

• all the subdistributions 𝑓𝑖(𝑥) can be sampled easily;

• the rejection functions 𝑔𝑖(𝑥) can be evaluated easily/quickly;

• the mean number of tries is not too large.

Thus the different possible decompositions of the distribution 𝑓(𝑥) are not equivalent from the practical point of view
(e.g. they can be very different in computational speed) and it can be useful to optimise the decomposition.

A remark of practical importance : if our distribution is not normalised∫︁ 𝑥2

𝑥1

𝑓(𝑥)𝑑𝑥 = 𝐶 > 0

the method can be used in the same manner; the mean number of tries in this case is
∑︀

𝑖𝑁𝑖/𝐶.

5
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CHAPTER

THREE

PARTICLE TRANSPORT

3.1 Particle transport

Particle transport in GEANT4 is the result of the combined actions of the GEANT4 kernel’s Stepping Manager class
and the actions of processes which it invokes–physics processes and the Transportation ‘process’ which identifies the
next volume boundary and also the geometrical volume that lies behind it, when the track has reached it.

The expected length at which an interaction is expected to occur is determined by polling all processes applicable at
each step.

Then it is determined whether the particle will remain within the current volume long enough, otherwise it will cross
into a different volume before this potential interaction occurs.

The most important processes for determining the trajectory of a charged particle, including boundary crossing and
the effects of external fields are the multiple scattering process and the Transportation process, which is discussed in
the second following section.

3.2 True Step Length

GEANT4 simulation of particle transport is performed step by step [SA03]. A true step length for a next physics
interaction is randomly sampled using the mean free path of the interaction or by various step limitations established
by different GEANT4 components. The smallest step limit defines the new true step length.

3.2.1 The Interaction Length or Mean Free Path

Computation of mean free path of a particle in a media is performed in GEANT4 using cross section of a particular
physics process and density of atoms. In a simple material the number of atoms per volume is:

𝑛 =
𝒩𝜌

𝐴

where:

𝒩 = Avogadro’s number
𝜌 = density of the medium
𝐴 = mass of a mole

In a compound material the number of atoms per volume of the 𝑖𝑡ℎ element is:

𝑛𝑖 =
𝒩𝜌𝑤𝑖

𝐴𝑖

7
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where:

𝑤𝑖 = proportion by mass of the 𝑖𝑡ℎ element

𝐴𝑖 = mass of a mole of the 𝑖𝑡ℎ element

The mean free path of a process, 𝜆, also called the interaction length, can be given in terms of the total cross section:

𝜆(𝐸) =

(︃∑︁
𝑖

[𝑛𝑖 · 𝜎(𝑍𝑖, 𝐸)]

)︃−1

where 𝜎(𝑍,𝐸) is the total cross section per atom of the process and
∑︀

𝑖 runs over all elements composing the material.∑︀
𝑖

[𝑛𝑖𝜎(𝑍𝑖, 𝐸)] is also called the macroscopic cross section. The mean free path is the inverse of the macroscopic

cross section.

Cross sections per atom and mean free path values may be tabulated during initialisation.

3.2.2 Determination of the Interaction Point

The mean free path, 𝜆, of a particle for a given process depends on the medium and cannot be used directly to sample
the probability of an interaction in a heterogeneous detector. The number of mean free paths which a particle travels
is:

𝑛𝜆 =

∫︁ 𝑥2

𝑥1

𝑑𝑥

𝜆(𝑥)
,

which is independent of the material traversed. If 𝑛𝑟 is a random variable denoting the number of mean free paths
from a given point to the point of interaction, it can be shown that 𝑛𝑟 has the distribution function:

𝑃 (𝑛𝑟 < 𝑛𝜆) = 1 − 𝑒−𝑛𝜆

The total number of mean free paths the particle travels before reaching the interaction point, 𝑛𝜆, is sampled at the
beginning of the trajectory as:

𝑛𝜆 = − log (𝜂)

where 𝜂 is a random number uniformly distributed in the range (0, 1). 𝑛𝜆 is updated after each step ∆𝑥 according the
formula:

𝑛′𝜆 = 𝑛𝜆 − ∆𝑥

𝜆(𝑥)

until the step originating from 𝑠(𝑥) = 𝑛𝜆 · 𝜆(𝑥) is the shortest and this triggers the specific process.

3.2.3 Step Limitations

The short description given above is the differential approach to particle transport, which is used in the most popular
simulation codes EGS and Geant3. In this approach besides the other (discrete) processes the continuous energy loss
imposes a limit on the step-size too [JA09], because the cross section of different processes depend of the energy of
the particle. Then it is assumed that the step is small enough so that the particle cross sections remain approximately
constant during the step. In principle one must use very small steps in order to insure an accurate simulation, but
computing time increases as the step-size decreases. A good compromise depends on required accuracy of a concrete
simulation. For electromagnetic physics the problem is reduced using integral approach, which is described below
in integral. However, this only provides effectively correct cross sections but step limitation is needed also for more
precise tracking. Thus, in GEANT4 any process may establish additional step limitation, the most important limits see
below in sub-chapters drover_range and msc_step.

8 Chapter 3. Particle Transport
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3.2.4 Updating the Particle Time

The laboratory time of a particle should be updated after each step:

∆𝑡𝑙𝑎𝑏 = 0.5∆𝑥

(︂
1

𝑣1
+

1

𝑣2

)︂
,

where ∆𝑥 is a true step length traveled by the particle, 𝑣1 and 𝑣2 are particle velocities at the beginning and at the end
of the step correspondingly.

3.3 Transportation

The transportation process is responsible for determining the geometrical limits of a step. It calculates the length of
step with which a track will cross into another volume. When the track actually arrives at a boundary, the transportation
process locates the next volume that it enters.

If the particle is charged and there is an electromagnetic (or potentially other) field, it is responsible for propagating
the particle in this field. It does this according to an equation of motion. This equation can be provided by GEANT4,
for the case a magnetic or EM field, or can be provided by the user for other fields.

𝑑p

𝑑𝑠
=

1

𝑣
F =

𝑞

𝑣

(︀
E + v × B

)︀
Extensions are provided for the propagation of the polarisation, and the effect of a gravitational field, of potential
interest for cases of slow neutral particles.

3.3.1 Some additional details on motion in fields

In order to intersect the model GEANT4 geometry of a detector or setup, the curved trajectory followed by a charged
particle is split into ‘chords segments’. A chord is a straight line segment between two trajectory points. Chords are
created utilizing a criterion for the maximum estimated value of the sagitta–the distance between the further curve
point and the chord.

The equations of motions are solved utilising Runge Kutta methods. For the simplest case of a pure magnetic field,
only the position and momentum are integrated. If an electric field is present, the time of flight is also integrated since
the velocity changes along the step.

A Runge Kutta integration method for a vector y starting at y𝑠𝑡𝑎𝑟𝑡 and given its derivative 𝑑y′(𝑠) as a function of 𝑦
and 𝑠. For a given interval ℎ it provides an estimate of the endpoint y𝑒𝑛𝑑. and of the integration error y𝑒𝑟𝑟𝑜𝑟, due to
the truncation errors of the RK method and the variability of the derivative.

The position and momentum as used as parts of the vector y, and optionally the time of flight in the lab frame and the
polarisation.

A proposed step is accepted if the magnitude of the location components of the error is below a tolerated fraction 𝜖 of
the step length 𝑠

|∆x| = |x𝑒𝑟𝑟𝑜𝑟| < 𝜖 * 𝑠

and the relative momentum error is also below 𝜖:

|∆p| = |p𝑒𝑟𝑟𝑜𝑟| < 𝜖

The transportation also updates the time of flight of a particle. In case of a neutral particle or of a charged particle in a
pure magnetic field it utilises the average inverse velocity (average of the initial and final value of the inverse velocity.)

3.3. Transportation 9



Physics Reference Manual, Release 10.4

In case of a charged particle in an electric field or other field which does not preserve the energy, an explicit integration
of time along the track is used. This is done by integrating the inverse velocity along the track:

𝑡1 = 𝑡0 +

∫︁ 𝑠1

𝑠0

1

𝑣
𝑑𝑠

Runge Kutta methods of different order can be utilised for fields depending on the numerical method utilised for
approximating the field. Specialised methods for near-constant magnetic fields are also available.

10 Chapter 3. Particle Transport
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CHAPTER

FOUR

DECAY

The decay of particles in flight and at rest is simulated by the G4Decay class.

4.1 Mean Free Path for Decay in Flight

The mean free path 𝜆 is calculated for each step using

𝜆 = 𝛾𝛽𝑐𝜏

where 𝜏 is the lifetime of the particle and

𝛾 =
1√︀

1 − 𝛽2
.

𝛽 and 𝛾 are calculated using the momentum at the beginning of the step. The decay time in the rest frame of the
particle (proper time) is then sampled and converted to a decay length using 𝛽.

4.2 Branching Ratios and Decay Channels

G4Decay selects a decay mode for the particle according to branching ratios defined in the G4DecayTable class, which
is a member of the G4ParticleDefinition class. Each mode is implemented as a class derived from G4VDecayChannel
and is responsible for generating the secondaries and the kinematics of the decay. In a given decay channel the daughter
particle momenta are calculated in the rest frame of the parent and then boosted into the laboratory frame. Polarization
is not currently taken into account for either the parent or its daughters.

A large number of specific decay channels may be required to simulate an experiment, ranging from two-body to
many-body decays and V-A to semi-leptonic decays. Most of these are covered by the five decay channel classes
provided by GEANT4:

G4PhaseSpaceDecayChannel phase space decay
G4DalitzDecayChannel dalitz decay
G4MuonDecayChannel muon decay
G4TauLeptonicDecayChannel tau leptonic decay
G4KL3DecayChannel semi-leptonic decays of kaon

4.2.1 G4PhaseSpaceDecayChannel

The majority of decays in GEANT4 are implemented using the G4PhaseSpaceDecayChannel class. It simulates
phase space decays with isotropic angular distributions in the center-of-mass system. Three private methods of

15
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G4PhaseSpaceDecayChannel are provided to handle two-, three- and N-body decays: TwoBodyDecayIt(), Three-
BodyDecayIt(), ManyBodyDecayIt().

Some examples of decays handled by this class are:

𝜋0 → 𝛾𝛾,

Λ → 𝑝𝜋−

and

𝐾0
𝐿 → 𝜋0𝜋+𝜋−.

4.2.2 G4DalitzDecayChannel

The Dalitz decay

𝜋0 → 𝛾 + 𝑒+ + 𝑒−

and other Dalitz-like decays, such as

𝐾0
𝐿 → 𝛾 + 𝑒+ + 𝑒−

and

𝐾0
𝐿 → 𝛾 + 𝜇+ + 𝜇−

are simulated by the G4DalitzDecayChannel class. In general, it handles any decay of the form

𝑃 0 → 𝛾 + 𝑙+ + 𝑙−,

where 𝑃 0 is a spin-0 meson of mass 𝑀 and 𝑙± are leptons of mass 𝑚. The angular distribution of the 𝛾 is isotropic in
the center-of-mass system of the parent particle and the leptons are generated isotropically and back-to-back in their
center-of-mass frame. The magnitude of the leptons’ momentum is sampled from the distribution function

𝑓(𝑡) =

(︂
1 − 𝑡

𝑀2

)︂3(︂
1 +

2𝑚2

𝑡

)︂√︂
1 − 4𝑚2

𝑡
,

where 𝑡 is the square of the sum of the leptons’ energy in their center-of-mass frame.

4.2.3 Muon Decay

G4MuonDecayChannel simulates muon decay according to V-A theory. The electron energy is sampled from the
following distribution:

𝑑Γ =
𝐺𝐹

2𝑚𝜇
5

192𝜋3
2𝜖2(3 − 2𝜖)

where:

Γ = decay rate
𝜖 = 𝐸𝑒/𝐸𝑚𝑎𝑥

𝐸𝑒 = electron energy
𝐸𝑚𝑎𝑥 = maximum electron energy = 𝑚𝜇/2

The magnitudes of the two neutrino momenta are also sampled from the V-A distribution and constrained by energy
conservation. The direction of the electron neutrino is sampled using

cos(𝜃) = 1 − 2/𝐸𝑒 − 2/𝐸𝜈𝑒 + 2/𝐸𝑒/𝐸𝜈𝑒

and the muon anti-neutrino momentum is chosen to conserve momentum. Currently, neither the polarization of the
muon nor the electron is considered in this class.
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4.2.4 Leptonic Tau Decay

G4TauLeptonicDecayChannel simulates leptonic tau decays according to V-A theory. This class is valid for both

𝜏± → 𝑒± + 𝜈𝜏 + 𝜈𝑒

and

𝜏± → 𝜇± + 𝜈𝜏 + 𝜈𝜇

modes.

The energy spectrum is calculated without neglecting lepton mass as follows:

𝑑Γ =
𝐺𝐹

2𝑚𝜏
3

24𝜋3
𝑝𝑙𝐸𝑙

(︀
3𝐸𝑙𝑚𝜏

2 − 4𝐸𝑙
2𝑚𝜏 − 2𝑚𝜏𝑚𝑙

2
)︀

where:

Γ = decay rate
𝐸𝑙 = daughter lepton energy (total energy)
𝑝𝑙 = daughter lepton momentum
𝑚𝑙 = daughter lepton mass

As in the case of muon decay, the energies of the two neutrinos are not sampled from their V-A spectra, but are
calculated so that energy and momentum are conserved. Polarization of the 𝜏 and final state leptons is not taken into
account in this class.

4.2.5 Kaon Decay

The class G4KL3DecayChannel simulates the following four semi-leptonic decay modes of the kaon:

𝐾±
𝑒3 : 𝐾± → 𝜋0 + 𝑒± + 𝜈

𝐾±
𝜇3 : 𝐾± → 𝜋0 + 𝜇± + 𝜈

𝐾0
𝑒3 : 𝐾0

𝐿 → 𝜋± + 𝑒∓ + 𝜈

𝐾0
𝜇3 : 𝐾0

𝐿 → 𝜋± + 𝜇∓ + 𝜈

Assuming that only the vector current contributes to 𝐾 → 𝑙𝜋𝜈 decays, the matrix element can be described by using
two dimensionless form factors, 𝑓+ and 𝑓−, which depend only on the momentum transfer 𝑡 = (𝑃𝐾 − 𝑃𝜋)2. The
Dalitz plot density used in this class is as follows [LMCG72]:

𝜌 (𝐸𝜋, 𝐸𝜇) ∝ 𝑓2+ (𝑡)
[︁
𝐴+𝐵𝜉 (𝑡) + 𝐶𝜉 (𝑡)

2
]︁

where:

𝐴 = 𝑚𝐾(2𝐸𝜇𝐸𝜈 −𝑚𝐾𝐸
′
𝜋) +𝑚𝜇

2
(︀
1
4𝐸

′
𝜋 − 𝐸𝜈

)︀
𝐵 = 𝑚𝜇

2
(︀
𝐸𝜈 − 1

2𝐸
′
𝜋

)︀
𝐶 = 1

4𝑚𝜇
2𝐸′

𝜋

𝐸′
𝜋 = 𝐸𝜋

𝑚𝑎𝑥 − 𝐸𝜋

Here 𝜉 (𝑡) is the ratio of the two form factors

𝜉 (𝑡) = 𝑓− (𝑡)/𝑓+ (𝑡).

4.2. Branching Ratios and Decay Channels 17
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𝑓+ (𝑡) is assumed to depend linearly on t, i.e.,

𝑓+ (𝑡) = 𝑓+ (0)[1 + 𝜆+(𝑡/𝑚𝜋
2)]

and 𝑓− (𝑡) is assumed to be constant due to time reversal invariance.

Two parameters, 𝜆+ and 𝜉 (0) are then used for describing the Dalitz plot density in this class. The values of these
parameters are taken to be the world average values given by the Particle Data Group [Groom00].

18 Chapter 4. Decay
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CHAPTER

FIVE

ELECTROMAGNETIC PHYSICS IN GEANT4

5.1 Introduction

The GEANT4 set of electromagnetic (EM) physics processes and models [SA03][eal11][JA09] are used in practically
all types of simulation applications including high energy and nuclear physics experiments, beam transport, medical
physics, cosmic ray interactions and radiation effects in space. In addition to models for low and high energy EM
physics for simulation of radiation effects in media, a sub-library of very low energy models was developed within the
framework of the GEANT4-DNA project, with the goal of simulating radiation effects involving physics and chemistry
at the sub-cellular level [eal14a].

5.2 Unification of EM physics sub-packages

In the early stages of GEANT4, low and high energy electromagnetic processes were developed independently, with
the result that these processes could not be used in the same run. To resolve this problem, the interfaces were unified
so that the standard, muon, high energy, low energy and DNA EM physics sub-packages now follow the same design
[eal11].

All GEANT4 physical processes, including transportation, decay, EM, hadronic, optical and others, were implemented
via the unique general interface G4VProcess. Three EM process interfaces inherit from it via the intermediate
classes G4VContinuousDiscreteProcess or G4VDiscreteProcess [JA09]:

• G4VEnergyLossProcess, which is active along the step and post step,

• G4VMultipleScattering, which is active along the step,

• G4VEmProcess, which has no energy loss and is active post step and at rest.

These three base classes are responsible for interfacing to the GEANT4 kernel, initializing the electromagnetic physics,
managing the energy loss, range and cross sections tables, managing the electromagnetic models, and the built-in
biasing options. Each process inherits from one of these base classes, and has one or more physics models. EM
physics models were implemented via the G4VEmModel interface. A model is applied for a defined energy range and
gclass{G4Region}, allowing, for example, one model from the low energy and one from the high energy sub-package
to be assigned to a process for a given particle type. Each of these processes have following phases:

• initialisation, which includes preparation of tables with cross sections, energy losses, ranges, and other values
computed once,

• run time access to a cross section or computation it on-fly,

• sampling of final state.

The EM model classes are responsible for concrete computations of cross sections and for sampling of final state. The
EM process classes select a model for the given energy and region and communicate with the GEANT4 kernel.
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Migration to this common design resulted in an improvement of overall CPU performance, and made it possible to
provide several helper classes which are useful for a variety of user applications:

• G4EmCalculator: accesses or computes cross section, energy loss, and range;

• G4EmConfigurator: adds extra physics models per particle type, energy, and geometry region;

• G4EmSaturation: adds Birks saturation of visible energy in sensitive detectors;

• G4ElectronIonPair: samples ionisation clusters in tracking devices.

These common interfaces enabled the full migration of EM classes to multithreading with only minor modifications of
the existing physics model codes. Initialization of the energy loss, stopping power and cross section tables is carried
out only once in the master thread at the beginning of simulation and these tables are shared between threads at run
time.

Further improvements were made through the factorization of secondary energy and angle sampling.
G4VEmAngularDistribution common interface allows the reuse of angular generator code by models in all
EM sub-packages. The implementation of a unified interface for atomic deexcitation, G4VAtomDeexcitation
provides the possibility of sampling atomic deexcitation by models from all EM sub-packages.

The consolidation of the EM sub-packages boosts the development of new models, provides new opportunities for the
simulation of complex high energy and low energy effects and enables better validation of EM physics [eal14b].

5.3 Low Energy Livermore Model

Additional electromagnetic physics processes for photons, electrons, hadrons and ions have been implemented in
GEANT4 in order to extend the validity range of particle interactions to lower energies than those available in the stan-
dard GEANT4 electromagnetic processes [JApostolakis99]. Since the atomic shell structure is more important in most
cases at low energies than it is at higher energies, the low energy processes make direct use of shell cross section data.
The standard processes, which are optimized for high energy physics applications, often rely on parameterizations of
these data.

Low energy processes include the photo-electric effect, Compton scattering, Rayleigh scattering, gamma conversion,
bremsstrahlung and ionisation. Also atomic de-excitation module is implemented within this sub-package, which
includes fluorescence and Auger electron emission of excited atoms. The implementation of low energy processes is
valid for elements with atomic number between 1 and 99, and for energies down to 10 eV, upper limit depends on the
process.

The data used for the determination of cross-sections and for sampling of the final state are extracted from a set of
publicly distributed evaluated data libraries:

• EPDL97 (Evaluated Photons Data Library) [DCullen89];

• EPICS2014 (Evaluated Photons Data Library);

• EEDL (Evaluated Electrons Data Library) [STPerkins89];

• EADL (Evaluated Atomic Data Library) [STPerkins];

• binding energy values based on data of Scofield [Sco75].

Evaluated data sets are produced through the process of critical comparison, selection, renormalization and averag-
ing of the available experimental data, normally complemented by model calculations. These libraries provide the
following data:

• total cross-sections for photoelectric effect, Compton scattering, Rayleigh scattering, pair production and
bremsstrahlung;

• subshell integrated cross sections for photo-electric effect and ionisation;
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• energy spectra of the secondaries for electron processes;

• scattering functions for the Compton effect;

• binding energies for electrons for all subshells;

• transition probabilities between subshells for fluorescence and the Auger effect.

These data are used directly or are transformed into Geant4 format specific for each model. The author of
EPDL97 [DCullen89], who is also responsible for the EEDL [STPerkins89] and EADL [STPerkins] data libraries,
Dr. Red Cullen, has kindly permitted the libraries and their related documentation to be distributed with the GEANT4
toolkit. The data are reformatted for GEANT4 input and are inside the G4LEDATA data set, which may be downloaded
from the GEANT4 download page: http://cern.ch/geant4/geant4.html.

The EADL, EEDL and EPDL97 data-sets are also available from several public distribution centres in a format differ-
ent from the one used by GEANT4 [NEA].

5.4 Penelope Models

Physics processes for photons, electrons and positrons have been implemented in GEANT4 according to the PENE-
LOPE code (PENetration and Energy LOss of Positrons and Electrons), version 2008. Models for the following
processes have been included: Compton scattering, photoelectric effect, Rayleigh scattering, gamma conversion,
bremsstrahlung, ionisation and positron annihilation and are described in more detail in Ref.[FS01]. The Penelope
models have been specifically developed for Monte Carlo simulation and great care was given to the low energy de-
scription (i.e. atomic effects, etc.). Hence, these implementations provide reliable results for energies from 100 eV up
to 6 GeV [FS01][JS02], in GEANT4 the upper limit 1 GeV is used. These models may be used as an alternative to
standard and Livermore models.

5.5 Generic Calculation of Total Cross Sections

For a number of models the energy dependence of the total cross section is derived for each process mostly from the
Livermore evaluated data libraries. For ionisation, bremsstrahlung and Compton scattering the total cross is obtained
by interpolation according to the formula [Ste]:

log(𝜎(𝐸)) =
log(𝜎1) log(𝐸2/𝐸) + log(𝜎2) log(𝐸/𝐸1)

log(𝐸2/𝐸1)
(5.1)

where 𝐸 is actual energy, 𝐸1 and 𝐸2 are respectively the closest lower and higher energy points for which data (𝜎1
and 𝜎2) are available. For other processes interpolation method is chosen depending on cross section shape.
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CHAPTER

SIX

GAMMA INCIDENT

6.1 Introduction to Gamma Processes

All processes of gamma interaction with media in GEANT4 happen at the end of the step, so these interactions are
discrete and corresponding processes are following the G4VDiscreteProcess interface.

6.1.1 General Interfaces

There are a number of similar functions for discrete electromagnetic processes and for electromagnetic (EM) packages
an additional base classes were designed to provide common computations [JA09]. Common calculations for discrete
EM processes are performed in the class G4VEmProcess. Derived classes (Table 6.1) are concrete processes providing
initialisation. The physics models are implemented using the G4VEmModel interface. Each process may have one
or many models defined to be active over a given energy range and set of G4Regions. Models are implementing
computations of cross section and sampling of final state. The list of EM processes and models for gamma incident is
shown in Table 6.1.
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Table 6.1: List of process and model classes for gamma.
EM process EM model Ref.
G4PhotoElectricEffect G4PEEffectFluoModel Section 6.3

G4LivermorePhotoElectricModel Section 6.3.5
G4LivermorePolarizedPhotoElectricModel
G4PenelopePhotoElectricModel Section 6.3.4

G4PolarizedPhotoElectricEffect G4PolarizedPEEffectModel Section 13.7
G4ComptonScattering G4KleinNishinaCompton Section 6.4

G4KleinNishinaModel Section 6.4
G4LivermoreComptonModel Section 6.4.5
G4LivermoreComptonModelRC
G4LivermorePolarizedComptonModel Section 13.4
G4LowEPComptonModel Section 6.4.6
G4PenelopeComptonModel Section 6.4.4

G4PolarizedCompton G4PolarizedComptonModel Section 13.4
G4GammaConversion G4BetheHeitlerModel Section 6.5

G4PairProductionRelModel
G4LivermoreGammaConversionModel Section 6.5.5
G4BoldyshevTripletModel Section 6.6
G4LivermoreNuclearGammaConversionModel
G4LivermorePolarizedGammaConversionModel
G4PenelopeGammaConversion Section 6.5.4

G4PolarizedGammaConversion G4PolarizedGammaConversionModel Section 13.6
G4RayleighScattering G4LivermoreRayleighModel Section 6.2.2

G4LivermorePolarizedRayleighModel
G4PenelopeRayleighModel Section 6.2.1

G4GammaConversionToMuons Section 6.7

6.2 Rayleigh Scattering

The Rayleigh process in GEANT4 can be simulated with either the Penelope (Penelope Models) or Livermore models
(Low Energy Livermore Model). These specific implementations are described in more detail below.

6.2.1 Penelope Model

Total cross section

The total cross section of the Rayleigh scattering process is determined from an analytical parameterization. The
atomic cross section for coherent scattering is given approximately by [Bor69]

𝜎(𝐸) = 𝜋𝑟2𝑒

∫︁ 1

−1

1 + cos2 𝜃

2
[𝐹 (𝑞, 𝑍)]2 𝑑 cos 𝜃, (6.1)

where 𝐹 (𝑞, 𝑍) is the atomic form factor, 𝑍 is the atomic number and 𝑞 is the magnitude of the momentum transfer,
i.e.

𝑞 = 2
𝐸

𝑐
sin
(︁𝜃

2

)︁
.
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In the numerical calculation the following analytical approximations are used for the form factor:

𝐹 (𝑞, 𝑍) = 𝑓(𝑥, 𝑍) =

𝑍 1+𝑎1𝑥
2+𝑎2𝑥

3+𝑎3𝑥
4

(1+𝑎4𝑥2+𝑎5𝑥4)2 or
max[𝑓(𝑥, 𝑍), 𝐹𝐾(𝑥, 𝑍)] if 𝑍 > 10 and 𝑓(𝑥, 𝑍) < 2

where

𝐹𝐾(𝑥, 𝑍) =
sin(2𝑏 arctan𝑄)

𝑏𝑄(1 +𝑄2)𝑏
,

with

𝑥 = 20.6074
𝑞

𝑚𝑒𝑐
, 𝑄 =

𝑞

2𝑚𝑒𝑐𝑎
, 𝑏 =

√︀
1 − 𝑎2, 𝑎 = 𝛼

(︁
𝑍 − 5

16

)︁
,

where 𝛼 is the fine-structure constant. The function 𝐹𝐾(𝑥, 𝑍) is the contribution to the atomic form factor due to the
two K-shell electrons (see [JBaro94]). The parameters of expression 𝑓(𝑥, 𝑍) have been determined in Ref. [JBaro94]
for𝑍 = 1 to 92 by numerically fitting the atomic form factors tabulated in Ref. [JHH75]. The integration of Eq.(6.1) is
performed numerically using the 20-point Gaussian method. For this reason the initialization of the Penelope Rayleigh
process is somewhat slower than the Low Energy Livermore process.

Sampling of the final state

The angular deflection cos 𝜃 of the scattered photon is sampled from the probability distribution function

𝑃 (cos 𝜃) =
1 + cos2 𝜃

2
[𝐹 (𝑞, 𝑍)]2.

For details on the sampling algorithm (which is quite heavy from the computational point of view) see Ref. [FS01].
The azimuthal scattering angle 𝜑 of the photon is sampled uniformly in the interval (0, 2𝜋).

6.2.2 Livermore Model

Total Cross Section

The total cross section for the Rayleigh scattering process is determined from the data as described in Generic Calcu-
lation of Total Cross Sections.

Sampling of the Final State

The coherent scattered photon angle 𝜃 is sampled according to the distribution obtained from the product of the
Rayleigh formula (1 + cos2 𝜃) sin 𝜃 and the square of Hubbel’s form factor 𝐹𝐹 2(𝑞) [JHH79] [Cul95]

Φ(𝐸, 𝜃) = [1 + cos2 𝜃] sin 𝜃 × 𝐹𝐹 2(𝑞),

where 𝑞 = 2𝐸 sin(𝜃/2) is the momentum transfer.

Form factors introduce a dependency on the initial energy 𝐸 of the photon that is not taken into account in the
Rayleigh formula. At low energies, form factors are isotropic and do not affect angular distribution, while at high
energies they are forward peaked. For effective sampling of final state a method proposed by D.E. Cullen [Cul95] has
been implemented: form factor data were fitted and fitted parameters included in the G4LivermoreRayleighModel.

The sampling procedure is following:

1. atom is selected randomly according to cross section;

2. cos 𝜃 is sampled as proposed in [Cul95];

3. azimuthal angle is sampled uniformly.

6.2. Rayleigh Scattering 29
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6.3 PhotoElectric Effect

The photoelectric effect is the ejection of an electron from a material after a photon has been absorbed by that material.
In the standard model G4PEEffectFluoModel it is simulated by using a parameterized photon absorption cross section
to determine the mean free path, atomic shell data to determine the energy of the ejected electron, and the K-shell
angular distribution to sample the direction of the electron.

6.3.1 Cross Section

The parameterization of the photoabsorption cross section proposed by Biggs et al.[BL88] was used:

𝜎(𝑍,𝐸𝛾) =
𝑎(𝑍,𝐸𝛾)

𝐸𝛾
+
𝑏(𝑍,𝐸𝛾)

𝐸2
𝛾

+
𝑐(𝑍,𝐸𝛾)

𝐸3
𝛾

+
𝑑(𝑍,𝐸𝛾)

𝐸4
𝛾

(6.2)

Using the least-squares method, a separate fit of each of the coefficients 𝑎, 𝑏, 𝑐, 𝑑 to the experimental data was per-
formed in several energy intervals [VMAPeal94][AGU+00]. As a rule, the boundaries of these intervals were equal
to the corresponding photoabsorption edges. The cross section (and correspondingly mean free path) are discontinu-
ous and must be computed ‘on the fly’ from the formula (6.2). Coefficients are defined for each Sandia table energy
interval.

If photon energy is below the lowest Sandia energy for the material the cross section is computed for this lowest
energy, so gamma is absorbed by photoabsorption at any energy. This approach is implemented coherently for models
of photoelectric effect of GEANT4. As a result, any media become not transparent for low-energy gammas.

The class G4StaticSandiaData.hh contains the corrected data table for the cross-section applied according to
the Sandia table with extra data taken from the Lebedev report. The coefficients are from Ref.[BL88].

The first energy intervals and coefficients for Xe are corrected to correspond perfectly to the data of J.B. West et
al.[WM78]. The coefficients are checked to correspond perfectly to the data from B.L. Henke et al. [eal82]. The
coeficients for Carbon are checked to correspond perfectly to the data of B.L. Henke et al. (as Xe). The first three
energy intervals and coefficients for C are corrected to correspond perfectly to the data of Gallagher et al. [eal88].
The coefficients for Oxygen are checked to correspond perfectly to the data of B.L. Henke et al. (as Xe). The first two
energy intervals and coefficients for O are corrected to correspond perfectly to the data of Gallagher et al. (as C). The
coeficients for Hydrogen are checked to correspond perfectly to the data of B.L. Henke et al. (as Xe). The first three
energy intervals and coefficients for H are corrected to correspond perfectly to the data of L.C. Lee et al.[eal77]. The
first energy intervals and coefficients for He, Ne, Ar, and Kr are corrected to correspond perfectly to the data of G.V.
Marr et al.[MW76].

The most of ionisation energies are taken from S. Ruben[Rub85]. Twenty-eight of the ionisation energies have been
changed slightly to bring them up to date (changes from W.C. Martin and B.N. Taylor of the National Institute of
Standards and Technology, January 1990). Here the ionisation energy is the least energy necessary to remove to
infinity one electron from an atom of the element.

6.3.2 Final State

Choosing an Element

The binding energies of the shells depend on the atomic number 𝑍 of the material. In compound materials the 𝑖𝑡ℎ

element is chosen randomly according to the probability:

𝑃𝑟𝑜𝑏(𝑍𝑖, 𝐸𝛾) =
𝑛𝑎𝑡𝑖𝜎(𝑍𝑖, 𝐸𝛾)∑︀
𝑖[𝑛𝑎𝑡𝑖 · 𝜎𝑖(𝐸𝛾)]

.
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Shell

A quantum can be absorbed if 𝐸𝛾 > 𝐵𝑠ℎ𝑒𝑙𝑙 where the shell energies are taken from G4AtomicShells data: the
closest available atomic shell is chosen. The photoelectron is emitted with kinetic energy:

𝑇𝑝ℎ𝑜𝑡𝑜𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛 = 𝐸𝛾 −𝐵𝑠ℎ𝑒𝑙𝑙(𝑍𝑖)

Theta Distribution of the Photoelectron

The polar angle of the photoelectron is sampled from the Sauter-Gavrila distribution (for K-shell) [Gav59], which is
correct only to zero order in 𝛼𝑍:

𝑑𝜎

𝑑(cos 𝜃)
∼ sin2 𝜃

(1 − 𝛽 cos 𝜃)4

{︂
1 +

1

2
𝛾(𝛾 − 1)(𝛾 − 2)(1 − 𝛽 cos 𝜃)

}︂
where 𝛽 and 𝛾 are the Lorentz factors of the photoelectron.

Introducing the variable transformation 𝜈 = 1− cos 𝜃𝑒, as done in Penelope, the angular distribution can be expressed
as

𝑝(𝜈) = (2 − 𝜈)
[︁ 1

𝐴+ 𝜈
+

1

2
𝛽𝛾(𝛾 − 1)(𝛾 − 2)

]︁ 𝜈

(𝐴+ 𝜈)3
,

where

𝛾 = 1 +
𝐸𝑒

𝑚𝑒𝑐2
, 𝐴 =

1

𝛽
− 1,

𝐸𝑒 is the electron energy, 𝑚𝑒 its rest mass and 𝛽 its velocity in units of the speed of light 𝑐.

Though the Sauter distribution, strictly speaking, is adequate only for ionisation of the K-shell by high-energy photons,
in many practical simulations it does not introduce appreciable errors in the description of any photoionisation event,
irrespective of the atomic shell or of the photon energy.

6.3.3 Relaxation

Atomic relaxations can be sampled using the de-excitation module of the low-energy sub-package Atomic re-
laxation. For that atomic de-excitation option should be activated. In the physics_list sub-library this activa-
tion is done automatically for G4EmLivermorePhysics, G4EmPenelopePhysics, G4EmStandardPhysics_option3 and
G4EmStandardPhysics_option4. For other standard physics constructors the de-excitation module is already added
but is disabled. The simulation of fluorescence and Auger electron emission may be enabled for all geometry via UI
commands:

/process/em/fluo true
/process/em/auger true

There is a possibility to enable atomic deexcitation only for G4Region by its name:

/process/em/deexcitation myregion true true false

where three Boolean arguments enable/disable fluorescence, Auger electron production and PIXE (deexcitation in-
duced by ionisation).
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6.3.4 Penelope Model

Total cross section

The total photoelectric cross section at a given photon energy 𝐸 is calculated from the data [DCullen89], as described
in Generic Calculation of Total Cross Sections.

Sampling of the final state

The subshell from which the electron is emitted is randomly selected according to the relative cross sections of sub-
shells, determined at the energy 𝐸 by interpolation of the data of Ref. [JWM69]. The electron kinetic energy is the
difference between the incident photon energy and the binding energy of the electron before the interaction in the sam-
pled shell. The interaction leaves the atom in an excited state; the subsequent de-excitation is simulated as described
in Atomic relaxation.

6.3.5 Livermore Model

Three model classes are available G4LivermorePhotoElectricModel, G4LivermorePolarizedPhotoElectricModel, and
G4LivermorePolarizedPhotelectricGDModel.

Cross sections

The total photoelectric and single shell cross-sections are tabulated from threshold to 5 keV. Above 5 keV EPICS2014
cross sections [NEA] are parameterised in two different energy intervals, as following:

𝜎(𝐸) =
𝑎1
𝐸

+
𝑎2
𝐸2

+
𝑎3
𝐸3

+
𝑎4
𝐸4

+
𝑎5
𝐸5

+
𝑎6
𝐸6

.

The intervals ranges are set dynamically and they depend on the atomic number of the element and the corresponding
k-shell binding energy. The accuracy of such parameterisation is better than 1%. To avoid tracking problems for very
low-energy gamma the photoelectric cross section is not zero below first ionisation potential but stay constant, so all
types of media are not transparent for gamma.

Sampling of the final state

The incident photon is absorbed and an electron is emitted.

The electron kinetic energy is the difference between the incident photon energy and the binding energy of the electron
before the interaction. The sub-shell, from which the electron is emitted, is randomly selected according to the relative
cross-sections of all subshells, determined at the given energy. The interaction leaves the atom in an excited state. The
deexcitation of the atom is simulated as described in Atomic relaxation.

Angular distribution of the emitted photoelectron

For sampling of the direction of the emitted photoelectron by default the angular generator
G4SauterGavrilaAngularDistribution is used. The algorithm is described in PhotoElectric Effect.

For polarized models alternative angular generators are applied.

G4LivermorePolarizedPhotoElectricModel uses the G4PhotoElectricAngularGeneratorPolarized angular generator.

This model models the double differential cross section (for angles 𝜃 and 𝜑) and thus it is capable of account for polar-
ization of the incident photon. The developed generator was based in the research of Sauter in 1931 [Sau31][RHPA64].
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Sauter’s formula was recalculated by Gavrila in 1959 for the K-shell [Gav59] and in 1961 for the L-shells [Gav61].
These new double differential formulas have some limitations, 𝛼 𝑍 ≪ 1 and have a range between 0.1 < 𝛽 < 0.99𝑐.

The double differential photoeffect for K–shell can be written as [Gav59]:

𝑑𝜎

𝑑𝜔
(𝜃, 𝜑) =

4

𝑚2
𝛼6𝑍5 𝛽3(1 − 𝛽2)3[︀

1 − (1 − 𝛽2)1/2
]︀ (︂𝐹 (︂1 − 𝜋𝛼𝑍

𝛽

)︂
+ 𝜋𝛼𝑍𝐺

)︂
where

𝐹 =
sin2 𝜃 cos2 𝜑

(1 − 𝛽 cos 𝜃)4
− 1 − (1 − 𝛽2)1/2

2(1 − 𝛽2)

sin2 𝜃 cos2 𝜑

(1 − 𝛽 cos 𝜃)3

+

[︀
1 − (1 − 𝛽2)1/2

]︀2
4(1 − 𝛽2)3/2

sin2 𝜃

(1 − 𝛽 cos 𝜃)3

𝐺 =
[1 − (1 − 𝛽2)1/2]1/2

27/2𝛽2(1 − 𝛽 cos 𝜃)5/2

[︂
4𝛽2

(1 − 𝛽2)1/2
sin2 𝜃 cos2 𝜑

1 − 𝛽 cos 𝜃
+

4𝛽

1 − 𝛽2
cos 𝜃 cos2 𝜑−

− 4
1 − (1 − 𝛽2)1/2

1 − 𝛽2
(1 − cos2 𝜑) − 𝛽2 1 − (1 − 𝛽2)1/2

1 − 𝛽2

sin2 𝜃

1 − 𝛽 cos 𝜃
−

+ 4𝛽2 1 − (1 − 𝛽2)1/2

(1 − 𝛽2)3/2
− 4𝛽

[︀
1 − (1 − 𝛽2)1/2

]︀2
(1 − 𝛽2)3/2

]︃

+
1 − (1 − 𝛽2)1/2

4𝛽2(1 − 𝛽 cos 𝜃)2

[︂
𝛽

1 − 𝛽2
− 2

1 − 𝛽2
cos 𝜃 cos2 𝜑+

1 − (1 − 𝛽2)1/2

(1 − 𝛽2)3/2
cos 𝜃

− 𝛽
1 − (1 − 𝛽2)1/2

(1 − 𝛽2)3/2

]︂
where 𝛽 is the electron velocity, 𝛼 is the fine–structure constant, 𝑍 is the atomic number of the material and 𝜃, 𝜑 are
the emission angles with respect to the electron initial direction.

The double differential photoeffect distribution for L1–shell is the same as for K–shell despising a constant [Gav61]:

𝐵 = 𝜉
1

8

where 𝜉 is equal to 1 when working with unscreened Coulomb wave functions as it is done in this development.

Since the polarized Gavrila cross–section is a 2–dimensional non–factorized distribution an acceptance–rejection tech-
nique was the adopted [LP03]. For the Gavrila distribution, two functions were defined 𝑔1(𝜑) and 𝑔2(𝜃):

𝑔1(𝜑) = 𝑎

𝑔2(𝜃) =
𝜃

1 + 𝑐𝜃2

such that:

𝐴𝑔1(𝜑)𝑔2(𝜃) ≥ 𝑑2𝜎

𝑑𝜑𝑑𝜃

where A is a global constant. The method used to calculate the distribution is the same as the one used in Low Energy
2BN Bremsstrahlung Generator, being the difference 𝑔1(𝜑) = 𝑎.

G4LivermorePolarizedPhotoElectricGDModel uses its own methods to produce the angular distribution of the photo-
electron. The method to sample the azimuthal angle 𝜑 is described in [DL06].

6.4 Compton scattering

The Compton scattering is an inelastic gamma scattering on atom with the ejection of an electron. In the standard sub-
package two model G4KleinNishinaCompton and G4KleinNishinaModel are available. The first model is the fastest,
in the second model atomic shell effects are taken into account.
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6.4.1 Cross Section

When simulating the Compton scattering of a photon from an atomic electron, an empirical cross section formula is
used, which reproduces the cross section data down to 10 keV:

𝜎(𝑍,𝐸𝛾) =

[︂
𝑃1(𝑍)

log(1 + 2𝑋)

𝑋
+
𝑃2(𝑍) + 𝑃3(𝑍)𝑋 + 𝑃4(𝑍)𝑋2

1 + 𝑎𝑋 + 𝑏𝑋2 + 𝑐𝑋3

]︂
.

where

𝑍 = atomic number of the medium
𝐸𝛾 = energy of the photon

𝑋 = 𝐸𝛾/𝑚𝑐
2

𝑚 = electron mass

𝑃𝑖(𝑍) = 𝑍(𝑑𝑖 + 𝑒𝑖𝑍 + 𝑓𝑖𝑍
2).

The values of the parameters can be found within the method which computes the cross section per atom. A fit of the
parameters was made to over 511 data points [HubbellGimmverb80][SI70] chosen from the intervals

1 ≤ 𝑍 ≤ 100

𝐸𝛾 ∈ [10 keV, 100 GeV].

The accuracy of the fit was estimated to be

∆𝜎

𝜎
=

{︂
≈ 10% for 𝐸𝛾 ≃ 10 keV − 20 keV
≤ 5 − 6% for 𝐸𝛾 > 20 keV

To avoid sampling problems in the Compton process the cross section is set to zero at low-energy limit of cross section
table, which is 100 eV in majority of EM Physics Lists.

6.4.2 Sampling the Final State

The Klein-Nishina differential cross section per atom is [KN29]:

𝑑𝜎

𝑑𝜖
= 𝜋𝑟2𝑒

𝑚𝑒𝑐
2

𝐸0
𝑍

[︂
1

𝜖
+ 𝜖

]︂ [︂
1 − 𝜖 sin2 𝜃

1 + 𝜖2

]︂
where

𝑟𝑒 = classical electron radius

𝑚𝑒𝑐
2 = electron mass

𝐸0 = energy of the incident photon
𝐸1 = energy of the scattered photon
𝜖 = 𝐸1/𝐸0

Assuming an elastic collision, the scattering angle 𝜃 is defined by the Compton formula:

𝐸1 = 𝐸0
𝑚e𝑐

2

𝑚e𝑐2 + 𝐸0(1 − cos 𝜃)
.
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Sampling the Photon Energy

The value of 𝜖 corresponding to the minimum photon energy (backward scattering) is given by

𝜖0 =
𝑚e𝑐

2

𝑚e𝑐2 + 2𝐸0
,

hence 𝜖 ∈ [𝜖0, 1]. Using the combined composition and rejection Monte Carlo methods described in
[BM60][MC70][NHR85] one may set

Φ(𝜖) ≃
[︂

1

𝜖
+ 𝜖

]︂ [︂
1 − 𝜖 sin2 𝜃

1 + 𝜖2

]︂
= 𝑓(𝜖) · 𝑔(𝜖) = [𝛼1𝑓1(𝜖) + 𝛼2𝑓2(𝜖)] · 𝑔(𝜖),

where

𝛼1 = ln(1/𝜖0) ; 𝑓1(𝜖) = 1/(𝛼1𝜖)
𝛼2 = (1 − 𝜖20)/2 ; 𝑓2(𝜖) = 𝜖/𝛼2.

𝑓1 and 𝑓2 are probability density functions defined on the interval [𝜖0, 1], and

𝑔(𝜖) =

[︂
1 − 𝜖

1 + 𝜖2
sin2 𝜃

]︂
is the rejection function ∀𝜖 ∈ [𝜖0, 1] =⇒ 0 < 𝑔(𝜖) ≤ 1. Given a set of 3 random numbers 𝑟, 𝑟′, 𝑟′′ uniformly
distributed on the interval [0,1], the sampling procedure for 𝜖 is the following:

1. decide whether to sample from 𝑓1(𝜖) or 𝑓2(𝜖): if 𝑟 < 𝛼1/(𝛼1 + 𝛼2) select 𝑓1(𝜖), otherwise select 𝑓2(𝜖)

2. sample 𝜖 from the distributions corresponding to 𝑓1 or 𝑓2:

• for 𝑓1 : 𝜖 = 𝜖𝑟
′

0 (≡ exp(−𝑟′𝛼1))

• for 𝑓2 : 𝜖2 = 𝜖20 + (1 − 𝜖20)𝑟′

3. calculate sin2 𝜃 = 𝑡(2 − 𝑡) where 𝑡 ≡ (1 − cos 𝜃) = 𝑚𝑒𝑐
2(1 − 𝜖)/(𝐸0𝜖)

4. test the rejection function: if 𝑔(𝜖) ≥ 𝑟′′ accept 𝜖, otherwise go to step 1.

Compute the Final State Kinematics

After the successful sampling of 𝜖, the polar angles of the scattered photon with respect to the direction of the parent
photon are generated. The azimuthal angle, 𝜑, is generated isotropically and 𝜃 is as defined in the previous section.
The momentum vector of the scattered photon,

−→
𝑃𝛾1, is then transformed into the World coordinate system. The kinetic

energy and momentum of the recoil electron are then

𝑇𝑒𝑙 = 𝐸0 − 𝐸1

−→
𝑃𝑒𝑙 =

−→
𝑃𝛾0 −

−→
𝑃𝛾1.

Doppler broadening of final electron momentum due to electron motion is implemented only in G4KleinNishinaModel.
For that empirical electron density profile function is used.

6.4.3 Atomic shell effects

The differential cross-section described above is valid only for those collisions in which the energy of the recoil
electron is large compared to its binding energy (which is ignored). In the alternative model (G4KleinNishinaModel)
atomic shell effects are taken into account. For that a sampling of a shell is performed with the weight proportional to
number of shell electrons. Electron energy distribution function is approximated via simplified form

𝐹 (𝑇 ) = exp (−𝑇/𝐸𝑏)/𝐸𝑏,
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where 𝐸𝑏 is shell bound energy, 𝑇 is the kinetic energy of the electron.

The value 𝑇 is sampled and scattering is sampled in the rest frame of the electron according the algorithm described
in the previous sub-chapter. After sampling an inverse Lorentz transformation to the laboratory frame is performed.
Potential energy (𝐸𝑏 + 𝑇 ) is subtracted from the scattered electron kinetic energy. If final electron energy becomes
negative then sampling is repeated. Atomic relaxation are sampled if deexcitation module is enabled. Enabling of
atomic relaxation for Compton scattering is performed in the same way as for photoelectric effect Relaxation.

6.4.4 Penelope Model

Total cross section

The total cross section of the Compton scattering process is determined from an analytical parameterization. For 𝛾
energy 𝐸 greater than 5 MeV, the usual Klein-Nishina formula is used for 𝜎(𝐸). For a more accurate parameterization
is used, which takes into account atomic binding effects and Doppler broadening [DB96]:

𝜎(𝐸) = 2𝜋

∫︁ 1

−1

𝑟2𝑒
2

𝐸2
𝐶

𝐸2

(︂
𝐸𝐶

𝐸
+

𝐸

𝐸𝐶
− sin2 𝜃

)︂
×
∑︁
𝑠ℎ𝑒𝑙𝑙𝑠

𝑓𝑖Θ(𝐸 − 𝑈𝑖)𝑛𝑖(𝑝
𝑚𝑎𝑥
𝑧 ) 𝑑(cos 𝜃) (6.3)

where:
𝑟𝑒 = classical radius of the electron;
𝑚𝑒 = mass of the electron;
𝜃 = scattering angle;

𝐸𝐶 = Compton energy

=
𝐸

1 + 𝐸
𝑚𝑒𝑐2

(1 − cos 𝜃)

𝑓𝑖 = number of electrons in the *i*-th atomic shell;
𝑈𝑖 = ionisation energy of the *i*-th atomic shell;
Θ = Heaviside step function;
𝑝𝑧 = projection of the initial momentum of the electron in the direction of the scattering angle

𝑝𝑚𝑎𝑥
𝑧 = highest possible value of 𝑝𝑧

=
𝐸(𝐸 − 𝑈𝑖)(1 − cos 𝜃) −𝑚𝑒𝑐

2𝑈𝑖

𝑐
√︀

2𝐸(𝐸 − 𝑈𝑖)(1 − cos 𝜃) + 𝑈2
𝑖

.

Finally,

𝑛𝑖(𝑥) =
1
2𝑒

[ 12−( 1
2−

√
2𝐽𝑖0𝑥)

2] if 𝑥 < 0

1 − 1
2𝑒

[ 12−( 1
2+

√
2𝐽𝑖0𝑥)

2] if 𝑥 > 0

where 𝐽𝑖0 is the value of the 𝑝𝑧-distribution profile 𝐽𝑖(𝑝𝑧) for the i-th atomic shell calculated in 𝑝𝑧 = 0. The values
of 𝐽𝑖0 for the different shells of the different elements are tabulated from the Hartree-Fock atomic orbitals of Ref.
[FBiggs75].

The integration of Eq.(6.3) is performed numerically using the 20-point Gaussian method. For this reason, the initial-
ization of the Penelope Compton process is somewhat slower than the Low Energy Livermore process.

Sampling of the final state

The polar deflection cos 𝜃 is sampled from the probability density function

𝑃 (cos 𝜃) =
𝑟2𝑒
2

𝐸2
𝐶

𝐸2

(︁𝐸𝐶

𝐸
+

𝐸

𝐸𝐶
− sin2 𝜃

)︁ ∑︁
𝑠ℎ𝑒𝑙𝑙𝑠

𝑓𝑖Θ(𝐸 − 𝑈𝑖)𝑛𝑖(𝑝
𝑚𝑎𝑥
𝑧 )
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(see Ref. [FS01] for details on the sampling algorithm). Once the direction of the emerging photon has been set, the
active electron shell 𝑖 is selected with relative probability equal to 𝑍𝑖Θ(𝐸 − 𝑈𝑖)𝑛𝑖[𝑝

𝑚𝑎𝑥
𝑧 (𝐸, 𝜃)].

A random value of 𝑝𝑧 is generated from the analytical Compton profile [FBiggs75]. The energy of the emerging
photon is

𝐸′ =
𝐸𝜏

1 − 𝜏𝑡

[︁
(1 − 𝜏𝑡 cos 𝜃) +

𝑝𝑧
|𝑝𝑧|

√︀
(1 − 𝜏𝑡 cos 𝜃)2 − (1 − 𝑡𝜏2)(1 − 𝑡)

]︁
,

where

𝑡 =
(︁ 𝑝𝑧
𝑚𝑒𝑐

)︁2
and 𝜏 =

𝐸𝐶

𝐸
.

The azimuthal scattering angle 𝜑 of the photon is sampled uniformly in the interval :math‘:((0, 2pi))‘. It is assumed that
the Compton electron is emitted with energy 𝐸𝑒 = 𝐸−𝐸′−𝑈𝑖, with polar angle 𝜃𝑒 and azimuthal angle 𝜑𝑒 = 𝜑+𝜋,
relative to the direction of the incident photon. In this case cos 𝜃𝑒 is given by

cos 𝜃𝑒 =
𝐸 − 𝐸′ cos 𝜃√

𝐸2 + 𝐸′2 − 2𝐸𝐸′ cos 𝜃
.

Since the active electron shell is known, characteristic x-rays and electrons emitted in the de-excitation of the ionized
atom can also be followed. The de-excitation is simulated as described in Atomic relaxation. For further details see
[FS01].

6.4.5 Livermore Model

Total Cross Section

The total cross section for the Compton scattering process is determined from the data as described in Generic Calcu-
lation of Total Cross Sections. To avoid sampling problems in the Compton process the cross section is set to zero at
low-energy limit of cross section table, which is 100 eV in majority of EM Physics Lists.

Sampling of the Final State

For low energy incident photons, the simulation of the Compton scattering process is performed according to the same
procedure used for the “standard” Compton scattering simulation, with the addition that Hubbel’s atomic form fac-
tor [Hub97] or scattering function, 𝑆𝐹 , is taken into account. The angular and energy distribution of the incoherently
scattered photon is then given by the product of the Klein-Nishina formula Φ(𝜖) and the scattering function, 𝑆𝐹 (𝑞)
[Cul95]

𝑃 (𝜖, 𝑞) = Φ(𝜖) × 𝑆𝐹 (𝑞).

𝜖 is the ratio of the scattered photon energy 𝐸′, and the incident photon energy 𝐸. The momentum transfer is given
by 𝑞 = 𝐸 × sin2(𝜃/2), where 𝜃 is the polar angle of the scattered photon with respect to the direction of the parent
photon. Φ(𝜖) is given by

Φ(𝜖) ∼=
[︂

1

𝜖
+ 𝜖

]︂ [︂
1 − 𝜖

1 + 𝜖2
sin2 𝜃

]︂
.

The effect of the scattering function becomes significant at low energies, especially in suppressing forward scatter-
ing [Cul95].

The sampling method of the final state is based on composition and rejection Monte Carlo methods
[BM60][MC70][NHR85], with the 𝑆𝐹 function included in the rejection function

𝑔(𝜖) =

[︂
1 − 𝜖

1 + 𝜖2
sin2 𝜃

]︂
× 𝑆𝐹 (𝑞),
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with 0 < 𝑔(𝜖) < 𝑍. Values of the scattering functions at each momentum transfer, 𝑞, are obtained by interpolating the
evaluated data for the corresponding atomic number, 𝑍.

The polar angle 𝜃 is deduced from the sampled 𝜖 value. In the azimuthal direction, the angular distributions of both
the scattered photon and the recoil electron are considered to be isotropic [Ste].

Since the incoherent scattering occurs mainly on the outermost electronic subshells, the binding energies can be
neglected, as stated in reference [Ste]. The momentum vector of the scattered photon,

−→
𝑃 ′
𝛾 , is transformed into the

World coordinate system. The kinetic energy and momentum of the recoil electron are then

𝑇𝑒𝑙 = 𝐸 − 𝐸′

−→
𝑃𝑒𝑙 =

−→
𝑃𝛾 −

−→
𝑃 ′
𝛾 .

6.4.6 Monash University Low Energy Model

Introduction

The Monash Compton Scattering models, for polarised (G4LowEPPolarizedComptonModel) and non-polarised
(G4LowEPComptonModel) photons, are an alternative set of Compton scattering models to those of Livermore and
Penelope that were constructed using Ribberfors’ theoretical framework [R75][Bru96][Kip04]. The limitation of the
Livermore and Penelope models is that only the components of the pre-collision momentum of the target electron con-
tained within the photon plane, two-dimensional plane defined by the incident and scattered photon, is incorporated
into their scattering frameworks [Sal01]. Both models are forced to constrain the ejected direction of the Compton
electron into the photon plane as a result. The Monash Compton scattering models avoid this limitation through the
use of a two-body fully relativistic three-dimensional scattering framework to ensure the conservation of energy and
momentum in the Relativistic Impulse Approximation (RIA) [M29][Bro14].

Physics and Simulation

Total Cross Section

The Monash Compton scattering models were built using the Livermore and Polarised Livermore Compton scattering
models as templates. As a result the total cross section for the Compton scattering process and handling of polarisation
effects mimic those outlined in Low Energy Livermore Model.

Sampling of the Final State

The scattering diagram seen in Fig. 6.1 outlines the basic principles of Compton scattering with an electron of non-zero
pre-collision momentum in the RIA.

The process of sampling the target atom, atomic shell and target electron pre-collision momentum mimic that outlined
in Low Energy Livermore Model. After the sampling of these parameters the following four equations are utilised to
model the scattered photon energy 𝐸′, recoil electron energy 𝑇𝑒𝑙 and recoil electron polar and azimuthal angles (𝜑 and
𝜓) with respect to the incident photon direction and out-going plane of polarisation:

𝐸′ =
𝛾𝑚𝑐 (𝑐− 𝑢 cos𝛼)

1 − cos 𝜃 + 𝛾𝑚𝑐(𝑐−𝑢 cos 𝜃 cos𝛼−𝑢 sin 𝜃 sin𝛼 cos 𝛽)
𝐸

,

𝑇𝑒𝑙 = 𝐸 − 𝐸′ − 𝐸𝐵 ,

cos𝜑 =
−𝑌 ±

√
𝑌 2 − 4𝑊𝑍

2𝑊
,
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Fig. 6.1: Scattering diagram of atomic bound electron Compton scattering. P is the incident photon momentum, Q
the electron pre-collision momentum, P′ the scattered photon momentum and Q′ the recoil electron momentum.

cos𝜓 =
𝐶 −𝐵 cos𝜑

𝐴 sin𝜑
,

where:

𝐴 = 𝐸′𝑢′ sin 𝜃,

𝐵 = 𝐸′𝑢′ cos 𝜃 − 𝐸𝑢′,

𝐶 = 𝑐 (𝐸′ − 𝐸) − 𝐸𝐸′

𝛾′𝑚𝑐
(1 − cos 𝜃) ,

𝐷 =
𝛾𝑚𝐸′

𝑐
(𝑐− 𝑢 cos 𝜃 cos𝛼− 𝑢 sin 𝜃 cos𝛽 sin𝛼) +𝑚2𝑐2 (𝛾𝛾′ − 1) − 𝛾′𝑚𝐸′,

𝐹 =

(︂
𝛾𝛾′𝑚2𝑢𝑢′ cos𝛽 sin𝛼− 𝛾′𝑚𝐸′𝑢′

𝑐
sin 𝜃

)︂
,

𝐺 = 𝛾𝛾′𝑚2𝑢𝑢′ sin𝛽 sin𝛼,

𝐻 =

(︂
𝛾𝛾′𝑚2𝑢𝑢′ cos𝛼− 𝛾′𝑚𝐸′

𝑐
𝑢′ cos 𝜃

)︂
,

𝑊 = (𝐹𝐵 −𝐻𝐴)
2

+𝐺2𝐴2 +𝐺2𝐵2,

𝑌 = 2
(︀
(𝐴𝐷 − 𝐹𝐶) (𝐹𝐵 −𝐻𝐴) −𝐺2𝐵𝐶

)︀
,

𝑍 = (𝐴𝐷 − 𝐹𝐶)
2

+𝐺2
(︀
𝐶2 −𝐴2

)︀
,

and 𝑐 is the speed of light, 𝑚 is the rest mass of an electron, 𝑢 is the speed of the target electron, 𝑢′ is the speed of
the recoil electron, 𝛾 =

(︀
1 −

(︀
𝑢2/𝑐2

)︀)︀−1/2
and 𝛾′ =

(︀
1 −

(︀
𝑢′2/𝑐2

)︀)︀−1/2
. Further information regarding the Monash

Compton scattering models can be found in [Bro14].

6.5 Gamma Conversion into e+e- Pair

In the standard sub-package two models are available. The first model is implemented in the class
G4BetheHeitlerModel, it was derived from Geant3 and is applicable below 100 GeV. In the second
(G4PairProductionRelModel) Landau-Pomeranchuk-Migdal (LPM) effect is taken into account and this model can
be applied for high energy gammas (above 100 MeV).
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6.5.1 Cross Section

According [HubbellGimmverb80], [Hei54] the total cross-section per atom for the conversion of a 𝛾 into an (𝑒+, 𝑒−)
pair has been parameterized as

𝜎(𝑍,𝐸𝛾) = 𝑍(𝑍 + 1)

[︂
𝐹1(𝑋) + 𝐹2(𝑋) 𝑍 +

𝐹3(𝑋)

𝑍

]︂
, (6.4)

where 𝐸𝛾 is the incident gamma energy and 𝑋 = ln(𝐸𝛾/𝑚𝑒𝑐
2) . The functions 𝐹𝑛 are given by

𝐹1(𝑋) = 𝑎0 + 𝑎1𝑋 + 𝑎2𝑋
2 + 𝑎3𝑋

3 + 𝑎4𝑋
4 + 𝑎5𝑋

5

𝐹2(𝑋) = 𝑏0 + 𝑏1𝑋 + 𝑏2𝑋
2 + 𝑏3𝑋

3 + 𝑏4𝑋
4 + 𝑏5𝑋

5

𝐹3(𝑋) = 𝑐0 + 𝑐1𝑋 + 𝑐2𝑋
2 + 𝑐3𝑋

3 + 𝑐4𝑋
4 + 𝑐5𝑋

5,

with the parameters 𝑎𝑖, 𝑏𝑖, 𝑐𝑖 taken from a least-squares fit to the data [HubbellGimmverb80]. Their values can be
found in the function which computes formula (6.4). This parameterization describes the data in the range

1 ≤ 𝑍 ≤ 100

and

𝐸𝛾 ∈ [1.5 MeV, 100 GeV].

The accuracy of the fit was estimated to be ∆ 𝜎/𝜎 ≤ 5% with a mean value of ≈ 2.2%. Above 100 GeV the cross
section is constant. Below 𝐸𝑙𝑜𝑤 = 1.5 MeV the extrapolation

𝜎(𝐸) = 𝜎(𝐸𝑙𝑜𝑤) ·
(︂

𝐸 − 2𝑚𝑒𝑐
2

𝐸𝑙𝑜𝑤 − 2𝑚𝑒𝑐2

)︂2

is used.

In a given material the mean free path, 𝜆, for a photon to convert into an (𝑒+, 𝑒−) pair is

𝜆(𝐸𝛾) =

(︃∑︁
𝑖

𝑛𝑎𝑡𝑖 · 𝜎(𝑍𝑖, 𝐸𝛾)

)︃−1

where 𝑛𝑎𝑡𝑖 is the number of atoms per volume of the 𝑖𝑡ℎ element of the material.

Corrected Bethe-Heitler Cross Section

As written in [Hei54], the Bethe-Heitler formula corrected for various effects is

𝑑𝜎(𝑍, 𝜖)

𝑑𝜖
= 𝛼𝑟2𝑒𝑍[𝑍 + 𝜉(𝑍)]

{︂
[𝜖2 + (1 − 𝜖)2]

[︂
Φ1(𝛿(𝜖)) − 𝐹 (𝑍)

2

]︂
+

2

3
𝜖(1 − 𝜖)

[︂
Φ2(𝛿(𝜖)) − 𝐹 (𝑍)

2

]︂}︂ (6.5)

where 𝛼 is the fine-structure constant and 𝑟𝑒 the classical electron radius. Here 𝜖 = 𝐸/𝐸𝛾 , 𝐸𝛾 is the energy of the
photon and 𝐸 is the total energy carried by one particle of the (𝑒+, 𝑒−) pair. The kinematical limits of 𝜖 are therefore

𝑚𝑒𝑐
2

𝐸𝛾
= 𝜖0 ≤ 𝜖 ≤ 1 − 𝜖0.
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Screening Effect

The screening variable, 𝛿, is a function of 𝜖

𝛿(𝜖) =
136

𝑍1/3

𝜖0
𝜖(1 − 𝜖)

,

and measures the ‘impact parameter’ of the projectile. Two screening functions are introduced in the Bethe-Heitler
formula:

for 𝛿 ≤ 1 Φ1(𝛿) = 20.867 − 3.242𝛿 + 0.625𝛿2

Φ2(𝛿) = 20.209 − 1.930𝛿 − 0.086𝛿2

for 𝛿 > 1 Φ1(𝛿) = Φ2(𝛿) = 21.12 − 4.184 ln(𝛿 + 0.952).

Because the formula (6.5) is symmetric under the exchange 𝜖↔ (1 − 𝜖), the range of 𝜖 can be restricted to

𝜖 ∈ [𝜖0, 1/2].

Born Approximation

The Bethe-Heitler formula is calculated with plane waves, but Coulomb waves should be used instead. To correct for
this, a Coulomb correction function is introduced in the Bethe-Heitler formula :

for 𝐸𝛾 < 50 MeV : 𝐹 (𝑧) = 8/3 ln𝑍
for 𝐸𝛾 ≥ 50 MeV : 𝐹 (𝑧) = 8/3 ln𝑍 + 8𝑓𝑐(𝑍)

with

𝑓𝑐(𝑍) = (𝛼𝑍)2
[︂

1

1 + (𝛼𝑍)2
+ 0.20206 − 0.0369(𝛼𝑍)2 + 0.0083(𝛼𝑍)4 − 0.0020(𝛼𝑍)6 + · · ·

]︂
.

It should be mentioned that, after these additions, the cross section becomes negative if

𝛿 > 𝛿𝑚𝑎𝑥(𝜖1) = exp

[︂
42.24 − 𝐹 (𝑍)

8.368

]︂
− 0.952.

This gives an additional constraint on 𝜖 :

𝛿 ≤ 𝛿𝑚𝑎𝑥 =⇒ 𝜖 ≥ 𝜖1 =
1

2
− 1

2

√︂
1 − 𝛿𝑚𝑖𝑛

𝛿𝑚𝑎𝑥

where

𝛿𝑚𝑖𝑛 = 𝛿

(︂
𝜖 =

1

2

)︂
=

136

𝑍1/3
4𝜖0

has been introduced. Finally the range of 𝜖 becomes

𝜖 ∈ [𝜖𝑚𝑖𝑛 = max(𝜖0, 𝜖1), 1/2].

Gamma Conversion in the Electron Field

The electron cloud gives an additional contribution to pair creation, proportional to 𝑍 (instead of 𝑍2). This is taken
into account through the expression

𝜉(𝑍) =
ln(1440/𝑍2/3)

ln(183/𝑍1/3) − 𝑓𝑐(𝑍)
.
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Fig. 6.2: Calculation of 𝜖 for gamma conversion.

Factorization of the Cross Section

𝜖 is sampled using the techniques of ‘composition+rejection’, as treated in [FN78][BM60][MC70]. First, two auxiliary
screening functions should be introduced:

𝐹1(𝛿) = 3Φ1(𝛿) − Φ2(𝛿) − 𝐹 (𝑍)

𝐹2(𝛿) =
3

2
Φ1(𝛿) − 1

2
Φ2(𝛿) − 𝐹 (𝑍)

It can be seen that 𝐹1(𝛿) and 𝐹2(𝛿) are decreasing functions of 𝛿, ∀𝛿 ∈ [𝛿𝑚𝑖𝑛, 𝛿𝑚𝑎𝑥]. They reach their maximum for
𝛿𝑚𝑖𝑛 = 𝛿(𝜖 = 1/2) :

𝐹10 = max𝐹1(𝛿) = 𝐹1(𝛿𝑚𝑖𝑛)

𝐹20 = max𝐹2(𝛿) = 𝐹2(𝛿𝑚𝑖𝑛).

After some algebraic manipulations the formula (6.5) can be written:

𝑑𝜎(𝑍, 𝜖)

𝑑𝜖
= 𝛼𝑟2𝑒𝑍[𝑍 + 𝜉(𝑍)]

2

9

[︂
1

2
− 𝜖𝑚𝑖𝑛

]︂
[𝑁1 𝑓1(𝜖) 𝑔1(𝜖) +𝑁2 𝑓2(𝜖) 𝑔2(𝜖)] , (6.6)

where

𝑁1 =
[︀
1
2 − 𝜖𝑚𝑖𝑛

]︀2
𝐹10 𝑓1(𝜖) = 3

[ 1
2−𝜖𝑚𝑖𝑛]

3

[︀
1
2 − 𝜖

]︀2
𝑔1(𝜖) = 𝐹1(𝜖)

𝐹10

𝑁2 = 3
2𝐹20 𝑓2(𝜖) = const = 1

[ 1
2−𝜖𝑚𝑖𝑛]

𝑔2(𝜖) = 𝐹2(𝜖)
𝐹20

.

𝑓1(𝜖) and 𝑓2(𝜖) are probability density functions on the interval 𝜖 ∈ [𝜖𝑚𝑖𝑛, 1/2] such that∫︁ 1/2

𝜖𝑚𝑖𝑛

𝑓𝑖(𝜖) 𝑑𝜖 = 1,

and 𝑔1(𝜖) and 𝑔2(𝜖) are valid rejection functions: 0 < 𝑔𝑖(𝜖) ≤ 1 .

6.5.2 Final State

The differential cross section depends on the atomic number 𝑍 of the material in which the interaction occurs. In a
compound material the element 𝑖 in which the interaction occurs is chosen randomly according to the probability

𝑃𝑟𝑜𝑏(𝑍𝑖, 𝐸𝛾) =
𝑛𝑎𝑡𝑖𝜎(𝑍𝑖, 𝐸𝛾)∑︀
𝑖[𝑛𝑎𝑡𝑖 · 𝜎𝑖(𝐸𝛾)]

.
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Sampling the Energy

Given a triplet of uniformly distributed random numbers (𝑟𝑎, 𝑟𝑏, 𝑟𝑐) :

1. use 𝑟𝑎 to choose which decomposition term in (6.6) to use:

if 𝑟𝑎 < 𝑁1/(𝑁1 +𝑁2) → 𝑓1(𝜖) 𝑔1(𝜖)

otherwise → 𝑓2(𝜖) 𝑔2(𝜖)

2. sample 𝜖 from 𝑓1(𝜖) or 𝑓2(𝜖) with 𝑟𝑏 :

𝜖 =
1

2
−
(︂

1

2
− 𝜖𝑚𝑖𝑛

)︂
𝑟
1/3
𝑏 or 𝜖 = 𝜖𝑚𝑖𝑛 +

(︂
1

2
− 𝜖𝑚𝑖𝑛

)︂
𝑟𝑏

3. reject 𝜖 if 𝑔1(𝜖)or 𝑔2(𝜖) < 𝑟𝑐

Note: below 𝐸𝛾 = 2 MeV it is enough to sample 𝜖 uniformly on [𝜖0, 1/2], without rejection.

Charge

The charge of each particle of the pair is fixed randomly.

Polar Angle of the Electron or Positron

The polar angle of the electron (or positron) is defined with respect to the direction of the parent photon. The energy-
angle distribution given by Tsai [Tsa74][Tsa77] is quite complicated to sample and can be approximated by a density
function suggested by Urban [Bru93] :

∀𝑢 ∈ [0, ∞[ 𝑓(𝑢) =
9𝑎2

9 + 𝑑
[𝑢 exp(−𝑎𝑢) + 𝑑 𝑢 exp(−3𝑎𝑢)] (6.7)

with

𝑎 =
5

8
𝑑 = 27 and 𝜃± =

𝑚𝑐2

𝐸±
𝑢.

A sampling of the distribution (6.7) requires a triplet of random numbers such that

if 𝑟1 <
9

9 + 𝑑
→ 𝑢 =

− ln(𝑟2𝑟3)

𝑎
otherwise 𝑢 =

− ln(𝑟2𝑟3)

3𝑎
.

The azimuthal angle 𝜑 is generated isotropically. The 𝑒+ and 𝑒− momenta are assumed to be coplanar with the
parent photon. This information, together with energy conservation, is used to calculate the momentum vectors of the
(𝑒+, 𝑒−) pair and to rotate them to the global reference system.

6.5.3 Ultra-Relativistic Model

It is implemented in the class G4PairProductionRelModel and is configured above 80 GeV in all reference Physics
lists. The cross section is computed using direct integration of differential cross section [Tsa74][Tsa77] and not its
parameterisation described in Cross Section. LPM effect is taken into account in the same way as for bremsstrahlung
Bremsstrahlung of high-energy electrons. Secondary generation algorithm is the same as in the standard Bethe-Heitler
model.
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6.5.4 Penelope Model

Total cross section

The total cross section of the 𝛾 conversion process is determined from the data [BH87], as described in Generic
Calculation of Total Cross Sections.

Sampling of the final state

The energies 𝐸− and 𝐸+ of the secondary electron and positron are sampled using the Bethe-Heitler cross section
with the Coulomb correction, using the semiempirical model of Ref. [JBaro94]. If

𝜖 =
𝐸− +𝑚𝑒𝑐

2

𝐸

is the fraction of the 𝛾 energy 𝐸 which is taken away from the electron,

𝜅 =
𝐸

𝑚𝑒𝑐2
and 𝑎 = 𝛼𝑍,

the differential cross section, which includes a low-energy correction and a high-energy radiative correction, is

𝑑𝜎

𝑑𝜖
= 𝑟2𝑒𝑎(𝑍 + 𝜂)𝐶𝑟

2

3

[︁
2
(︁1

2
− 𝜖
)︁2
𝜑1(𝜖) + 𝜑2(𝜖)

]︁
, (6.8)

where:

𝜑1(𝜖) =
7

3
− 2 ln(1 + 𝑏2) − 6𝑏 arctan(𝑏−1)

− 𝑏2[4 − 4𝑏 arctan(𝑏−1) − 3 ln(1 + 𝑏−2)]

+ 4 ln(𝑅𝑚𝑒𝑐/~) − 4𝑓𝐶(𝑍) + 𝐹0(𝜅, 𝑍)

and

𝜑2(𝜖) =
11

6
− 2 ln(1 + 𝑏2) − 3𝑏 arctan(𝑏−1)

+
1

2
𝑏2[4 − 4𝑏 arctan(𝑏−1) − 3 ln(1 + 𝑏−2)]

+ 4 ln(𝑅𝑚𝑒𝑐/~) − 4𝑓𝐶(𝑍) + 𝐹0(𝜅, 𝑍),

with

𝑏 =
𝑅𝑚𝑒𝑐

~
1

2𝜅

1

𝜖(1 − 𝜖)
.

In this case 𝑅 is the screening radius for the atom 𝑍 (tabulated in [HubbellGimmverb80] for :math:(Z=1) to 92) and
𝜂 is the contribution of pair production in the electron field (rather than in the nuclear field). The parameter 𝜂 is
approximated as

𝜂 = 𝜂∞(1 − 𝑒−𝑣),

where

𝑣 = (0.2840 − 0.1909𝑎) ln(4/𝜅) + (0.1095 + 0.2206𝑎) ln2(4/𝜅)

+ (0.02888 − 0.04269𝑎) ln3(4/𝜅) + (0.002527 + 0.002623) ln4(4/𝜅)
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and 𝜂∞ is the contribution for the atom 𝑍 in the high-energy limit and is tabulated for 𝑍 = 1 to 92 in Ref.
[HubbellGimmverb80]. In the Eq.(6.8), the function 𝑓𝐶(𝑍) is the high-energy Coulomb correction of Ref. [HD54],
given by

𝑓𝐶(𝑍) = 𝑎2[(1 + 𝑎2)−1 + 0.202059 − 0.03693𝑎2 + 0.00835𝑎4

− 0.00201𝑎6 + 0.00049𝑎8 − 0.00012𝑎10 + 0.00003𝑎12];

𝐶𝑟 = 1.0093 is the high-energy limit of Mork and Olsen’s radiative correction (see Ref. [HubbellGimmverb80]);
𝐹0(𝜅, 𝑍) is a Coulomb-like correction function, which has been analytically approximated as [FS01]

𝐹0(𝜅, 𝑍) = (−0.1774 − 12.10𝑎+ 11.18𝑎2)(2/𝜅)1/2

+ (8.523 + 73.26𝑎− 44.41𝑎2)(2/𝜅)

− (13.52 + 121.1𝑎− 96.41𝑎2)(2/𝜅)3/2

+ (8.946 + 62.05𝑎− 63.41𝑎2)(2/𝜅)2.

The kinetic energy 𝐸+ of the secondary positron is obtained as

𝐸+ = 𝐸 − 𝐸− − 2𝑚𝑒𝑐
2.

The polar angles 𝜃− and 𝜃+ of the directions of movement of the electron and the positron, relative to the direction
of the incident photon, are sampled from the leading term of the expression obtained from high-energy theory (see
Ref.[JWM69])

𝑝(cos 𝜃±) = 𝑎(1 − 𝛽± cos 𝜃±)−2,

where 𝑎 is the a normalization constant and 𝛽± is the particle velocity in units of the speed of light. As the directions
of the produced particles and of the incident photon are not necessarily coplanar, the azimuthal angles 𝜑− and 𝜑+ of
the electron and of the positron are sampled independently and uniformly in the interval (0, 2𝜋).

6.5.5 Livermore Model

Total cross-section

The total cross-section of the Gamma Conversion process is determined from the data as described in Generic Calcu-
lation of Total Cross Sections.

Sampling of the final state

For low energy incident photons, the simulation of the Gamma Conversion final state is performed according to
[Bru93].

The secondary 𝑒± energies are sampled using the Bethe-Heitler cross-sections with Coulomb correction.

The Bethe-Heitler differential cross-section with the Coulomb correction for a photon of energy 𝐸 to produce a pair
with one of the particles having energy 𝜖𝐸 (𝜖 is the fraction of the photon energy carried by one particle of the pair) is
given by [FN78]:

𝑑𝜎(𝑍,𝐸, 𝜖)

𝑑𝜖
=
𝑟20𝛼𝑍(𝑍 + 𝜉(𝑍))

𝐸2

[︂
(𝜖2 + (1 − 𝜖)2)

(︂
Φ1(𝛿) − 𝐹 (𝑍)

2

)︂
+

2

3
𝜖(1 − 𝜖)

(︂
Φ2(𝛿) − 𝐹 (𝑍)

2

)︂]︂
(6.9)

where Φ𝑖(𝛿) are the screening functions depending on the screening variable 𝛿 [Bru93].

The value of 𝜖 is sampled using composition and rejection Monte Carlo methods [Bru93][BM60][MC70].
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After the successful sampling of 𝜖, the process generates the polar angles of the electron with respect to an axis
defined along the direction of the parent photon. The electron and the positron are assumed to have a symmetric
angular distribution. The energy-angle distribution is given by [Tsa74][Tsa77]:

𝑑𝜎

𝑑𝑝𝑑Ω
=

2𝛼2𝑒2

𝜋𝑘𝑚4

[︃(︃
2𝑥(1 − 𝑥)

(1 + 𝑙)

2

− 12𝑙𝑥(1 − 𝑥)

(1 + 𝑙)4

)︃
(𝑍2 + 𝑍)+

+

(︂
2𝑥2 − 2𝑥+ 1

(1 + 𝑙)2
+

4𝑙𝑥(1 − 𝑥)

(1 + 𝑙)4

)︂
(𝑋 − 2𝑍2𝑓((𝛼𝑍)2))

]︂
where 𝑘 is the photon energy, 𝑝 the momentum and 𝐸 the energy of the electron of the 𝑒± pair 𝑥 = 𝐸/𝑘 and
𝑙 = 𝐸2𝜃2/𝑚2. The sampling of this cross-section is obtained according to [Bru93].

The azimuthal angle 𝜑 is generated isotropically.

This information together with the momentum conservation is used to calculate the momentum vectors of both decay
products and to transform them to the GEANT4 coordinate system. The choice of which particle in the pair is the
electron/positron is made randomly.

6.6 Livermore Triple Gamma Conversion

The class G4BoldyshevTripletModel was developed to simulate the pair production by linearly polarized gamma
rays on electrons For the angular distribution of electron recoil we used the cross section by Vinokurov and Ku-
raev [VK72][VK73] using the Borsellino diagrams in the high energy For energy distribution for the pair, we used
Boldyshev [VFBP94] formula that differs only in the normalization from Wheeler-Lamb. The cross sections include
a cut off for momentum detections [MLI11].

6.6.1 Method

The first step is sample the probability to have an electron recoil with momentum greater than a threshold define by
the user (by default, this value is 𝑝0 = 1 in units of 𝑚𝑐). This probability is

𝜎(𝑝 ≥ 𝑝0) = 𝛼𝑟20

(︂
82

27
− 14

9
ln𝑋0 +

4

15
𝑋0 − 0.0348𝑋2

0 + 0.008𝑋3
0 − ...

)︂

𝑋0 = 2

(︂√︁
𝑝20+ − 1

)︂
.

Since that total cross section is 𝜎 = 𝛼𝑟20
(︀
28
4 ln 2𝐸𝛾 − 218

27

)︀
, if a random number is 𝜉 ≥ 𝜎(𝑝 ≥ 𝑝0)/𝜎 we create the

electron recoil, otherwise we deposited the energy in the local point.

6.6.2 Azimuthal Distribution for Electron Recoil

The expression for the differential cross section is composed of two terms which express the azimuthal dependence as
follows:

𝑑𝜎 = 𝑑𝜎(𝑡) − 𝑃𝑑𝜎(𝑙) cos(2𝜙)

Where both 𝑑𝜎(𝑡) and 𝑑𝜎(𝑙) are independent of the azimuthal angle, 𝜙, referred to an origin chosen in the direction of
the polarization vector 𝑃 of the incoming photons.
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6.6.3 Monte Carlo Simulation of the Asymptotic Expression

In this section we present an algorithm for Monte Carlo simulation of the asymptotic expressions calculate by Vi-
nokurov et.al. [VK72][VK73].

We must generate random values of 𝜃 and 𝜙 distributed with probability proportional to the following function 𝑓(𝜃, 𝜙),
for 𝜃 restricted inside of its allowed interval value [VFBP94] (0, or 𝜃𝑚𝑎𝑥(𝑝0)):

𝑓 (𝜃, 𝜙) =
sin 𝜃

cos3 𝜃
(𝐹1 (𝜃) − P cos (2𝜙)𝐹𝑃 (𝜃)) (6.10)

𝐹1 (𝜃) = 1 − 1 − 5 cos2 𝜃

cos 𝜃
ln (cot (𝜃/2))

𝐹𝑃 (𝜃) = 1 − sin2 𝜃

cos 𝜃
ln (cot (𝜃/2))

As we will see, for 𝜃 < 𝜋/2, 𝐹1 is several times greater than 𝐹𝑃 , and since both are positive, it follows that 𝑓 is
positive for any possible value of 𝑃 (0 ≤ 𝑃 ≤ 1).

Since 𝐹1 is the dominant term in expression (6.10), it is more convenient to begin developing the algorithm of this
term, belonging to the unpolarized radiation.

6.6.4 Algorithm for Non Polarized Radiation

The algorithm was described in Ref.[GOD09]. We must generate random values of 𝜃 between 0 and 𝜃𝑚𝑎𝑥 =

arccos
(︁

𝐸1−𝑚𝑐2

𝑝0
+𝑚𝑐2𝐸1+𝑚𝑐2

𝐸𝛾𝑝0

)︁
, 𝐸1 =

√︀
𝑝20 + (𝑚𝑐2)2 distributed with probability proportional to the following

function 𝑓1(𝜃):

𝑓1(𝜃) =
sin(𝜃)

cos3(𝜃)

(︂
1 − 1 − 5 cos2(𝜃)

cos(𝜃)
ln(cot(𝜃/2))

)︂
=

sin(𝜃)

cos3(𝜃)
× 𝐹1 (𝜃)

By substitution cos(𝜃/2) =
√︁

1+cos 𝜃
2 and sin(𝜃/2) =

√︁
1−cos 𝜃

2 , we can write:

ln(cot(𝜃/2)) =
1

2
ln

(︂
1 + cos 𝜃

1 − cos 𝜃

)︂
In order to simulate the 𝑓1 function, it may be decomposed in two factors: the first, sin(𝜃)/ cos3(𝜃), easy to integrate,
and the other, 𝐹1(𝜃), which may constitute a reject function, on despite of its 𝜃 = 0 divergence. This is possible
because they have very low probability. On other hand, 𝜃 values near to zero are not useful to measure polarization
because for those angles it is very difficult to determine the azimuthal distribution (due to multiple scattering).

Then, it is possible to choose some value of 𝜃0, small enough that it is not important that the sample is fitted rigorously
for 𝜃 < 𝜃0, and at the same time 𝐹1(𝜃0) is not too big.

Modifying 𝐹1 so that it is constant for 𝜃 ≤ 𝜃0, we may obtain an adequate reject function. Doing this, we introduce
only a very few missed points, all of which lie totally outside of the interesting region.

Expanding 𝐹1 for great values of 𝜃, we see it is proportional to 𝑐𝑜𝑠2𝜃:

𝐹1 (𝜃) → 14

3
cos2 𝜃

(︂
1 +

33

35
cos2 𝜃 + . . .

)︂
, if 𝜃 → 𝜋/2

Thus, it is evident that 𝐹1 divided by cos2(𝜃) will be a better reject function, because it tends softly to a some constant
value (14/3 = 4, 6666...) for large 𝜃, whereas its behavior is not affected in the region of small 𝜃, where cos(𝜃) → 1.
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It seems adequate to choose 𝜃0 near 5∘, and, after some manipulation looking for round numbers we obtain:

𝐹1 (4.47∘)

cos2 (4.47∘)
∼= 14.00

Finally we define a reject function:

𝑟(𝜃) = 1
14

𝐹1(𝜃)
cos2(𝜃) = 1

14 cos2(𝜃)(︁
1 − 1−5 cos2(𝜃)

2 cos(𝜃) ln
(︁

1+cos 𝜃
1−cos 𝜃

)︁)︁
; for 𝜃 ≥ 4.470

𝑟 (𝜃) = 1 ; for𝜃 ≤ 4.470

Now we have a probability distribution function (PDF) for 𝜃, 𝑝(𝜃) = 𝐶𝑓1(𝜃), expressed as a product of another PDF,
𝜋(𝜃), by the reject function:

𝑝 (𝜃) = 𝐶𝑓1 (𝜃) ∼= 𝐶
′
𝜋 (𝜃) 𝑟 (𝜃)

where 𝐶 is the normalization constant belonging to the function 𝑝(𝜃).

One must note that the equality between 𝐶 ∼ 𝑓1(𝜃) and 𝐶
′
𝜋(𝜃)𝑟(𝜃) is not exact for small values of 𝜃, where we have

truncated the infinity of 𝐹1(𝜃); but this can not affect appreciably the distribution because 𝑓1 → 0 there. Now the PDF
𝜋(𝜃) is:

𝜋(𝜃) = 𝐶𝜋
14 sin(𝜃)

cos(𝜃)

From the normalization, the constant 𝐶𝜋 results:

𝐶𝜋 =
1

14
∫︀ 𝜃𝑚𝑎𝑥

0
sin(𝜃)
cos(𝜃)𝑑𝜃

=
−1

14 ln (cos(𝜃𝑚𝑎𝑥))
=

1

7
ln
(︁ 𝜔

4𝑚

)︁
And the relation with 𝐶 is given by:

𝐶 =
1∫︀ 𝜃𝑚𝑎𝑥

0
𝑓1(𝜃)𝑑𝜃

∼= 𝐶 ′𝐶𝜋

Then we obtain the cumulative probability by integrating the PDF 𝜋(𝜃):

𝑃𝜋 =

∫︁ 𝜃

0

𝜋(𝜃′)𝑑𝜃′ =
−14 ln(cos(𝜃))

7 ln
(︀

𝜔
4𝑚

)︀ =
2 ln(cos(𝜃))

ln (4𝑚/𝜔)

Finally for the Monte Carlo method we sample a random number 𝜉1 (between 0 and 1), which is defined as equal to
𝑃𝜋 , and obtain the corresponding 𝜃 value:

𝜉1 =
2 ln(cos 𝜃)

ln (4m/𝜔)
=

ln(cos 𝜃)

ln (cos(𝜃max))

Then,

𝜃 = arccos

⎛⎝(︂4𝑚

𝜔

)︂ 𝜉1
2

⎞⎠
Another random number 𝜉2 is sampled for the reject process: the 𝜃 value is accepted if 𝜉2 ≤ 𝑟(𝜃), and reject in the
contrary.

For 𝜃 ≤ 4, 47∘ all values are accepted. It happens automatically without any modification in the algorithm previously
defined (it is not necessary to define the truncated reject function for 𝜃 < 𝜃0).

48 Chapter 6. Gamma incident



Physics Reference Manual, Release 10.4

6.6.5 Algorithm for Polarized Radiation

The algorithm was also described in Ref.[GOD09]. As we have seen, the azimuthal dependence of the differential
cross section is given by the expressions and:

𝑓 (𝜃, 𝜙) =
sin 𝜃

cos3 𝜃
(𝐹1 (𝜃) − P cos (2𝜙)𝐹𝑃 (𝜃))

𝐹𝑃 (𝜃) = 1 − sin2 𝜃

cos 𝜃
ln (cot (𝜃/2))

We see that 𝐹𝑃 tends to 1 at 𝜃 = 0, decreases monotonically to 0 as 𝜃 goes to 𝜋/2.

Furthermore, the expansion of 𝐹𝑃 for 𝜃 near 𝜋/2 shows that it is proportional to cos2(𝜃), in virtue of which
𝐹𝑃 / cos2(𝜃) tends to a non null value, 2/3. This value is exactly 7 times the value of 𝐹1/ cos2(𝜃).

This suggests applying the combination method, rearranging the whole function as follows:

𝑓(𝜃, 𝜙) = tan(𝜃)
𝐹1(𝜃)

cos2(𝜃)

(︂
1 − cos(2𝜙)𝑃

𝐹𝑃 (𝜃)

𝐹1(𝜃)

)︂
and the normalized PDF 𝑝(𝜃, 𝜙):

𝑝(𝜃, 𝜙) = 𝐶𝑓(𝜃, 𝜙)

where is 𝐶 the normalization constant

1

𝐶
=

∫︁ 𝜃max

0

∫︁ 2𝜋

0

𝑓(𝜃, 𝜙) 𝑑𝜙𝑑𝜃

Taking account that
∫︀ 2𝜋

0
cos(2𝜙) 𝑑𝜙 = 0, then:

1

𝐶
= 2𝜋

∫︁ 𝜃max

0

tan(𝜃)
𝐹1(𝜃)

cos2(𝜃)
𝑑𝜃

On the other hand the integration over the azimuthal angle is straightforward and gives:

𝑞(𝜃) =

∫︁ 2𝜋

0

𝑝(𝜃, 𝜙)𝑑𝜙 = 2𝜋𝐶 tan(𝜃)
𝐹1(𝜃)

cos2(𝜃)

and 𝑝(𝜙/𝜃) is the conditional probability of 𝜙 given 𝜃:

𝑝(𝜙/𝜃) =
𝑝(𝜃, 𝜙)

𝑞(𝜃)
=

1

2𝜋𝐶 tan(𝜃) 𝐹1(𝜃)
cos2(𝜃)

𝐶
sin(𝜃)

cos3(𝜃)
𝐹1(𝜃)

(︂
1 − cos(2𝜙)𝑃

𝐹𝑃 (𝜃)

𝐹1(𝜃)

)︂

=
1

2𝜋

(︂
1 − cos(2𝜙)𝑃

𝐹𝑃 (𝜃)

𝐹1(𝜃)

)︂
Now the procedure consists of sampling 𝜃 according the PDF 𝑞(𝜃); then, for each value of 𝜃 we must sample 𝜙
according to the conditional PDF 𝑝(𝜙/𝜃).

Knowing that 𝐹1 is several times greater than 𝐹𝑃 , we can see that P 𝐹1/𝐹𝑃 ≪ 1, and thus 𝑝(𝜙/𝜃) maintains a nearly
constant value slightly diminished in some regions of 𝜙. Consequently the 𝜙 sample can be done directly by the
rejecting method with high efficiency.

On the other hand, 𝑞(𝜃) is the same function 𝑝(𝜃) given by , that is the PDF for unpolarized radiation, 𝑞(𝜃) ∼=
𝐶 ′𝜋(𝜃)𝑟(𝜃), so we can sample 𝜃 with exactly the same procedure, specified as follows:

1. We begin sampling a random number 𝜉1 and obtain 𝜃 from :

𝜃 = arccos

⎛⎝(︂4𝑚

𝜔

)︂ 𝜉1
2

⎞⎠
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2. Then we sample a second random number 𝜉2 and accept the values of 𝜃 if 𝜉2 ≤ 𝑟(𝜃), where 𝑟(𝜃) is the same
expression defined before:

𝑟(𝜃) =
1

14 cos2 𝜃

[︂
1 − 1 − 5 cos2 𝜃

2 cos 𝜃
ln

(︂
1 + cos 𝜃

1 − cos 𝜃

)︂]︂
For 𝜃 ≥ 4, 47∘ and for 𝜃 ≤ 4, 47∘ all values are accepted.

3. Now we sample 𝜙. According to the reject method, we sample a third random number 𝜉3 (which is defined as
𝜙/2𝜋) and evaluate the reject function (which is essentially):

𝑟𝜃(𝜉3) =
1

2𝜋

(︂
1 − cos (4𝜋𝜉3)𝑃

𝐹𝑃 (𝜃)

𝐹1 (𝜃)

)︂

=
1

2𝜋

(︃
1 − cos(4𝜋𝜉3)𝑃

cos 𝜃 − sin2 𝜃 ln
(︀
cot
(︀
𝜃
2

)︀)︀
cos 𝜃 − (1 − 5 cos2 𝜃) ln

(︀
cot
(︀
𝜃
2

)︀)︀)︃

4. Finally, with a fourth random number 𝜉4 , we accept the values of 𝜙 = 2𝜋𝜉4 if 𝜉4 ≤ 𝑟𝜃(𝜉3).

6.6.6 Sampling of Energy

For the electron recoil we calculate the energy from the maximum momentum that can take according with the 𝜃 angle

𝐸𝑟 = 𝑚𝑐2
(︀
𝑆 + (𝑚𝑐2)2

)︀
𝐷2

where

𝑆 = 𝑚𝑐2
(︀
2𝐸𝑔𝑎𝑚𝑚𝑎 +𝑚𝑐2

)︀
𝐷2 = 4𝑆𝑚𝑐2 +

(︀
𝑆 − (𝑚𝑐2)2

)︀2
sin2(𝜃)

The remnant energy is distributed to the pair according to the Boldyshev formula [VFBP94] (𝑥 is the fraction of the
positron energy):

2𝜋
𝑑2𝜎

𝑑𝑥𝑑𝜑
= 2𝛼𝑟20 {[1 − 2𝑥 (1 − 𝑥)] 𝐽1(𝑝0) + 2𝑥 (1 − 𝑥) [1 − 𝑃 cos(𝜑)] 𝐽2(𝑝0)}

𝐽1(𝑝0) = 2

(︂
𝑡
cosh(𝑡)

sinh(𝑡)
− 𝑙𝑛(2 sinh(𝑡))

)︂
𝐽2(𝑝0) = −2

3
ln(2 sinh(𝑡)) + 𝑡

cosh(𝑡)

sinh(𝑡)
+

sinh(𝑡) − 𝑡 cosh3(𝑡)

3 sinh3(𝑡)
, sinh(2𝑡) = 𝑝0

This distribution can by written like a PDF for 𝑥:

𝑃 (𝑥) = 𝑁 (1 − 𝐽𝑥(1 − 𝑥))

where 𝑁 is a normalization constant and 𝐽 = (𝐽1 − 𝐽2)/𝐽1. Solving for 𝑥 (𝜉 is a random number):

𝑥 =
𝑐
1/3
1

2𝐽
+
𝐽 − 4

2𝑐
1/3
1

+
1

2

𝑐1 = (−6 + 12𝑟𝑛 + 𝐽 + 2𝑎) 𝐽2

𝑎 =
(︁

16−3𝐽−36𝑟𝑛+36𝐽𝑟2𝑛+6𝑟𝑛𝐽
2

𝐽

)︁
𝑟𝑛 = 𝜉

(︀
1 − 𝐽

6

)︀
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6.7 Gamma Conversion into 𝜇+𝜇− Pair

The class G4GammaConversionToMuons simulates the process of gamma conversion into muon pairs. Given the
photon energy and 𝑍 and 𝐴 of the material in which the photon converts, the probability for the conversions to take
place is calculated according to a parameterized total cross section. Next, the sharing of the photon energy between
the 𝜇+ and 𝜇− is determined. Finally, the directions of the muons are generated. Details of the implementation are
given below and can be also found in [BKK02].

6.7.1 Cross Section and Energy Sharing

Muon pair production on atomic electrons, 𝛾+𝑒→ 𝑒+𝜇++𝜇−, has a threshold of 2𝑚𝜇(𝑚𝜇+𝑚𝑒)/𝑚𝑒 ≈ 43.9 GeV .
Up to several hundred GeV this process has a much lower cross section than the corresponding process on the nucleus.
At higher energies, the cross section on atomic electrons represents a correction of ∼ 1/𝑍 to the total cross section.

For the approximately elastic scattering considered here, momentum, but no energy, is transferred to the nucleon. The
photon energy is fully shared by the two muons according to

𝐸𝛾 = 𝐸+
𝜇 + 𝐸−

𝜇

or in terms of energy fractions

𝑥+ =
𝐸+

𝜇

𝐸𝛾
, 𝑥− =

𝐸−
𝜇

𝐸𝛾
, 𝑥+ + 𝑥− = 1 .

The differential cross section for electromagnetic pair creation of muons in terms of the energy fractions of the muons
is

𝑑𝜎

𝑑𝑥+
= 4𝛼𝑍2 𝑟2𝑐

(︂
1 − 4

3
𝑥+𝑥−

)︂
log(𝑊 ) , (6.11)

where 𝑍 is the charge of the nucleus, 𝑟𝑐 is the classical radius of the particles which are pair produced (here muons)
and

𝑊 = 𝑊∞
1 + (𝐷𝑛

√
𝑒− 2) 𝛿 /𝑚𝜇

1 +𝐵 𝑍−1/3
√
𝑒 𝛿 /𝑚𝑒

(6.12)

where

𝑊∞ =
𝐵 𝑍−1/3

𝐷𝑛

𝑚𝜇

𝑚𝑒
𝛿 =

𝑚2
𝜇

2𝐸𝛾 𝑥+𝑥−

√
𝑒 = 1.6487 . . . .

For hydrogen, 𝐵 = 202.4 and 𝐷𝑛 = 1.49. For all other nuclei, 𝐵 = 183 and 𝐷𝑛 = 1.54𝐴0.27.

These formulae are obtained from the differential cross section for muon bremsstrahlung [KKP95] by means of cross-
ing relations. The formulae take into account the screening of the field of the nucleus by the atomic electrons in the
Thomas-Fermi model, as well as the finite size of the nucleus, which is essential for the problem under consideration.
The above parameterization gives good results for 𝐸𝛾 ≫ 𝑚𝜇. The fact that it is approximate close to threshold is of
little practical importance. Close to threshold, the cross section is small and the few low energy muons produced will
not travel very far. The cross section calculated from Eq.(6.11) is positive for 𝐸𝛾 > 4𝑚𝜇 and

𝑥min ≤ 𝑥 ≤ 𝑥max with 𝑥min =
1

2
−

√︃
1

4
− 𝑚𝜇

𝐸𝛾
𝑥max =

1

2
+

√︃
1

4
− 𝑚𝜇

𝐸𝛾
,

except for very asymmetric pair-production, close to threshold, which can easily be taken care of by explicitly setting
𝜎 = 0 whenever 𝜎 < 0.
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Note that the differential cross section is symmetric in 𝑥+ and 𝑥− and that

𝑥+𝑥− = 𝑥− 𝑥2

where 𝑥 stands for either 𝑥+ or 𝑥−. By defining a constant

𝜎0 = 4𝛼𝑍2 𝑟2𝑐 log(𝑊∞) (6.13)

the differential cross section Eq.(6.11) can be rewritten as a normalized and symmetric as function of 𝑥:

1

𝜎0

𝑑𝜎

𝑑𝑥
=

[︂
1 − 4

3
(𝑥− 𝑥2)

]︂
log𝑊

log𝑊∞
. (6.14)

This is shown in Fig. 6.3 for several elements and a wide range of photon energies. The asymptotic differential cross
section for 𝐸𝛾 → ∞

1

𝜎0

𝑑𝜎∞
𝑑𝑥

= 1 − 4

3
(𝑥− 𝑥2)

is also shown.

Fig. 6.3: Normalized differential cross section for pair production as a function of 𝑥, the energy fraction of the photon
energy carried by one of the leptons in the pair. The function is shown for three different elements, hydrogen, beryllium
and lead, and for a wide range of photon energies.

6.7.2 Parameterization of the Total Cross Section

The total cross section is obtained by integration of the differential cross section Eq.(6.11), that is

𝜎tot(𝐸𝛾) =

∫︁ 𝑥max

𝑥min

𝑑𝜎

𝑑𝑥+
𝑑𝑥+ = 4𝛼𝑍2 𝑟2𝑐

∫︁ 𝑥max

𝑥min

(︂
1 − 4

3
𝑥+𝑥−

)︂
log(𝑊 ) 𝑑𝑥+ . (6.15)

𝑊 is a function of (𝑥+, 𝐸𝛾) and (𝑍,𝐴) of the element (see Eq.(6.12)). Numerical values of 𝑊 are given in Table 6.2.

52 Chapter 6. Gamma incident



Physics Reference Manual, Release 10.4

Table 6.2: Numerical values of 𝑊 for 𝑥+ = 0.5 for different elements.
𝐸𝛾 [GeV] W for H W for Be W for Cu W for Pb
1 2.11 1.594 1.3505 5.212
10 19.4 10.85 6.803 43.53
100 191.5 102.3 60.10 332.7
1000 1803 919.3 493.3 1476.1
10000 11427 4671 1824 1028.1
∞ 28087 8549 2607 1339.8

Values of the total cross section obtained by numerical integration are listed in Table 6.3 for four different elements.
Units are in 𝜇barn , where 1𝜇barn = 10−34 m2 .

Table 6.3: Numerical values for the total cross section
𝐸𝛾 [GeV] 𝜎tot, H [𝜇barn ] 𝜎tot, Be [𝜇barn ] 𝜎tot, Cu [𝜇barn ] 𝜎tot, Pb [𝜇barn ]
1 0.01559 0.1515 5.047 30.22
10 0.09720 1.209 49.56 334.6
100 0.1921 2.660 121.7 886.4
1000 0.2873 4.155 197.6 1476
10000 0.3715 5.392 253.7 1880
∞ 0.4319 6.108 279.0 2042

Fig. 6.4: Total cross section for the Bethe-Heitler process 𝛾 → 𝜇+𝜇− as a function of the photon energy 𝐸𝛾 in
hydrogen and lead, normalized to the asymptotic cross section 𝜎∞.

Well above threshold, the total cross section rises about linearly in log(𝐸𝛾) with the slope

𝑊𝑀 =
1

4𝐷𝑛
√
𝑒𝑚𝜇

until it saturates due to screening at 𝜎∞. Fig. 6.4 shows the normalized cross section where

𝜎∞ =
7

9
𝜎0 and 𝜎0 = 4𝛼𝑍2 𝑟2𝑐 log(𝑊∞) .
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Numerical values of 𝑊𝑀 are listed in Table 6.4.

Table 6.4: Numerical values of 𝑊𝑀 .
Element 𝑊𝑀 [1/GeV]
H 0.963169
Be 0.514712
Cu 0.303763
Pb 0.220771

The total cross section can be parameterized as

𝜎par =
28𝛼𝑍2 𝑟2𝑐

9
log(1 +𝑊𝑀𝐶𝑓𝐸𝑔) , (6.16)

with

𝐸𝑔 =

(︂
1 − 4𝑚𝜇

𝐸𝛾

)︂𝑡 (︀
𝑊 𝑠

sat + 𝐸𝑠
𝛾

)︀1/𝑠
.

and

𝑊sat =
𝑊∞

𝑊𝑀
= 𝐵 𝑍−1/3

4
√
𝑒𝑚2

𝜇

𝑚𝑒
.

The threshold behavior in the cross section was found to be well approximated by 𝑡 = 1.479 + 0.00799𝐷𝑛 and the
saturation by 𝑠 = −0.88. The agreement at lower energies is improved using an empirical correction factor, applied
to the slope 𝑊𝑀 , of the form

𝐶𝑓 =

[︂
1 + 0.04 log

(︂
1 +

𝐸𝑐

𝐸𝛾

)︂]︂
,

where

𝐸𝑐 =

[︂
−18.+

4347.

𝐵 𝑍−1/3

]︂
GeV .

A comparison of the parameterized cross section with the numerical integration of the exact cross section shows that
the accuracy of the parametrization is better than 2%, as seen in Fig. 6.5.

Fig. 6.5: Ratio of numerically integrated and parametrized total cross sections as a function of 𝐸𝛾 for hydrogen,
beryllium, copper and lead.
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6.7.3 Multi-differential Cross Section and Angular Variables

The angular distributions are based on the multi-differential cross section for lepton pair production in the field of the
Coulomb center

𝑑𝜎

𝑑𝑥+ 𝑑𝑢+ 𝑑𝑢− 𝑑𝜙
=

4𝑍2𝛼3

𝜋

𝑚2
𝜇

𝑞4
𝑢+ 𝑢−×

×
{︂

𝑢2+ + 𝑢2−
(1 + 𝑢2+) (1 + 𝑢2−)

− 2𝑥+𝑥−

[︂
𝑢2+

(1 + 𝑢2+)2
+

𝑢2−
(1 + 𝑢2−)2

]︂
− 2𝑢+𝑢−(1 − 2𝑥+𝑥−) cos𝜙

(1 + 𝑢2+) (1 + 𝑢2−)

}︂
.

(6.17)

Here

𝑢± = 𝛾±𝜃± , 𝛾± =
𝐸±

𝜇

𝑚𝜇
, 𝑞2 = 𝑞2‖ + 𝑞2⊥ , (6.18)

where

𝑞2‖ = 𝑞2min (1 + 𝑥−𝑢
2
+ + 𝑥+𝑢

2
−)2 ,

𝑞2⊥ = 𝑚2
𝜇

[︀
(𝑢+ − 𝑢−)2 + 2𝑢+𝑢−(1 − cos𝜙)

]︀
.

(6.19)

𝑞2 is the square of the momentum q transferred to the target and 𝑞2‖ and 𝑞2⊥ are the squares of the components of the
vector q, which are parallel and perpendicular to the initial photon momentum, respectively. The minimum momentum
transfer is 𝑞min = 𝑚2

𝜇/(2𝐸𝛾 𝑥+𝑥−). The muon vectors have the components

p+ = 𝑝+ ( sin 𝜃+ cos(𝜙0 + 𝜙/2) , sin 𝜃+ sin(𝜙0 + 𝜙/2) , cos 𝜃+) ,
p− = 𝑝− (− sin 𝜃− cos(𝜙0 − 𝜙/2) , − sin 𝜃− sin(𝜙0 − 𝜙/2) , cos 𝜃−) ,

(6.20)

where 𝑝± =
√︁
𝐸2

± −𝑚2
𝜇. The initial photon direction is taken as the 𝑧-axis. The cross section of Eq.(6.17) does not

depend on 𝜙0. Because of azimuthal symmetry, 𝜙0 can simply be sampled at random in the interval (0, 2𝜋).

Eq.(6.17) is too complicated for efficient Monte Carlo generation. To simplify, the cross section is rewritten to be
symmetric in 𝑢+, 𝑢− using a new variable 𝑢 and small parameters 𝜉, 𝛽, where 𝑢± = 𝑢 ± 𝜉/2 and 𝛽 = 𝑢𝜙. When
higher powers in small parameters are dropped, the differential cross section in terms of 𝑢, 𝜉, 𝛽 becomes

𝑑𝜎

𝑑𝑥+ 𝑑𝜉 𝑑𝛽 𝑢𝑑𝑢
=

4𝑍2𝛼3

𝜋

𝑚2
𝜇(︁

𝑞2‖ +𝑚2
𝜇(𝜉2 + 𝛽2)

)︁2×
×
{︂
𝜉2
[︂

1

(1 + 𝑢2)2
− 2𝑥+𝑥−

(1 − 𝑢2)2

(1 + 𝑢2)4

]︂
+
𝛽2(1 − 2𝑥+𝑥−)

(1 + 𝑢2)2

}︂
,

(6.21)

where, in this approximation,

𝑞2‖ = 𝑞2min (1 + 𝑢2)2 .

For Monte Carlo generation, it is convenient to replace (𝜉, 𝛽) by the polar coordinates (𝜌, 𝜓) with 𝜉 = 𝜌 cos𝜓 and
𝛽 = 𝜌 sin𝜓. Integrating Eq.(6.21) over 𝜓 and using symbolically 𝑑𝑢2 where 𝑑𝑢2 = 2𝑢 𝑑𝑢 yields

𝑑𝜎

𝑑𝑥+ 𝑑𝜌 𝑑𝑢2
=

4𝑍2𝛼3

𝑚2
𝜇

𝜌3

(𝑞2‖/𝑚
2
𝜇 + 𝜌2)2

{︂
1 − 𝑥+𝑥−
(1 + 𝑢2)2

− 𝑥+𝑥−(1 − 𝑢2)2

(1 + 𝑢2)4

}︂
. (6.22)

Integration with logarithmic accuracy over 𝜌 gives

∫︁
𝜌3 𝑑𝜌

(𝑞2‖/𝑚
2
𝜇 + 𝜌2)2

≈
1∫︁

𝑞‖/𝑚𝜇

𝑑𝜌

𝜌
= log

(︂
𝑚𝜇

𝑞‖

)︂
.

6.7. Gamma Conversion into 𝜇+𝜇− Pair 55



Physics Reference Manual, Release 10.4

Within the logarithmic accuracy, log(𝑚𝜇/𝑞‖) can be replaced by log(𝑚𝜇/𝑞min), so that

𝑑𝜎

𝑑𝑥+ 𝑑𝑢2
=

4𝑍2𝛼3

𝑚2
𝜇

{︂
1 − 𝑥+𝑥−
(1 + 𝑢2)2

− 𝑥+𝑥−(1 − 𝑢2)2

(1 + 𝑢2)4

}︂
log

(︂
𝑚𝜇

𝑞min

)︂
.

Making the substitution 𝑢2 = 1/𝑡− 1, 𝑑𝑢2 = −𝑑𝑡 /𝑡2 gives

𝑑𝜎

𝑑𝑥+ 𝑑𝑡
=

4𝑍2𝛼3

𝑚2
𝜇

[1 − 2𝑥+𝑥− + 4𝑥+𝑥−𝑡 (1 − 𝑡)] log

(︂
𝑚𝜇

𝑞min

)︂
. (6.23)

Atomic screening and the finite nuclear radius may be taken into account by multiplying the differential cross section
determined by Eq.(6.21) with the factor

(𝐹𝑎(𝑞) − 𝐹𝑛(𝑞) )
2
,

where 𝐹𝑎 and 𝐹𝑛 are atomic and nuclear form factors. Please note that after integrating Eq.(6.22) over 𝜌, the 𝑞-
dependence is lost.

6.7.4 Procedure for the Generation of 𝜇+𝜇− Pairs

Given the photon energy 𝐸𝛾 and 𝑍 and 𝐴 of the material in which the 𝛾 converts, the probability for the conversions
to take place is calculated according to the parametrized total cross section Eq.(6.16). The next step, determining how
the photon energy is shared between the 𝜇+ and 𝜇−, is done by generating 𝑥+ according to Eq.(6.11). The directions
of the muons are then generated via the auxilliary variables 𝑡, 𝜌, 𝜓. In more detail, the final state is generated by
the following five steps, in which 𝑅1,2,3,4,... are random numbers with a flat distribution in the interval [0,1]. The
generation proceeds as follows.

1. Sampling of the positive muon energy 𝐸+
𝜇 = 𝑥+𝐸𝛾 . This is done using the rejection technique. 𝑥+ is first

sampled from a flat distribution within kinematic limits using

𝑥+ = 𝑥min +𝑅1(𝑥max − 𝑥min)

and then brought to the shape of Eq.(6.11) by keeping all 𝑥+ which satisfy(︂
1 − 4

3
𝑥+𝑥−

)︂
log(𝑊 )

log(𝑊max)
< 𝑅2 .

Here𝑊max = 𝑊 (𝑥+ = 1/2) is the maximum value of𝑊 , obtained for symmetric pair production at 𝑥+ = 1/2.
About 60% of the events are kept in this step. Results of a Monte Carlo generation of 𝑥+ are illustrated in Fig.
6.6. The shape of the histograms agrees with the differential cross section illustrated in Fig. 6.3.

2. Generate 𝑡(= 1
𝛾2𝜃2+1 ) . The distribution in 𝑡 is obtained from Eq.(6.23) as

𝑓1(𝑡) 𝑑𝑡 =
1 − 2𝑥+𝑥− + 4𝑥+𝑥−𝑡 (1 − 𝑡)

1 + 𝐶1/𝑡2
𝑑𝑡 , 0 < 𝑡 ≤ 1 .

with form factors taken into account by

𝐶1 =
(0.35𝐴0.27)2

𝑥+𝑥−𝐸𝛾/𝑚𝜇
.

In the interval considered, the function 𝑓1(𝑡) will always be bounded from above by

max[𝑓1(𝑡)] =
1 − 𝑥+𝑥−

1 + 𝐶1
.

For small 𝑥+ and large 𝐸𝛾 , 𝑓1(𝑡) approaches unity, as shown in Fig. 6.7.

The Monte Carlo generation is done using the rejection technique. About 70% of the generated numbers are
kept in this step. Generated 𝑡-distributions are shown in Fig. 6.9.
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Fig. 6.6: Histogram of generated 𝑥+ distributions for beryllium at three different photon energies. The total number
of entries at each energy is 106.

Fig. 6.7: The function 𝑓1(𝑡) at 𝐸𝛾 = 10 GeV in beryllium for different values of 𝑥+.

Fig. 6.8: The function 𝑓1(𝑡) at 𝐸𝛾 = 1 TeV in beryllium for different values of 𝑥+.
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Fig. 6.9: Histograms of generated 𝑡 distributions for 𝐸𝛾 = 10 GeV (solid line) and 𝐸𝛾 = 100 GeV (dashed line) with
106 events each.

Fig. 6.10: Histograms of generated 𝜓 distributions for beryllium at four different photon energies.
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3. Generate 𝜓 by the rejection technique using 𝑡 generated in the previous step for the frequency distribution

𝑓2(𝜓) =
[︁
1 − 2𝑥+𝑥− + 4𝑥+𝑥−𝑡 (1 − 𝑡) (1 + cos(2𝜓))

]︁
, 0 ≤ 𝜓 ≤ 2𝜋 .

The maximum of 𝑓2(𝜓) is

max[𝑓2(𝜓)] = 1 − 2𝑥+𝑥− [1 − 4 𝑡 (1 − 𝑡)] .

Generated distributions in 𝜓 are shown in Fig. 6.10.

4. Generate 𝜌. The distribution in 𝜌 has the form

𝑓3(𝜌) 𝑑𝜌 =
𝜌3 𝑑𝜌

𝜌4 + 𝐶2
, 0 ≤ 𝜌 ≤ 𝜌max ,

where

𝜌2max =
1.9

𝐴0.27

(︂
1

𝑡
− 1

)︂
,

and

𝐶2 =
4

√
𝑥+𝑥−

[︃(︂
𝑚𝜇

2𝐸𝛾𝑥+𝑥− 𝑡

)︂2

+

(︂
𝑚𝑒

183𝑍−1/3𝑚𝜇

)︂2
]︃2

.

The 𝜌 distribution is obtained by a direct transformation applied to uniform random numbers 𝑅𝑖 according to

𝜌 = [𝐶2(exp(𝛽 𝑅𝑖) − 1)]
1/4

,

where

𝛽 = log

(︂
𝐶2 + 𝜌4max

𝐶2

)︂
.

Generated distributions of 𝜌 are shown in Fig. 6.11

Fig. 6.11: Histograms of generated 𝜌 distributions for beryllium at two different photon energies. The total number of
entries at each energy is 106.

5. Calculate 𝜃+, 𝜃− and 𝜙 from 𝑡, 𝜌, 𝜓 with

𝛾± =
𝐸±

𝜇

𝑚𝜇
and 𝑢 =

√︂
1

𝑡
− 1 . (6.24)
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Fig. 6.12: Histograms of generated 𝜃+ distributions at different photon energies.

according to

𝜃+ =
1

𝛾+

(︁
𝑢+

𝜌

2
cos𝜓

)︁
, 𝜃− =

1

𝛾−

(︁
𝑢− 𝜌

2
cos𝜓

)︁
and 𝜙 =

𝜌

𝑢
sin𝜓 .

The muon vectors can now be constructed from Eq.(6.20), where 𝜙0 is chosen randomly between 0 and 2𝜋.
Fig. 6.12 shows distributions of 𝜃+ at different photon energies (in beryllium). The spectra peak around 1/𝛾 as
expected.

The most probable values are 𝜃+ ∼ 𝑚𝜇/𝐸
+
𝜇 = 1/𝛾+. In the small angle approximation used here, the values of

𝜃+ and 𝜃− can in principle be any positive value from 0 to ∞. In the simulation, this may lead (with a very small
probability, of the order of 𝑚𝜇/𝐸𝛾) to unphysical events in which 𝜃+ or 𝜃− is greater than 𝜋. To avoid this, a
limiting angle 𝜃cut = 𝜋 is introduced, and the angular sampling repeated, whenever max(𝜃+, 𝜃−) > 𝜃cut.

Fig. 6.13: Angular distribution of positive (or negative) muons. The solid curve represents the results of the exact
calculations. The histogram is the simulated distribution. The angular distribution for pairs created in the field of the
Coulomb centre (point-like target) is shown by the dashed curve for comparison.

Fig. 6.13, Fig. 6.14 and Fig. 6.15 show distributions of the simulated angular characteristics of muon pairs in com-
parison with results of exact calculations. The latter were obtained by means of numerical integration of the squared
matrix elements with respective nuclear and atomic form factors. All these calculations were made for iron, with
𝐸𝛾 = 10 GeV and 𝑥+ = 0.3. As seen from Fig. 6.13, wide angle pairs (at low values of the argument in the figure)
are suppressed in comparison with the Coulomb center approximation. This is due to the influence of the finite nu-
clear size which is comparable to the inverse mass of the muon. Typical angles of particle emission are of the order
of 1/𝛾± = 𝑚𝜇/𝐸

±
𝜇 (Fig. 6.14). Fig. 6.15 illustrates the influence of the momentum transferred to the target on the

angular characteristics of the produced pair. In the frame of the often used model which neglects target recoil, the pair
particles would be symmetric in transverse momenta, and coplanar with the initial photon.
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Fig. 6.14: Angular distribution in logarithmic scale. The curve corresponds to the exact calculations and the histogram
is the simulated distribution.

Fig. 6.15: Distribution of the difference of transverse momenta of positive and negative muons (with logarithmic
x-scale).
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CHAPTER

SEVEN

ENERGY LOSS OF CHARGED PARTICLES

7.1 Discrete Processes for Charged Particles

Some processes for charged particles following the same interface G4VEmProcess as gamma processes described in
Introduction to Gamma Processes.

• G4CoulombScattering;

• G4eplusAnnihilation (with additional AtRest methods);

• G4eplusPolarizedAnnihilation (with additional AtRest methods);

• G4eeToHadrons;

• G4NuclearStopping;

• G4MicroElecElastic;

• G4MicroElecInelastic.

Corresponding model classes follow the G4VEmModel interface:

• G4DummyModel (zero cross section, no secondaries);

• G4eCoulombScatteringModel;

• G4eSingleCoulombScatteringModel;

• G4IonCoulombScatteringModel;

• G4eeToHadronsModel;

• G4PenelopeAnnihilationModel;

• G4PolarizedAnnihilationModel;

• G4ICRU49NuclearStoppingModel;

• G4MicroElecElasticModel;

• G4MicroElecInelasticModel.

Some processes from do not follow described EM interfaces but provide direct implementations of the basic
G4VDiscreteProcess process:

• G4AnnihiToMuPair;

• G4ScreenedNuclearRecoil;

• G4Cerenkov;

• G4Scintillation;
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• G4SynchrotronRadiation;

7.2 Mean Energy Loss

Energy loss processes are very similar for 𝑒+/𝑒−, 𝜇+/𝜇− and charged hadrons, so a common description for them
was a natural choice in GEANT4 [SA03], [JA09]. Any energy loss process must calculate the continuous and discrete
energy loss in a material. Below a given energy threshold the energy loss is continuous and above it the energy loss is
simulated by the explicit production of secondary particles - gammas, electrons, and positrons.

7.2.1 Method

Let

𝑑𝜎(𝑍,𝐸, 𝑇 )

𝑑𝑇

be the differential cross-section per atom (atomic number 𝑍) for the ejection of a secondary particle with kinetic
energy 𝑇 by an incident particle of total energy 𝐸 moving in a material of density 𝜌. The value of the kinetic energy
cut-off or production threshold is denoted by 𝑇𝑐𝑢𝑡. Below this threshold the soft secondaries ejected are simulated as
continuous energy loss by the incident particle, and above it they are explicitly generated. The mean rate of energy
loss is given by:

𝑑𝐸𝑠𝑜𝑓𝑡(𝐸, 𝑇𝑐𝑢𝑡)

𝑑𝑥
= 𝑛𝑎𝑡 ·

∫︁ 𝑇𝑐𝑢𝑡

0

𝑑𝜎(𝑍,𝐸, 𝑇 )

𝑑𝑇
𝑇 𝑑𝑇 (7.1)

where 𝑛𝑎𝑡 is the number of atoms per volume in the material. The total cross section per atom for the ejection of a
secondary of energy 𝑇 > 𝑇𝑐𝑢𝑡 is

𝜎(𝑍,𝐸, 𝑇𝑐𝑢𝑡) =

∫︁ 𝑇𝑚𝑎𝑥

𝑇𝑐𝑢𝑡

𝑑𝜎(𝑍,𝐸, 𝑇 )

𝑑𝑇
𝑑𝑇 (7.2)

where 𝑇𝑚𝑎𝑥 is the maximum energy transferable to the secondary particle.

If there are several processes providing energy loss for a given particle, then the total continuous part of the energy
loss is the sum:

𝑑𝐸𝑡𝑜𝑡
𝑠𝑜𝑓𝑡(𝐸, 𝑇𝑐𝑢𝑡)

𝑑𝑥
=
∑︁
𝑖

𝑑𝐸𝑠𝑜𝑓𝑡,𝑖(𝐸, 𝑇𝑐𝑢𝑡)

𝑑𝑥
. (7.3)

These values are pre-calculated during the initialization phase of GEANT4 and stored in the 𝑑𝐸/𝑑𝑥 table. Using this
table the ranges of the particle in given materials are calculated and stored in the Range table. The Range table is
then inverted to provide the InverseRange table. At run time, values of the particle’s continuous energy loss and range
are obtained using these tables. Concrete processes contributing to the energy loss are not involved in the calculation
at that moment. In contrast, the production of secondaries with kinetic energies above the production threshold is
sampled by each concrete energy loss process.

The default energy interval for these tables extends from 100 eV to 100 TeV and the default number of bins is 84. For
muons and for heavy particles energy loss processes models are valid for higher energies and can be extended. For
muons the upper limit may be set to 1000 PeV.

7.2.2 General Interfaces

There are a number of similar functions for discrete electromagnetic processes and for electromagnetic (EM) packages
an additional base classes were designed to provide common computations [JA09]. Common calculations for discrete
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EM processes are performed in the class G4VEnergyLossProcess. Derived classes (Table 7.1) are concrete processes
providing initialisation. The physics models are implemented using the G4VEmModel interface. Each process may
have one or many models defined to be active over a given energy range and set of G4Regions. Models are imple-
menting computation of energy loss, cross section and sampling of final state. The list of EM processes and models
for gamma incident is shown in Table 7.1.

Table 7.1: List of process and model classes for charged particles.
EM process EM model Ref.
G4eIonisation G4MollerBhabhaModel Section 10.1

G4LivermoreIonisationModel Section 10.1.6
G4PenelopeIonisationModel Section 10.1.5
G4PAIModel Section 7.6
G4PAIPhotModel Section 7.6

G4ePolarizedIonisation G4PolarizedMollerBhabhaModel Section 13.2
G4MuIonisation G4MuBetheBlochModel Section 11.1

G4PAIModel Section 7.6
G4PAIPhotModel Section 7.6

G4hIonisation G4BetheBlochModel Section 12.1
G4BraggModel Section 12.1
G4ICRU73QOModel Section 12.2.1
G4PAIModel Section 7.6
G4PAIPhotModel Section 7.6

G4ionIonisation G4BetheBlochModel Section 12.1
G4BetheBlochIonGasModel Section 12.1
G4BraggIonModel Section 12.1
G4BraggIonGasModel Section 12.1
G4IonParametrisedLossModel Section 12.2.4

G4NuclearStopping G4ICRU49NuclearStoppingModel Section 12.1.3
G4mplIonisation G4mplIonisationWithDeltaModel
G4eBremsstrahlung G4SeltzerBergerModel Section 10.2.1

G4eBremsstrahlungRelModel Section 10.2.2
G4LivermoreBremsstrahlungModel Section 10.2.4
G4PenelopeBremsstrahlungModel Section 10.2.3

G4ePolarizedBremsstrahlung G4PolarizedBremsstrahlungModel Section 13.5
G4MuBremsstrahlung G4MuBremsstrahlungModel Section 11.2
G4hBremsstrahlung G4hBremsstrahlungModel
G4ePairProduction G4MuPairProductionModel Section 11.3
G4MuPairProduction G4MuPairProductionModel Section 11.3
G4hPairProduction G4hPairProductionModel

7.2.3 Step-size Limit

Continuous energy loss imposes a limit on the step-size because of the energy dependence of the cross sections. It is
generally assumed in MC programs (for example, Geant3) that the cross sections are approximately constant along
a step, i.e. the step size should be small enough, so that the change in cross section along the step is also small.
In principle one must use very small steps in order to insure an accurate simulation, however the computing time
increases as the step-size decreases.

For EM processes the exact solution is available (see Correcting the Cross Section for Energy Variation) but is is not
implemented yet for all physics processes including hadronics. A good compromise is to limit the step-size by not
allowing the stopping range of the particle to decrease by more than ~20% during the step. This condition works well
for particles with kinetic energies >1 MeV, but for lower energies it gives too short step-sizes, so must be relaxed. To
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solve this problem a lower limit on the step-size was introduced. A smooth StepFunction, with 2 parameters, controls
the step size. At high energy the maximum step size is defined by Step/Range ∼ 𝛼𝑅 (parameter dRoverRange). By
default 𝛼𝑅 = 0.2. As the particle travels the maximum step size decreases gradually until the range becomes lower
than 𝜌𝑅 (parameter finalRange). Default finalRange 𝜌𝑅 = 1 mm. For the case of a particle range 𝑅 > 𝜌𝑅 the
StepFunction provides limit for the step size ∆𝑆𝑙𝑖𝑚 by the following formula:

∆𝑆𝑙𝑖𝑚 = 𝛼𝑅𝑅+ 𝜌𝑅(1 − 𝛼𝑅)
(︁

2 − 𝜌𝑅
𝑅

)︁
. (7.4)

In the opposite case of a small range ∆𝑆𝑙𝑖𝑚 = 𝑅. The figure below shows the ratio step/range as a function of range
if step limitation is determined only by the expression (7.4).

Fig. 7.1: Step limit.

The parameters of StepFunction can be overwritten using a UI command:

/process/eLoss/StepFunction 0.2 1 mm

To provide more accurate simulation of particle ranges in physics constructors G4EmStandardPhysics_option3 and
G4EmStandardPhysics_option4 more strict step limitation is chosen for different particle types.

7.2.4 Run Time Energy Loss Computation

The computation of the mean energy loss after a given step is done by using the 𝑑𝐸/𝑑𝑥, Range, and InverseRange
tables. The 𝑑𝐸/𝑑𝑥 table is used if the energy deposition (∆𝑇 ) is less than allowed limit ∆𝑇 < 𝜉𝑇0, where 𝜉 is
𝑙𝑖𝑛𝑒𝑎𝑟𝐿𝑜𝑠𝑠𝐿𝑖𝑚𝑖𝑡 parameter (by default 𝜉 = 0.01), 𝑇0 is the kinetic energy of the particle. In that case

∆𝑇 =
𝑑𝐸

𝑑𝑥
∆𝑠,

where ∆𝑇 is the energy loss, ∆𝑠 is the true step length. When a larger percentage of energy is lost, the mean loss can
be written as

∆𝑇 = 𝑇0 − 𝑓𝑇 (𝑟0 − ∆𝑠)

where 𝑟0 the range at the beginning of the step, the function 𝑓𝑇 (𝑟) is the inverse of the Range table (i.e. it gives the
kinetic energy of the particle for a range value of r. By default spline approximation is used to retrieve a value from
𝑑𝐸/𝑑𝑥, Range, and InverseRange tables. The spline flag can be changed using an UI command:

66 Chapter 7. Energy Loss of Charged Particles



Physics Reference Manual, Release 10.4

/process/em/spline false

After the mean energy loss has been calculated, the process computes the actual energy loss, i.e. the loss with
fluctuations. The fluctuation models are described in Energy Loss Fluctuations.

If deexcitation module (see Atomic relaxation) is enabled then simulation of atomic deexcitation is performed using
information on step length and ionisation cross section. Fluorescence gamma and Auger electrons are produced above
the same threshold energy as 𝛿-electrons and bremsstrahlung gammas. The following UI commands can be used to
enable atomic relaxation:

/process/em/deexcitation myregion true true true
/process/em/fluo true
/process/em/auger true
/process/em/pixe true
/process/em/deexcitationIgnoreCut true

The last command means that production threshold for electrons and gammas are not checked, so full atomic de-
excitation decay chain is simulated.

After the step a kinetic energy of a charged particle is compared with the lowestEnergy. In the case if final kinetic
energy is below the particle is stopped and remaining kinetic energy is assigned to the local energy deposit. The default
value of the limit is 1 keV. It may be changed separately for electron/positron and muon/hadron using UI commands:

/process/em/lowestElectronEnergy 100 eV
/process/em/lowestMuHadEnergy 50 eV

These values may be set to zero.

7.2.5 Energy Loss by Heavy Charged Particles

To save memory in the case of positively charged hadrons and ions energy loss, 𝑑𝐸/𝑑𝑥, Range and InverseRange
tables are constructed only for proton, antiproton, muons, pions, kaons, and Generic Ion. The energy loss for other
particles is computed from these tables at the scaled kinetic energy 𝑇𝑠𝑐𝑎𝑙𝑒𝑑:

𝑇𝑠𝑐𝑎𝑙𝑒𝑑 = 𝑇
𝑀𝑏𝑎𝑠𝑒

𝑀𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒
, (7.5)

where T is the kinetic energy of the particle, 𝑀𝑏𝑎𝑠𝑒 and 𝑀𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 are the masses of the base particle (proton or kaon)
and particle. For positively changed hadrons with non-zero spin proton is used as a based particle, for negatively
charged hadrons with non-zero spin - antiproton, for charged particles with zero spin - 𝐾+ or 𝐾− correspondingly.
The virtual particle Generic Ion is used as a base particle for for all ions with 𝑍 > 2. It has mass, change and other
quantum numbers of the proton. The energy loss can be defined via scaling relation:

𝑑𝐸

𝑑𝑥
(𝑇 ) = 𝑞2𝑒𝑓𝑓 (𝐹1(𝑇 )

𝑑𝐸

𝑑𝑥 𝑏𝑎𝑠𝑒
(𝑇𝑠𝑐𝑎𝑙𝑒𝑑) + 𝐹2(𝑇, 𝑞𝑒𝑓𝑓 )),

where 𝑞𝑒𝑓𝑓 is particle effective change in units of positron charge, 𝐹1 and 𝐹2 are correction function taking into
account Birks effect, Block correction, low-energy corrections based on data from evaluated data bases [PS05]. For
a hadron 𝑞𝑒𝑓𝑓 is equal to the hadron charge, for a slow ion effective charge is different from the charge of the ion’s
nucleus, because of electron exchange between transporting ion and the media. The effective charge approach is used
to describe this effect [ZM88]. The scaling relation (7.5) is valid for any combination of two heavy charged particles
with accuracy corresponding to high order mass, charge and spin corrections [BIA+93].
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7.3 Energy Loss Fluctuations

The total continuous energy loss of charged particles is a stochastic quantity with a distribution described in terms of
a straggling function. The straggling is partially taken into account in the simulation of energy loss by the production
of 𝛿-electrons with energy 𝑇 > 𝑇𝑐𝑢𝑡 ((7.2)). However, continuous energy loss ((7.1)) also has fluctuations. Hence in
the current GEANT4 implementation different models of fluctuations implementing the 𝐺4𝑉 𝐸𝑚𝐹𝑙𝑢𝑐𝑡𝑢𝑎𝑡𝑖𝑜𝑛𝑀𝑜𝑑𝑒𝑙
interface:

• G4BohrFluctuations;

• G4IonFluctuations;

• G4PAIModel;

• G4PAIPhotModel;

• G4UniversalFluctuation.

The last model is the default one used in main Physics List and will be described below. Other models have limited
applicability and will be described in chapters for ion ionisation and PAI models.

7.3.1 Fluctuations in Thick Absorbers

The total continuous energy loss of charged particles is a stochastic quantity with a distribution described in terms of a
straggling function. The straggling is partially taken into account in the simulation of energy loss by the production of
𝛿-electrons with energy 𝑇 > 𝑇𝑐. However, continuous energy loss also has fluctuations. Hence in the current GEANT4
implementation two different models of fluctuations are applied depending on the value of the parameter 𝜅 which is
the lower limit of the number of interactions of the particle in a step. The default value chosen is 𝜅 = 10. In the case
of a high range cut (i.e. energy loss without delta ray production) for thick absorbers the following condition should
be fulfilled:

∆𝐸 > 𝜅 𝑇𝑚𝑎𝑥

where ∆𝐸 is the mean continuous energy loss in a track segment of length 𝑠, and 𝑇𝑚𝑎𝑥 is the maximum kinetic energy
that can be transferred to the atomic electron. If this condition holds the fluctuation of the total (unrestricted) energy
loss follows a Gaussian distribution. It is worth noting that this condition can be true only for heavy particles, because
for electrons, 𝑇𝑚𝑎𝑥 = 𝑇/2, and for positrons, 𝑇𝑚𝑎𝑥 = 𝑇 , where 𝑇 is the kinetic energy of the particle. In order to
simulate the fluctuation of the continuous (restricted) energy loss, the condition should be modified. After a study, the
following conditions have been chosen:

∆𝐸 > 𝜅 𝑇𝑐 (7.6)

𝑇𝑚𝑎𝑥 ≤ 2 𝑇𝑐 (7.7)

where 𝑇𝑐 is the cut kinetic energy of 𝛿-electrons. For thick absorbers the straggling function approaches the Gaussian
distribution with Bohr’s variance [BIA+93]:

Ω2 = 2𝜋𝑟2𝑒𝑚𝑒𝑐
2𝑁𝑒𝑙

𝑍2
ℎ

𝛽2
𝑇𝑐𝑠

(︂
1 − 𝛽2

2

)︂
, (7.8)

where 𝑟𝑒 is the classical electron radius, 𝑁𝑒𝑙 is the electron density of the medium, 𝑍ℎ is the charge of the incident
particle in units of positron charge, and 𝛽 is the relativistic velocity.
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7.3.2 Fluctuations in Thin Absorbers

If the conditions (7.6) and (7.7) are not satisfied the model of energy fluctuations in thin absorbers is applied. The
formulas used to compute the energy loss fluctuation (straggling) are based on a very simple physics model of the
atom. It is assumed that the atoms have only two energy levels with binding energies 𝐸1 and 𝐸2. The particle-atom
interaction can be an excitation with energy loss 𝐸1 or 𝐸2, or ionisation with energy loss distributed according to a
function 𝑔(𝐸) ∼ 1/𝐸2 : ∫︁ 𝑇𝑢𝑝

𝐸0

𝑔(𝐸) 𝑑𝐸 = 1 =⇒ 𝑔(𝐸) =
𝐸0𝑇𝑢𝑝
𝑇𝑢𝑝 − 𝐸0

1

𝐸2
. (7.9)

The macroscopic cross section for excitation (𝑖 = 1, 2) is

Σ𝑖 = 𝐶
𝑓𝑖
𝐸𝑖

ln[2𝑚𝑐2 (𝛽𝛾)2/𝐸𝑖] − 𝛽2

ln[2𝑚𝑐2 (𝛽𝛾)2/𝐼] − 𝛽2
(1 − 𝑟) (7.10)

and the ionisation cross section is

Σ3 = 𝐶
𝑇𝑢𝑝 − 𝐸0

𝐸0𝑇𝑢𝑝 ln(
𝑇𝑢𝑝

𝐸0
)
𝑟 (7.11)

where 𝐸0 denotes the ionisation energy of the atom, 𝐼 is the mean ionisation energy, 𝑇𝑢𝑝 is the production threshold
for delta ray production (or the maximum energy transfer if this value smaller than the production threshold), 𝐸𝑖 and
𝑓𝑖 are the energy levels and corresponding oscillator strengths of the atom, and 𝐶 and 𝑟 are model parameters.

The oscillator strengths 𝑓𝑖 and energy levels 𝐸𝑖 should satisfy the constraints

𝑓1 + 𝑓2 = 1 (7.12)

𝑓1· ln𝐸1 + 𝑓2· ln𝐸2 = ln 𝐼. (7.13)

The cross section formulas (7.10),(7.11) and the sum rule equations (7.12),(7.13) can be found e.g.in Ref.[Bic88]. The
model parameter 𝐶 can be defined in the following way. The numbers of collisions (𝑛𝑖, 𝑖 = 1, 2 for excitation and
3 for ionisation) follow the Poisson distribution with a mean value ⟨𝑛𝑖⟩. In a step of length ∆𝑥 the mean number of
collisions is given by

⟨𝑛𝑖⟩ = ∆𝑥 Σ𝑖

The mean energy loss in a step is the sum of the excitation and ionisation contributions and can be written as

𝑑𝐸

𝑑𝑥
·∆𝑥 =

{︃
Σ1𝐸1 + Σ2𝐸2 +

∫︁ 𝑇𝑢𝑝

𝐸0

𝐸𝑔(𝐸)𝑑𝐸

}︃
∆𝑥.

From this, using Eq. (7.10) - (7.13), one can see that

𝐶 = 𝑑𝐸/𝑑𝑥.

The other parameters in the fluctuation model have been chosen in the following way. 𝑍· 𝑓1 and 𝑍· 𝑓2 represent in the
model the number of loosely/tightly bound electrons

𝑓2 = 0 for 𝑍 = 1

𝑓2 = 2/𝑍 for 𝑍 ≥ 2

𝐸2 = 10 eV 𝑍2
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𝐸0 = 10 eV .

Using these parameter values, 𝐸2 corresponds approximately to the K-shell energy of the atoms (and 𝑍𝑓2 = 2 is the
number of K-shell electrons). The parameters 𝑓1 and 𝐸1 can be obtained from Eqs.(7.12) and (7.13). The parameter 𝑟
is the only variable in the model which can be tuned. This parameter determines the relative contribution of ionisation
and excitation to the energy loss. Based on comparisons of simulated energy loss distributions to experimental data,
its value has been fixed as

𝑟 = 0.55.

7.3.3 Width Correction Algorithm

This simple parametrization and sampling in the model give good values for the most probable energy loss in thin
layers. The width of the energy loss distribution (Full Width at Half Maximum, FWHM) in most of the cases is too
small. In order to get good FWHM values a relatively simple width correction algorithm has been applied. This
algorithm rescales the energy levels 𝐸1, 𝐸2 and the number of excitations 𝑛1, 𝑛2 in such a way that the mean energy
loss remains the same. Using this width correction scheme the model gives not only good most probable energy loss,
but good FWHM value too.

Width correction algorithm is in the model since version 9.2. The updated version in the model (in version 9.4)
causes an important change in the behaviour of the model: the results become much more stable, i.e. the results do
not change practically when the cuts and/or the stepsizes are changing. Another important change: the (unphysical)
second peak or shoulder in the energy loss distribution which can be seen in some cases (energy loss in thin gas layers)
in older versions of the model disappeared. Limit of validity of the model for thin targets: the model gives good
(reliable) energy loss distribution if the mean energy loss in the target is ≥ (𝑓𝑒𝑤 𝑡𝑖𝑚𝑒𝑠) * 𝐼𝑒𝑥𝑐, where 𝐼𝑒𝑥𝑐 is the
mean excitation energy of the target material.

This simple model of energy loss fluctuations is rather fast and can be used for any thickness of material. This has
been verified by performing many simulations and comparing the results with experimental data, such as those in Ref.
[LPU95]. As the limit of validity of Landau’s theory is approached, the loss distribution approaches the Landau form
smoothly.

7.3.4 Sampling of Energy Loss

If the mean energy loss and step are in the range of validity of the Gaussian approximation of the fluctuation (7.6)
and (7.7), the Gaussian sampling is used to compute the actual energy loss (7.8). For smaller steps the energy loss is
computed in the model under the assumption that the step length (or relative energy loss) is small and, in consequence,
the cross section can be considered constant along the step. The loss due to the excitation is

∆𝐸𝑒𝑥𝑐 = 𝑛1𝐸1 + 𝑛2𝐸2

where 𝑛1 and 𝑛2 are sampled from a Poisson distribution. The energy loss due to ionisation can be generated from the
distribution 𝑔(𝐸) by the inverse transformation method:

𝑢 = 𝐹 (𝐸) =

∫︁ 𝐸

𝐸0

𝑔(𝑥)𝑑𝑥

𝐸 = 𝐹−1(𝑢) =
𝐸0

1 − 𝑢
𝑇𝑢𝑝−𝐸0

𝑇𝑢𝑝

where 𝑢 is a uniformly distributed random number ∈ [0, 1]. The contribution coming from the ionisation will then be

∆𝐸𝑖𝑜𝑛 =

𝑛3∑︁
𝑗=1

𝐸0

1 − 𝑢𝑗
𝑇𝑢𝑝−𝐸0

𝑇𝑢𝑝
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where 𝑛3 is the number of ionisations sampled from the Poisson distribution. The total energy loss in a step will be
∆𝐸 = ∆𝐸𝑒𝑥𝑐 + ∆𝐸𝑖𝑜𝑛 and the energy loss fluctuation comes from fluctuations in the number of collisions 𝑛𝑖 and
from the sampling of the ionisation loss.

7.4 Correcting the Cross Section for Energy Variation

As described in Mean Energy Loss and Determination of the Interaction Point the step size limitation is provided by
energy loss processes in order to insure the precise calculation of the probability of particle interaction. It is generally
assumed in Monte Carlo programs that the particle cross sections are approximately constant during a step, hence the
reaction probability 𝑝 at the end of the step can be expressed as

𝑝 = 1 − exp (−𝑛𝑠𝜎(𝐸𝑖)) ,

where 𝑛 is the density of atoms in the medium, 𝑠 is the step length, 𝐸𝑖 is the energy of the incident particle at the
beginning of the step, and 𝜎(𝐸𝑖) is the reaction cross section at the beginning of the step.

However, it is possible to sample the reaction probability from the exact expression

𝑝 = 1 − exp

(︃
−
∫︁ 𝐸𝑓

𝐸𝑖

𝑛𝜎(𝐸)𝑑𝑠

)︃
,

where𝐸𝑓 is the energy of the incident particle at the end of the step, by using the integral approach to particle transport.
This approach is available for processes implemented via the G4VEnergyLossProcess and G4VEmProcess interfaces.

The Monte Carlo method of integration is used for sampling the reaction probability [eal92]. It is assumed that during
the step the reaction cross section smaller, than some value 𝜎(𝐸) < 𝜎𝑚. The mean free path for the given step is
computed using 𝜎𝑚. If the process is chosen as the process happens at the step, the sampling of the final state is
performed only with the probability 𝑝 = 𝜎(𝐸𝑓 )/𝜎𝑚, alternatively no interaction happen and tracking of the particle
is continued. To estimate the maximum value 𝜎𝑚 for the given tracking step at GEANT4 initialisation the energy 𝐸𝑚

of absolute maximum 𝜎𝑚𝑎𝑥 of the cross section for given material is determined and stored. If at the tracking time
particle energy 𝐸 < 𝐸𝑚, then 𝜎𝑚 = 𝜎(𝐸). For higher initial energies if 𝜉𝐸 > 𝐸𝑚 then 𝜎𝑚 = max(𝜎(𝐸), 𝜎(𝜉𝐸)),
in the opposite case, 𝜎𝑚 = 𝜎𝑚𝑎𝑥. Here 𝜉 is a parameter of the algorithm. Its optimal value is connected with the value
of the dRoverRange parameter (see Mean Energy Loss), by default 𝜉 = 1 − 𝛼𝑅 = 0.8. Note, that described method is
precise if the cross section has only one maximum, which is a typical case for electromagnetic processes.

The integral variant of step limitation is the default for the G4eIonisation, G4eBremsstrahlung and some other pro-
cesses but is not automatically activated for others. To do so the Boolean UI command can be used:

/process/eLoss/integral true

The integral variant of the energy loss sampling process is less dependent on values of the production cuts [eal09] and
allows to have less step limitation, however it should be applied on a case-by-case basis because may require extra
CPU.

7.5 Conversion from Cut in Range to Energy Threshold

In GEANT4 charged particles are tracked to the end of their range. The differential cross section of 𝛿-electron pro-
ductions and bremsstrahlung grow rapidly when secondary energy decrease. If all secondary particles will be tracked
the CPU performance of any Monte Carlo code will be poor. The traditional solution is to use cuts. The specific of
GEANT4 [SA03] is that user provides value of cut in term of cut in range, which is unique for defined G4Region or for
the complete geometry [JA16].

Range is used, rather than energy, as a more natural concept for designing a coherent policy for different particles
and materials. Definition of the certain value of the cut in range means the requirement for precision of spatial
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radioactive dose deposition. This conception is more strict for a simulation code and provides fewer handles for user
to modify final results. At the same time, it ensures that simulation validated in one geometry is valid also for the other
geometries.

The value of cut is defined for electrons, positrons, gamma and protons. At the beginning of initialization of GEANT4
physics the conversion is performed from unique cut in range to cuts (production thresholds) in kinetic energy for
each G4MaterialCutsCouple [JA16]. At that moment no energy loss or range table is created, so computation should
be performed using original formulas. For electrons and positrons ionisation above 10 keV a simplified Berger-
Seltzer energy loss formula ((10.2)) is used, in which the density correction term is omitted. The contribution of the
bremsstrahlung is added using empirical parameterized formula. For 𝑇 < 10 keV the linear dependence of ionisation
losses on electron velocity is assumed, bremsstrahlung contribution is neglected. The stopping range is defined as

𝑅(𝑇 ) =

∫︁ 𝑇

0

1

(𝑑𝐸/𝑑𝑥)
𝑑𝐸.

The integration has been done analytically for the low energy part and numerically above an energy limit 1 keV. For
each cut in range the corresponding kinetic energy can be found out. If obtained production threshold in kinetic energy
cannot be below the parameter lowlimit (default 1 keV) and above highlimit (default 10 GeV). If in specific application
lower threshold is required, then the allowed energy cut needs to be extended:

G4ProductionCutsTable::GetProductionCutsTable()->SetEnergyRange(lowlimit,highlimit);

or via UI commands:

/cuts/setMinCutEnergy 100 eV
/cuts/setMaxCutEnergy 100 TeV

In contrary to electrons, gammas have no range, so some approximation should be used for range to energy conversion.
An approximate empirical formula is used to compute the absorption cross section of a photon in an element 𝜎𝑎𝑏𝑠.
Here, the absorption cross section means the sum of the cross sections of the gamma conversion, Compton scattering
and photoelectric effect. These processes are the “destructive” processes for photons: they destroy the photon or
decrease its energy. The coherent or Rayleigh scattering changes the direction of the gamma only; its cross section is
not included in the absorption cross section. The AbsorptionLength 𝐿𝑎𝑏𝑠 vector is calculated for every material as

𝐿𝑎𝑏𝑠 = 5/𝜎𝑎𝑏𝑠.

The factor 5 comes from the requirement that the probability of having no ‘destructive’ interaction should be small,
hence

exp(−𝐿𝑎𝑏𝑠𝜎𝑎𝑏𝑠) = exp(−5) = 6.7 × 10−3.

The photon cross section for a material has a minimum at a certain energy 𝐸𝑚𝑖𝑛. Correspondingly 𝐿𝑎𝑏𝑠 has a max-
imum at 𝐸 = 𝐸𝑚𝑖𝑛, the value of the maximal 𝐿𝑎𝑏𝑠 is the biggest “meaningful” cut in absorption length. If the cut
given by the user is bigger than this maximum, a warning is printed and the cut in kinetic energy is set to the highlimit.

The cut for proton is introduced with GEANT4 v9.3. The main goal of this cut is to limit production of all recoil
ions including protons in elastic scattering processes. A simple linear conversion formula is used to compute energy
threshold from the value of cut in range, in particular, the cut in range 1 mm corresponds to the production threshold
100 keV.

The conversion from range to energy can be studied using G4EmCalculator class. This class allows access or recal-
culation of energy loss, ranges and other values. It can be instantiated and at any place of user code and can be used
after initialisation of Physics Lists:

G4EmCalculator calc;
calc.ComputeEnergyCutFromRangeCut(range, particle, material);

here particle and material may be string names or corresponding const pointers to G4ParticleDefinition and
G4Material.
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7.6 Photoabsorption Ionisation Model

7.6.1 Cross Section for Ionising Collisions

The Photoabsorption Ionisation (PAI) model describes the ionisation energy loss of a relativistic charged particle in
matter. For such a particle, the differential cross section 𝑑𝜎𝑖/𝑑𝜔 for ionising collisions with energy transfer 𝜔 can be
expressed most generally by the following equations [VSVAael82]:

𝑑𝜎𝑖
𝑑𝜔

=
2𝜋𝑍𝑒4

𝑚𝑣2

{︃
𝑓(𝜔)

𝜔 |𝜀(𝜔)|2

[︃
ln

2𝑚𝑣2

𝜔 |1 − 𝛽2𝜀|
− 𝜀1 − 𝛽2 |𝜀|2

𝜀2
arg(1 − 𝛽2𝜀*)

]︃
+
𝐹 (𝜔)

𝜔2

}︃
, (7.14)

where

𝐹 (𝜔) =

∫︁ 𝜔

0

𝑓(𝜔′)

|𝜀(𝜔′)|2
𝑑𝜔′,

𝑓(𝜔) =
𝑚𝜔𝜀2(𝜔)

2𝜋2𝑍𝑁~2
.

Here 𝑚 and 𝑒 are the electron mass and charge, ~ is Planck’s constant, 𝛽 = 𝑣/𝑐 is the ratio of the particle’s velocity 𝑣
to the speed of light 𝑐, 𝑍 is the effective atomic number, 𝑁 is the number of atoms (or molecules) per unit volume, and
𝜀 = 𝜀1 + 𝑖𝜀2 is the complex dielectric constant of the medium. In an isotropic non-magnetic medium the dielectric
constant can be expressed in terms of a complex index of refraction, 𝑛(𝜔) = 𝑛1 + 𝑖𝑛2, 𝜀(𝜔) = 𝑛2(𝜔). In the energy
range above the first ionisation potential 𝐼1 for all cases of practical interest, and in particular for all gases, 𝑛1 ∼ 1.
Therefore the imaginary part of the dielectric constant can be expressed in terms of the photoabsorption cross section
𝜎𝛾(𝜔):

𝜀2(𝜔) = 2𝑛1𝑛2 ∼ 2𝑛2 =
𝑁~𝑐
𝜔

𝜎𝛾(𝜔).

The real part of the dielectric constant is calculated in turn from the dispersion relation

𝜀1(𝜔) − 1 =
2𝑁~𝑐
𝜋

𝑉.𝑝.

∫︁ ∞

0

𝜎𝛾(𝜔′)

𝜔′2 − 𝜔2
𝑑𝜔′,

where the integral of the pole expression is considered in terms of the principal value. In practice it is convenient to
calculate the contribution from the continuous part of the spectrum only. In this case the normalized photoabsorption
cross section

�̃�𝛾(𝜔) =
2𝜋2~𝑒2𝑍
𝑚𝑐

𝜎𝛾(𝜔)

[︂∫︁ 𝜔𝑚𝑎𝑥

𝐼1

𝜎𝛾(𝜔′)𝑑𝜔′
]︂−1

, 𝜔𝑚𝑎𝑥 ∼ 100 keV

is used, which satisfies the quantum mechanical sum rule [UJW68]:∫︁ 𝜔𝑚𝑎𝑥

𝐼1

�̃�𝛾(𝜔′)𝑑𝜔′ =
2𝜋2~𝑒2𝑍
𝑚𝑐

.

The differential cross section for ionising collisions is expressed by the photoabsorption cross section in the continuous
spectrum region:

𝑑𝜎𝑖
𝑑𝜔

=
𝛼

𝜋𝛽2

{︃
�̃�𝛾(𝜔)

𝜔 |𝜀(𝜔)|2

[︃
ln

2𝑚𝑣2

𝜔 |1 − 𝛽2𝜀|
− 𝜀1 − 𝛽2 |𝜀|2

𝜀2
arg(1 − 𝛽2𝜀*)

]︃
+

1

𝜔2

∫︁ 𝜔

𝐼1

�̃�𝛾(𝜔′)

|𝜀(𝜔′)|2
𝑑𝜔′

}︃
,

where

𝜀2(𝜔) =
𝑁~𝑐
𝜔

�̃�𝛾(𝜔),

𝜀1(𝜔) − 1 =
2𝑁~𝑐
𝜋

𝑉.𝑝.

∫︁ 𝜔𝑚𝑎𝑥

𝐼1

�̃�𝛾(𝜔′)

𝜔′2 − 𝜔2
𝑑𝜔′.
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For practical calculations using Eq.(7.14) it is convenient to represent the photoabsorption cross section as a polyno-
mial in 𝜔−1 as was proposed in [FR90]:

𝜎𝛾(𝜔) =

4∑︁
𝑘=1

𝑎
(𝑖)
𝑘 𝜔−𝑘,

where the coefficients, 𝑎(𝑖)𝑘 result from a separate least-squares fit to experimental data in each energy interval 𝑖. As
a rule the interval borders are equal to the corresponding photoabsorption edges. The dielectric constant can now be
calculated analytically with elementary functions for all 𝜔, except near the photoabsorption edges where there are
breaks in the photoabsorption cross section and the integral for the real part is not defined in the sense of the principal
value. The third term in Eq.(7.14), which can only be integrated numerically, results in a complex calculation of
𝑑𝜎𝑖/𝑑𝜔. However, this term is dominant for energy transfers 𝜔 > 10 keV, where the function |𝜀(𝜔)|2 ∼ 1. This
is clear from physical reasons, because the third term represents the Rutherford cross section on atomic electrons
which can be considered as quasifree for a given energy transfer [WWMJ80]. In addition, for high energy transfers,
𝜀(𝜔) = 1− 𝜔2

𝑝/𝜔
2 ∼ 1, where 𝜔𝑝 is the plasma energy of the material. Therefore the factor |𝜀(𝜔)|−2 can be removed

from under the integral and the differential cross section of ionising collisions can be expressed as:

𝑑𝜎𝑖
𝑑𝜔

=
𝛼

𝜋𝛽2 |𝜀(𝜔)|2

{︃
�̃�𝛾(𝜔)

𝜔

[︃
ln

2𝑚𝑣2

𝜔 |1 − 𝛽2𝜀|
− −𝜀1 − 𝛽2 |𝜀|2

𝜀2
arg(1 − 𝛽2𝜀*)

]︃
+

1

𝜔2

∫︁ 𝜔

𝐼1

�̃�𝛾(𝜔′)𝑑𝜔′

}︃
.

This is especially simple in gases when |𝜀(𝜔)|−2 ∼ 1 for all 𝜔 > 𝐼1 [WWMJ80].

7.6.2 Energy Loss Simulation

For a given track length the number of ionising collisions is simulated by a Poisson distribution whose mean is pro-
portional to the total cross section of ionising collisions:

𝜎𝑖 =

∫︁ 𝜔𝑚𝑎𝑥

𝐼1

𝑑𝜎(𝜔′)

𝑑𝜔′ 𝑑𝜔′.

The energy transfer in each collision is simulated according to a distribution proportional to

𝜎𝑖(> 𝜔) =

∫︁ 𝜔𝑚𝑎𝑥

𝜔

𝑑𝜎(𝜔′)

𝑑𝜔′ 𝑑𝜔′.

The sum of the energy transfers is equal to the energy loss. PAI ionisation is implemented according to the model
approach (class G4PAIModel) allowing a user to select specific models in different regions. Here is an example
physics list:

const G4RegionStore* theRegionStore = G4RegionStore::GetInstance();
G4Region* gas = theRegionStore->GetRegion("VertexDetector");
...
if (particleName == "e-")
{

...
G4eIonisation* eion = new G4eIonisation();
G4PAIModel* pai = new G4PAIModel(particle,"PAIModel");

// here 0 is the highest priority in region 'gas'
eion->AddEmModel(0,pai,pai,gas);
...

}
...
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It shows how to select the G4PAIModel to be the preferred ionisation model for electrons in a G4Region named
VertexDetector. The first argument in AddEmModel is 0 which means highest priority.

The class G4PAIPhotonModel generates both 𝛿-electrons and photons as secondaries and can be used for more detailed
descriptions of ionisation space distribution around the particle trajectory.

7.6.3 Photoabsorption Cross Section at Low Energies

The photoabsorption cross section, 𝜎𝛾(𝜔), where 𝜔 is the photon energy, is used in GEANT4 for the description of the
photo-electric effect, X-ray transportation and ionisation effects in very thin absorbers. As mentioned in the discussion
of photoabsorption ionisation (see Photoabsorption Ionisation Model), it is convenient to represent the cross section
as a polynomial in 𝜔−1 [FR90] :

𝜎𝛾(𝜔) =

4∑︁
𝑘=1

𝑎
(𝑖)
𝑘 𝜔−𝑘.

Using cross sections from the original Sandia data tables, calculations of primary ionisation and energy loss distribu-
tions produced by relativistic charged particles in gaseous detectors show clear disagreement with experimental data,
especially for gas mixtures which include xenon. Therefore a special investigation was performed [VMAPeal94] by
fitting the coefficients 𝑎(𝑖)𝑘 to modern data from synchrotron radiation experiments in the energy range of 10-50 eV.
The fits were performed for elements typically used in detector gas mixtures: hydrogen, fluorine, carbon, nitrogen and
oxygen. Parameters for these elements were extracted from data on molecular gases such as N2, O2, CO2, CH4, and
CF4 [eal73][eal77]. Parameters for the noble gases were found using data given in the tables [MW76][WM80].
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CHAPTER

EIGHT

ELASTIC SCATTERING

8.1 Multiple Scattering

Elastic scattering of electrons and other charged particles is an important component of any transport code. Elastic
cross section is huge when particle energy decreases, so multiple scattering (MSC) approach should be introduced in
order to have acceptable CPU performance of the simulation. A universal interface G4VMultipleScattering is used by
all GEANT4 MSC processes [JA09]:

• G4eMultipleScattering;

• G4hMultipleScattering;

• G4MuMultipleScattering.

For concrete simulation the G4VMscModel interface is used, which is an extension of the base G4VEmModel interface.
The following models are available:

• G4UrbanMscModel - since GEANT4 10.0 only one Urban model is available and it is applicable to all types of
particles;

• G4GoudsmitSaundersonModel - for electrons and positrons [KIGT09];

• G4LowEWentzelVIModel - for all particles with low-energy limit 10 eV;

• G4WentzelVIModel - for muons and hadrons, for muons should be included in Physics List together with
G4CoulombScattering process, for hadrons large angle scattering is simulated by hadron elastic process.

The discussion on GEANT4 MSC models is available in Ref. [IKMU10]. Below we will describe models developed
by L. Urban [Urb06], because these models are used in many GEANT4 applications and have general components
reused by other models.

8.1.1 Introduction

MSC simulation algorithms can be classified as either detailed or condensed. In the detailed algorithms, all the
collisions/interactions experienced by the particle are simulated. This simulation can be considered as exact, it gives
the same results as the solution of the transport equation. However, it can be used only if the number of collisions is
not too large, a condition fulfilled only for special geometries (such as thin foils, or low density gas). In solid or liquid
media the average number of collisions is very large and the detailed simulation becomes very inefficient. High energy
simulation codes use condensed simulation algorithms, in which the global effects of the collisions are simulated at
the end of a track segment. The global effects generally computed in these codes are the net energy loss, displacement,
and change of direction of the charged particle. The last two quantities are computed from MSC theories used in the
codes and the accuracy of the condensed simulations is limited by accuracy of MSC approximation.

Most particle physics simulation codes use the multiple scattering theories of Molière [Moliere48], Goudsmit and
Saunderson [GS40] and Lewis [Lew50]. The theories of Molière and Goudsmit-Saunderson give only the angular
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distribution after a step, while the Lewis theory computes the moments of the spatial distribution as well. None of
these MSC theories gives the probability distribution of the spatial displacement. Each of the MSC simulation codes
incorporates its own algorithm to determine the angular deflection, true path length correction, and spatial displacement
of the charged particle after a given step. These algorithms are not exact, of course, and are responsible for most of the
uncertainties of the transport codes. Also due to inaccuracy of MSC the simulation results can depend on the value of
the step length and generally user has to select the value of the step length carefully.

A new class of MSC simulation, the mixed simulation algorithms (see e.g.[FernandezVareaMayolBaroSalvat93]),
appeared in the literature recently. The mixed algorithm simulates the hard collisions one by one and uses a MSC
theory to treat the effects of the soft collisions at the end of a given step. Such algorithms can prevent the number of
steps from becoming too large and also reduce the dependence on the step length. GEANT4 original implementation
of a similar approach is realized in G4WentzelVIModel [IKMU10].

The Urban MSC models used in GEANT4 belongs to the class of condensed simulations. Urban uses model functions
to determine the angular and spatial distributions after a step. The functions have been chosen in such a way as to give
the same moments of the (angular and spatial) distributions as are given by the Lewis theory [Lew50].

8.1.2 Definition of Terms

In simulation, a particle is transported by steps through the detector geometry. The shortest distance between the
endpoints of a step is called the geometrical path length, 𝑧. In the absence of a magnetic field, this is a straight line.
For non-zero fields, 𝑧 is the length along a curved trajectory. Constraints on 𝑧 are imposed when particle tracks cross
volume boundaries. The path length of an actual particle, however, is usually longer than the geometrical path length,
due to multiple scattering. This distance is called the true path length, 𝑡. Constraints on 𝑡 are imposed by the physical
processes acting on the particle.

The properties of the MSC process are determined by the transport mean free paths, 𝜆𝑘, which are functions of the
energy in a given material. The 𝑘-th transport mean free path is defined as

1

𝜆𝑘
= 2𝜋𝑛𝑎

∫︁ 1

−1

[1 − 𝑃𝑘(cos𝜒)]
𝑑𝜎(𝜒)

𝑑Ω
𝑑(cos𝜒)

where 𝑑𝜎(𝜒)/𝑑Ω is the differential cross section of the scattering, 𝑃𝑘(cos𝜒) is the 𝑘-th Legendre polynomial, and 𝑛𝑎
is the number of atoms per volume.

Most of the mean properties of MSC computed in the simulation codes depend only on the first and second transport
mean free paths. The mean value of the geometrical path length (first moment) corresponding to a given true path
length 𝑡 is given by

⟨𝑧⟩ = 𝜆1

[︂
1 − exp

(︂
− 𝑡

𝜆1

)︂]︂
(8.1)

Eq.(8.1) is an exact result for the mean value of 𝑧 if the differential cross section has axial symmetry and the energy
loss can be neglected. The transformation between true and geometrical path lengths is called the path length cor-
rection. This formula and other expressions for the first moments of the spatial distribution were taken from either
[FernandezVareaMayolBaroSalvat93] or [KB98], but were originally calculated by Goudsmit and Saunderson [GS40]
and Lewis [Lew50].

At the end of the true step length, 𝑡, the scattering angle is 𝜃. The mean value of cos 𝜃 is

⟨cos 𝜃⟩ = exp

[︂
− 𝑡

𝜆1

]︂
(8.2)

The variance of cos 𝜃 can be written as

𝜎2 = ⟨cos2 𝜃⟩ − ⟨cos 𝜃⟩2 =
1 + 2𝑒−2𝜅𝜏

3
− 𝑒−2𝜏 (8.3)
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where 𝜏 = 𝑡/𝜆1 and 𝜅 = 𝜆1/𝜆2. The mean lateral displacement is given by a more complicated formula
[FernandezVareaMayolBaroSalvat93], but this quantity can also be calculated relatively easily and accurately. The
square of the mean lateral displacement is

⟨𝑥2 + 𝑦2⟩ =
4𝜆21
3

[︂
𝜏 − 𝜅+ 1

𝜅
+

𝜅

𝜅− 1
𝑒−𝜏 − 1

𝜅(𝜅− 1)
𝑒−𝜅𝜏

]︂
(8.4)

Here it is assumed that the initial particle direction is parallel to the the 𝑧 axis. The lateral correlation is determined
by the equation

⟨𝑥𝑣𝑥 + 𝑦𝑣𝑦⟩ =
2𝜆1
3

[︂
1 − 𝜅

𝜅− 1
𝑒−𝜏 +

1

𝜅− 1
𝑒−𝜅𝜏

]︂
(8.5)

where 𝑣𝑥 and 𝑣𝑦 are the x and y components of the direction unit vector. This equation gives the correlation strength
between the final lateral position and final direction.

The transport mean free path values have been calculated in Refs. [LI87], [LIS+90] for electrons and positrons in the
kinetic energy range in 15 materials. The Urban MSC model in GEANT4 uses these values for kinetic energies below
10 MeV. For high energy particles (above 10 MeV) the transport mean free path values have been taken from a paper
of R. Mayol and F. Salvat [MS97]. When necessary, the model linearly interpolates or extrapolates the transport cross
section, 𝜎1 = 1/𝜆1, in atomic number 𝑍 and in the square of the particle velocity, 𝛽2. The ratio 𝜅 is a very slowly
varying function of the energy: 𝜅 > 2 for 𝑇 > a few keV, and 𝜅 → 3 for very high energies (see [KB98]). Hence, a
constant value of 2.5 is used in the model.

Nuclear size effects are negligible for low energy particles and they are accounted for in the Born approximation in
[MS97], so there is no need for extra corrections of this kind in the Urban model.

8.1.3 Path Length Correction

As mentioned above, the path length correction refers to the transformation 𝑡 −→ 𝑔 and its inverse. The 𝑡 −→ 𝑔
transformation is given by Eq.(8.1) if the step is small and the energy loss can be neglected. If the step is not small the
energy dependence makes the transformation more complicated. For this case Eqs.(8.2),(8.1) should be modified as

⟨cos 𝜃⟩ = exp

[︂
−
∫︁ 𝑡

0

𝑑𝑢

𝜆1(𝑢)

]︂
(8.6)

⟨𝑧⟩ =

∫︁ 𝑡

0

⟨cos 𝜃⟩𝑢 𝑑𝑢 (8.7)

where 𝜃 is the scattering angle, 𝑡 and 𝑧 are the true and geometrical path lengths, and 𝜆1 is the transport mean free
path.

In order to compute Eqs.(8.6),(8.7) the 𝑡 dependence of the transport mean free path must be known. 𝜆1 depends on the
kinetic energy of the particle which decreases along the step. All computations in the model use a linear approximation
for this 𝑡 dependence:

𝜆1(𝑡) = 𝜆10(1 − 𝛼𝑡) (8.8)

Here 𝜆10 denotes the value of 𝜆1 at the start of the step, and 𝛼 is a constant. It is worth noting that Eq.(8.8) is not a
crude approximation. It is rather good at low (< 1 MeV) energy. At higher energies the step is generally much smaller
than the range of the particle, so the change in energy is small and so is the change in 𝜆1. Using Eqs.(8.6) - (8.8) the
explicit formula for ⟨cos 𝜃⟩ and ⟨𝑧⟩ are:

⟨cos 𝜃⟩ = (1 − 𝛼𝑡)
1

𝛼𝜆10 (8.9)
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⟨𝑧⟩ =
1

𝛼(1 + 1
𝛼𝜆10

)

[︁
1 − (1 − 𝛼𝑡)1+

1
𝛼𝜆10

]︁
(8.10)

The value of the constant 𝛼 can be expressed using 𝜆10 and 𝜆11 where 𝜆11 is the value of the transport mean free path
at the end of the step

𝛼 =
𝜆10 − 𝜆11
𝑡𝜆10

At low energies ( 𝑇𝑘𝑖𝑛 < 𝑀 , where 𝑀 is the particle mass) 𝛼 has a simpler form:

𝛼 =
1

𝑟0

where 𝑟0 denotes the range of the particle at the start of the step. It can easily be seen that for a small step (i.e. for a
step with small relative energy loss) the formula of ⟨𝑧⟩ is

⟨𝑧⟩ = 𝜆10

[︂
1 − exp

(︂
− 𝑡

𝜆10

)︂]︂
(8.11)

Eq. (8.10) or (8.11) gives the mean value of the geometrical step length for a given true step length. The actual
geometrical path length is sampled in the model according to the simple probability density function defined for
𝑣 = 𝑧/𝑡 ∈ [0, 1] :

𝑓(𝑣) = (𝑘 + 1)(𝑘 + 2)𝑣𝑘(1 − 𝑣)

The value of the exponent 𝑘 is computed from the requirement that 𝑓(𝑣) must give the same mean value for 𝑧 = 𝑣𝑡 as
Eq. (8.10) or (8.11). Hence

𝑘 =
3⟨𝑧⟩ − 𝑡

𝑡− ⟨𝑧⟩

The value of 𝑧 = 𝑣𝑡 is sampled using 𝑓(𝑣) if 𝑘 > 0, otherwise 𝑧 = ⟨𝑧⟩ is used. The 𝑔 −→ 𝑡 transformation is
performed using the mean values. The transformation can be written as

𝑡(𝑧) = ⟨𝑡⟩ = −𝜆1 log

(︂
1 − 𝑧

𝜆1

)︂
if the geometrical step is small and

𝑡(𝑧) =
1

𝛼

[︁
1 − (1 − 𝛼𝑤𝑧)

1
𝑤

]︁
where

𝑤 = 1 +
1

𝛼𝜆10

if the step is not small, i.e.the energy loss should be taken into account.

8.1.4 Angular Distribution

The quantity 𝑢 = cos 𝜃 is sampled according to a model function 𝑔(𝑢). The shape of this function has been chosen
such that Eqs. (8.2) and (8.3) are satisfied. The functional form of 𝑔 is

𝑔(𝑢) = 𝑞[𝑝𝑔1(𝑢) + (1 − 𝑝)𝑔2(𝑢)] + (1 − 𝑞)𝑔3(𝑢) (8.12)
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where 0 ≤ 𝑝, 𝑞 ≤ 1, and the 𝑔𝑖 are simple functions of 𝑢 = cos 𝜃, normalized over the range 𝑢 ∈ [−1, 1]. The
functions 𝑔𝑖 have been chosen as

𝑔1(𝑢) = 𝐶1 𝑒−𝑎(1−𝑢) − 1 ≤ 𝑢0 ≤ 𝑢 ≤ 1

𝑔2(𝑢) = 𝐶2
1

(𝑏− 𝑢)𝑑
− 1 ≤ 𝑢 ≤ 𝑢0 ≤ 1

𝑔3(𝑢) = 𝐶3 − 1 ≤ 𝑢 ≤ 1

where 𝑎 > 0, 𝑏 > 0, 𝑑 > 0 and 𝑢0 are model parameters, and the𝐶𝑖 are normalization constants. It is worth noting that
for small scattering angles, 𝜃, 𝑔1(𝑢) is nearly Gaussian (exp(−𝜃2/2𝜃20)) if 𝜃20 ≈ 1/𝑎, while 𝑔2(𝑢) has a Rutherford-like
tail for large 𝜃, if 𝑏 ≈ 1 and 𝑑 is not far from 2 .

8.1.5 Determination of the Model Parameters

The parameters 𝑎, 𝑏, 𝑑, 𝑢0 and 𝑝, 𝑞 are not independent. The requirement that the angular distribution function 𝑔(𝑢)
and its first derivative be continuous at 𝑢 = 𝑢0 imposes two constraints on the parameters:

𝑝 𝑔1(𝑢0) = (1 − 𝑝) 𝑔2(𝑢0) (8.13)

𝑝 𝑎 𝑔1(𝑢0) = (1 − 𝑝)
𝑑

𝑏− 𝑢0
𝑔2(𝑢0)

A third constraint comes from Eq. (8.6) : 𝑔(𝑢) must give the same mean value for 𝑢 as the theory. It follows from Eqs.
(8.9) and (8.12) that

𝑞{𝑝⟨𝑢⟩1 + (1 − 𝑝)⟨𝑢⟩2} = [1 − 𝛼 𝑡]
1

𝛼𝜆10 (8.14)

where ⟨𝑢⟩𝑖 denotes the mean value of 𝑢 computed from the distribution 𝑔𝑖(𝑢). The parameter 𝑎 was chosen according
to a modified Highland-Lynch-Dahl formula for the width of the angular distribution [Hig75], [LynchDahl91].

𝑎 =
0.5

1 − cos(𝜃0)

where 𝜃0 is

𝜃0 =
13.6MeV
𝛽𝑐𝑝

𝑧𝑐ℎ

√︂
𝑡

𝑋0

[︂
1 + ℎ𝑐 ln

(︂
𝑡

𝑋0

)︂ ]︂
when the original Highland-Lynch-Dahl formula is used. Here 𝜃0 = 𝜃𝑟𝑚𝑠

𝑝𝑙𝑎𝑛𝑒 is the width of the approximate Gaussian
projected angle distribution, 𝑝, 𝛽𝑐 and 𝑧𝑐ℎ are the momentum, velocity and charge number of the incident particle, and
𝑡/𝑋0 is the true path length in radiation length unit. The correction term ℎ𝑐 = 0.038 in the formula. This value of 𝜃0 is
from a fit to the Molière distribution for singly charged particles with 𝛽 = 1 for all Z, and is accurate to 11 % or better
for 10−3 ≤ 𝑡/𝑋0 ≤ 100 (see e.g. Rev. of Particle Properties, section 23.3).

The model uses a slightly modified Highland-Lynch-Dahl formula to compute 𝜃0. For electrons/positrons the modified
𝜃0 formula is

𝜃0 =
13.6MeV
𝛽𝑐𝑝

𝑧𝑐ℎ
√
𝑦𝑐

where

𝑦 = ln

(︂
𝑡

𝑋0

)︂
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The correction term 𝑐 and coefficients 𝑐𝑖 are

𝑐 = 𝑐0(𝑐1 + 𝑐2𝑦),

𝑐0 = 0.990395 − 0.168386𝑍1/6 + 0.093286𝑍1/3,

𝑐1 = 1 − 0.08778

𝑍
,

𝑐2 = 0.04078 + 0.00017315𝑍.

This formula gives a much smaller step dependence in the angular distribution than the Highland form. The value of
the parameter 𝑢0 has been chosen as

𝑢0 = 1 − 𝜉

𝑎

where

𝜉 = 𝑑1 + 𝑑2𝑣 + 𝑑3𝑣
2 + 𝑑4𝑣

3

with

𝑣 = ln

(︂
𝑡

𝜆1

)︂
The parameters 𝑑𝑖-s have the form

𝑑𝑖 = 𝑑𝑖0 + 𝑑𝑖1𝑍
1
3 + 𝑑𝑖2𝑍

2
3

The numerical values of the 𝑑𝑖𝑗 constants can be found in the code.

The tail parameter 𝑑 is the same as the parameter 𝜉 .

This (empirical) expression is obtained comparing the simulation results to the data of the MuScat experiment
[ABB+06]. The remaining three parameters can be computed from Eqs. (8.13) - (8.14). The numerical value of
the parameters can be found in the code.

In the case of heavy charged particles (𝜇, 𝜋, 𝑝, etc.) the mean transport free path is calculated from the electron or
positron 𝜆1 values with a ’scaling’ applied. This is possible because the transport mean free path 𝜆1 depends only on
the variable 𝑃𝛽𝑐, where 𝑃 is the momentum, and 𝛽𝑐 is the velocity of the particle.

In its present form the model samples the path length correction and angular distribution from model functions, while
for the lateral displacement and the lateral correlation only the mean values are used and all the other correlations are
neglected. However, the model is general enough to incorporate other random quantities and correlations in the future.

8.1.6 Step Limitation Algorithm

In GEANT4 the boundary crossing is treated by the transportation process. The transportation ensures that the particle
does not penetrate in a new volume without stopping at the boundary, it restricts the step size when the particle leaves
a volume. However, this step restriction can be rather weak in big volumes and this fact can result a not very good
angular distribution after the volume. At the same time, there is no similar step limitation when a particle enters a
volume and this fact does not allow a good backscattering simulation for low energy particles. Low energy particles
penetrate too deeply into the volume in the first step and then, because of energy loss, they are not able to reach again
the boundary in backward direction.

MSC step limitation algorithm has been developed [Urb06] in order to achieve optimal balance between simulation
precision and CPU performance of simulation for different applications. At the start of a track or after entering in a
new volume, the algorithm restricts the step size to a value

𝑓𝑟 · max{𝑟, 𝜆1}
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where 𝑟 is the range of the particle, 𝑓𝑟 is a parameter ∈ [0, 1], taking the max of 𝑟 and 𝜆1 is an empirical choice. The
value of 𝑓𝑟 is constant for low energy particles while for particles with 𝜆1 > 𝜆𝑙𝑖𝑚 an effective value is used given by
the scaling equation

𝑓𝑟𝑒𝑓𝑓 = 𝑓𝑟 ·
[︂
1 − 𝑠𝑐+ 𝑠𝑐 * 𝜆1

𝜆𝑙𝑖𝑚

]︂
(The numerical values 𝑠𝑐 = 0.25 and 𝜆𝑙𝑖𝑚 = 1 mm are used in the equation.) In order not to use very small -
unphysical - step sizes a lower limit is given for the step size as

𝑡𝑙𝑖𝑚𝑖𝑡𝑚𝑖𝑛 = 𝑚𝑎𝑥

[︂
𝜆1

𝑛𝑠𝑡𝑒𝑝𝑚𝑎𝑥
, 𝜆𝑒𝑙𝑎𝑠𝑡𝑖𝑐

]︂
with 𝑛𝑠𝑡𝑒𝑝𝑚𝑎𝑥 = 25 and 𝜆𝑒𝑙𝑎𝑠𝑡𝑖𝑐 is the elastic mean free path of the particle (see later). It can be easily seen that this
kind of step limitation poses a real constraint only for low energy particles. In order to prevent a particle from crossing
a volume in just one step, an additional limitation is imposed: after entering a volume the step size cannot be bigger
than

𝑑𝑔𝑒𝑜𝑚
𝑓𝑔

where 𝑑𝑔𝑒𝑜𝑚 is the distance to the next boundary (in the direction of the particle) and 𝑓𝑔 is a constant parameter. A
similar restriction at the start of a track is

2𝑑𝑔𝑒𝑜𝑚
𝑓𝑔

At this point the program also checks whether the particle has entered a new volume. If it has, the particle steps cannot
be bigger than 𝑡𝑙𝑖𝑚 = 𝑓𝑟 max(𝑟, 𝜆). This step limitation is governed by the physics, because 𝑡𝑙𝑖𝑚 depends on the
particle energy and the material.

The choice of the parameters 𝑓𝑟 and 𝑓𝑔 is also related to performance. By default 𝑓𝑟 = 0.02 and 𝑓𝑔 = 2.5 are used,
but these may be set to any other value in a simple way. One can get an approximate simulation of the backscattering
with the default value, while if a better backscattering simulation is needed it is possible to get it using a smaller value
for 𝑓𝑟. However, this model is very simple and it can only approximately reproduce the backscattering data.

8.1.7 Boundary Crossing Algorithm

A special stepping algorithm has been implemented in order to improve the simulation around interfaces. This algo-
rithm does not allow ‘big’ last steps in a volume and ‘big’ first steps in the next volume. The step length of these steps
around a boundary crossing can not be bigger than the mean free path of the elastic scattering of the particle in the
given volume (material). After these small steps the particle scattered according to a single scattering law (i.e.there is
no multiple scattering very close to the boundary or at the boundary).

The key parameter of the algorithm is the variable called 𝑠𝑘𝑖𝑛. The algorithm is not active for 𝑠𝑘𝑖𝑛 ≤ 0, while for
𝑠𝑘𝑖𝑛 > 0 it is active in layers of thickness 𝑠𝑘𝑖𝑛·𝜆𝑒𝑙𝑎𝑠𝑡𝑖𝑐 before boundary crossing and of thickness (𝑠𝑘𝑖𝑛−1)·𝜆𝑒𝑙𝑎𝑠𝑡𝑖𝑐
after boundary crossing (for 𝑠𝑘𝑖𝑛 = 1 there is only one small step just before the boundary). In this active area the
particle performs steps of length 𝜆𝑒𝑙𝑎𝑠𝑡𝑖𝑐 (or smaller if the particle reaches the boundary traversing a smaller distance
than this value).

The scattering at the end of a small step is single or plural and for these small steps there are no path length correction
and lateral displacement computation. In other words the program works in this thin layer in ‘microscopic mode’. The
elastic mean free path can be estimated as

𝜆𝑒𝑙𝑎𝑠𝑡𝑖𝑐 = 𝜆1 · 𝑟𝑎𝑡 (𝑇𝑘𝑖𝑛)
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where 𝑟𝑎𝑡(𝑇𝑘𝑖𝑛) a simple empirical function computed from the elastic and first transport cross section values of
Mayol and Salvat [MS97]

𝑟𝑎𝑡 (𝑇𝑘𝑖𝑛) =
0.001(MeV)2

𝑇𝑘𝑖𝑛 (𝑇𝑘𝑖𝑛 + 10MeV)

𝑇𝑘𝑖𝑛 is the kinetic energy of the particle.

At the end of a small step the number of scatterings is sampled according to the Poisson’s distribution with a mean
value 𝑡/𝜆𝑒𝑙𝑎𝑠𝑡𝑖𝑐 and in the case of plural scattering the final scattering angle is computed by summing the contributions
of the individual scatterings. The single scattering is determined by the distribution

𝑔(𝑢) = 𝐶
1

(2𝑎+ 1 − 𝑢)2

where 𝑢 = cos(𝜃) , 𝑎 is the screening parameter, 𝐶 is a normalization constant. The form of the screening parameter
is the same as in the single scattering (see there).

8.1.8 Implementation Details

The step length of a particles is determined by the physics processes or the geometry of the detectors. The track-
ing/stepping algorithm checks all the step lengths demanded by the (continuous or discrete) physics processes and
determines the minimum of these step lengths (see True Step Length). The MSC model should be called to compute
step limit after all processes except the transportation process. The following sequence of computations are performed
to make the step:

• the minimum of all processes true step length limit 𝑡 including one of the MSC process is selected;

• The conversion 𝑡 −→ 𝑔 (geometrical step limit) is performed;

• the minimum of obtained value 𝑔 and the transportation step limit is selected;

• The final conversion 𝑔 −→ 𝑡 is performed.

The reason for this ordering is that the physics processes ‘feel’ the true path length 𝑡 traveled by the particle, while the
transportation process (geometry) uses the 𝑧 step length.

A new optional mechanism was recently introduced allowing sample displacement in the vicinity of geometry bound-
ary. If it is enabled and transportation limits the step due to a geometry boundary, then after initial sampling of the
displacement an additional ‘push’ of the track is applied forcing the end point be at the boundary. Corresponding
correction to the true step length is applied according to the value of the ‘push’.

After the actual step of the particle is done, the MSC model is responsible for sampling of scattering angle and
relocation of the end-point of the step. The scattering angle 𝜃 of the particle after the step of length t is sampled
according to the model function given in Eq.‘ (8.12) . The azimuthal angle 𝜑 is generated uniformly in the range
[0, 2𝜋].

After the simulation of the scattering angle, the lateral displacement is computed using Eq. (8.4). Then the correlation
given by Eq. (8.5) is used to determine the direction of the lateral displacement. Before ’moving’ the particle according
to the displacement a check is performed to ensure that the relocation of the particle with the lateral displacement does
not take the particle beyond the volume boundary.

Default MSC parameter values optimized per particle type are shown in Table 8.1. Note, that there are four types of
step limitation by multiple scattering process:

• Minimal - only 𝑓𝑟 parameter and range are used;

• UseSafety - 𝑓𝑟 parameter, range and geometrical safety are used;

• UseSafetyPlus - 𝑓𝑟 parameter, range and geometrical safety are used;

84 Chapter 8. Elastic scattering



Physics Reference Manual, Release 10.4

• UseDistanceToBoundary - uses particle range, geometrical safety and linear distance to geometrical
boundary.

Table 8.1: The default values of parameters for different particle type.
particle 𝑒+, 𝑒− muons, hadrons ions
StepLimitType fUseSafety fMinimal fMinimal
skin 0 0 0
𝑓𝑟 0.04 0.2 0.2
𝑓𝑔 2.5 0.1 0.1
LateralDisplacement true true false

The parameters of the model can be changed via public functions of the base class G4VMultipleSacttering. They
can be changed for all multiple scattering processes simultaneously via G4EmParameters class, G4EmProcessOptions
class, or via GEANT4 UI commands. The following commands are available:

/process/msc/StepLimit UseDistanceToBoundary
/process/msc/LateralDisplacement false
/process/msc/MuHadLateralDisplacement false
/process/msc/DisplacementBeyondSafety true
/process/msc/RangeFactor 0.02
/process/msc/GeomFactor 2.5
/process/msc/Skin 2

8.2 Single Scattering

Single elastic scattering process is an alternative to the multiple scattering process. The advantage of the single scat-
tering process is in possibility of usage of theory based cross sections, in contrary to the GEANT4 multiple scattering
model [Urb06], which uses a number of phenomenological approximations on top of Lewis theory. The process
G4CoulombScattering was created for simulation of single scattering of muons, it also applicable with some phys-
ical limitations to electrons, muons and ions. Because each of elastic collisions are simulated the number of steps
of charged particles significantly increasing in comparison with the multiple scattering approach, correspondingly its
CPU performance is poor. However, in low-density media (vacuum, low-density gas) multiple scattering may provide
wrong results and single scattering processes are more appropriate.

8.2.1 Coulomb Scattering

The single scattering model of Wentzel [Wen27] is used in many multiple scattering models including the Penelope
code [FernandezVareaMayolBaroSalvat93]. The Wentzel model for describing elastic scattering of particles with
charge 𝑧𝑒 (𝑧 = −1 for electron) by atomic nucleus with atomic number 𝑍 is based on simplified scattering potential

𝑉 (𝑟) =
𝑧𝑍𝑒2

𝑟
exp(−𝑟/𝑅),

where the exponential factor tries to reproduce the effect of screening. The parameter 𝑅 is a screening radius [Bet53]

𝑅 = 0.885𝑍−1/3𝑟𝐵 ,

where 𝑟𝐵 is the Bohr radius. In the first Born approximation the elastic scattering cross section 𝜎(𝑊 ) can be obtained
as

𝑑𝜎(𝑊 )(𝜃)

𝑑Ω
=

(𝑧𝑒2)2

(𝑝𝛽𝑐)2
𝑍(𝑍 + 1)

(2𝐴+ 1 − cos 𝜃)2
, (8.15)
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where 𝑝 is the momentum and 𝛽 is the velocity of the projectile particle. The screening parameter 𝐴 according to
Moliere and Bethe [Bet53]

𝐴 =

(︂
}

2𝑝𝑅

)︂2

(1.13 + 3.76(𝛼𝑍/𝛽)2),

where 𝛼 is the fine structure constant and the factor in brackets is used to take into account second order corrections
to the first Born approximation. The total elastic cross section 𝜎 can be expressed via Wentzel cross section (8.15):

𝑑𝜎(𝜃)

𝑑Ω
=
𝑑𝜎(𝑊 )(𝜃)

𝑑Ω

(︃
𝑍

(1 + (𝑞𝑅𝑁 )2

12 )2
+ 1

)︃
1

𝑍 + 1
, (8.16)

where 𝑞 is momentum transfer to the nucleus, 𝑅𝑁 is nuclear radius. This term takes into account nuclear size effect
[eal02], the second term takes into account scattering off electrons. The results of simulation with the single scattering
model (Fig. 8.1) are competitive with the results of the multiple scattering.

Fig. 8.1: Scattering of muons off 1.5 mm aluminum foil: data [eal06] - black squares; simulation - colored mark-
ers corresponding different options of multiple scattering and single scattering model; in the bottom plot - relative
difference between the simulation and the data in percents; hashed area demonstrates one standard deviation of the
data.

8.2.2 Implementation Details

The total cross section of the process is obtained as a result of integration of the differential cross section (8.16). The
first term of this cross section is integrated in the interval (0, 𝜋). The second term in the smaller interval (0, 𝜃𝑚),
where 𝜃𝑚 is the maximum scattering angle off electrons, which is determined using the cut value for the delta electron
production. Before sampling of angular distribution the random choice is performed between scattering off the nucleus
and off electrons.

8.3 Ion Scattering

The necessity of accurately computing the characteristics of interatomic scattering arises in many disciplines in which
energetic ions pass through materials. Traditionally, solutions to this problem not involving hadronic interactions
have been dominated by the multiple scattering, which is reasonably successful, but not very flexible. In particular,
it is relatively difficult to introduce into such a system a particular screening function which has been measured for a
specific atomic pair, rather than the universal functions which are applied. In many problems of current interest, such
as the behavior of semiconductor device physics in a space environment, nuclear reactions, particle showers, and other
effects are critically important in modeling the full details of ion transport. The process G4ScreenedNuclearRecoil
provides simulation of ion elastic scattering [MW05]. This process is available with extended electromagnetic example
TestEm7.
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8.3.1 Method

The method used in this computation is a variant of a subset of the method described in Ref.[MW91]. A very short
recap of the basic material is included here. The scattering of two atoms from each other is assumed to be a completely
classical process, subject to an interatomic potential described by a potential function

𝑉 (𝑟) =
𝑍1𝑍2𝑒

2

𝑟
𝜑
(︁ 𝑟
𝑎

)︁
where 𝑍1 and 𝑍2 are the nuclear proton numbers, 𝑒2 is the electromagnetic coupling constant (𝑞2𝑒/4𝜋𝜖0 in SI units),
𝑟 is the inter-nuclear separation, 𝜑 is the screening function describing the effect of electronic screening of the bare
nuclear charges, and 𝑎 is a characteristic length scale for this screening. In most cases, 𝜑 is a universal function used
for all ion pairs, and the value of 𝑎 is an appropriately adjusted length to give reasonably accurate scattering behavior.
In the method described here, there is no particular need for a universal function 𝜑, since the method is capable of
directly solving the problem for most physically plausible screening functions. It is still useful to define a typical
screening length 𝑎 in the calculation described below, to keep the equations in a form directly comparable with our
previous work even though, in the end, the actual value is irrelevant as long as the final function 𝜑(𝑟) is correct.
From this potential 𝑉 (𝑟) one can then compute the classical scattering angle from the reduced center-of-mass energy
𝜀 ≡ 𝐸𝑐𝑎/𝑍1𝑍2𝑒

2 (where𝐸𝑐 is the kinetic energy in the center-of-mass frame) and reduced impact parameter 𝛽 ≡ 𝑏/𝑎

𝜃𝑐 = 𝜋 − 2𝛽

∫︁ ∞

𝑥0

𝑓(𝑧) 𝑑𝑧/𝑧2

where

𝑓(𝑧) =

(︂
1 − 𝜑(𝑧)

𝑧 𝜀
− 𝛽2

𝑧2

)︂−1/2

and 𝑥0 is the reduced classical turning radius for the given 𝜀 and 𝛽.

The problem, then, is reduced to the efficient computation of this scattering integral. In our previous work, a great deal
of analytical effort was included to proceed from the scattering integral to a full differential cross section calculation,
but for application in a Monte-Carlo code, the scattering integral 𝜃𝑐(𝑍1, 𝑍2, 𝐸𝑐, 𝑏) and an estimated total cross section
𝜎0(𝑍1, 𝑍2, 𝐸𝑐) are all that is needed. Thus, we can skip algorithmically forward in the original paper to equations 15-
18 and the surrounding discussion to compute the reduced distance of closest approach 𝑥0. This computation follows
that in the previous work exactly, and will not be reintroduced here.

For the sake of ultimate accuracy in this algorithm, and due to the relatively low computational cost of so doing, we
compute the actual scattering integral (as described in equations 19-21 of [MW91]) using a Lobatto quadrature of order
6, instead of the 4th order method previously described. This results in the integration accuracy exceeding that of any
available interatomic potentials in the range of energies above those at which molecular structure effects dominate,
and should allow for future improvements in that area. The integral 𝛼 then becomes (following the notation of the
previous paper)

𝛼 ≈ 1 + 𝜆0

30
+

4∑︁
𝑖=1

𝑤′
𝑖 𝑓

(︂
𝑥0

𝑞𝑖

)︂
(8.17)

where

𝜆0 =

(︂
1

2
+

𝛽2

2𝑥20
− 𝜑′(𝑥0)

2 𝜀

)︂−1/2

(8.18)

𝑤′
𝑖 ∈ [0.03472124, 0.1476903, 0.23485003, 0.1860249]

𝑞𝑖 ∈ [0.9830235, 0.8465224, 0.5323531, 0.18347974]

Then

𝜃𝑐 = 𝜋 − 𝜋𝛽𝛼

𝑥0
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The other quantity required to implement a scattering process is the total scattering cross section 𝜎0 for a given incident
ion and a material through which the ion is propagating. This value requires special consideration for a process such
as screened scattering. In the limiting case that the screening function is unity, which corresponds to Rutherford
scattering, the total cross section is infinite. For various screening functions, the total cross section may or may not
be finite. However, one must ask what the intent of defining a total cross section is, and determine from that how to
define it.

In GEANT4, the total cross section is used to determine a mean-free-path 𝑙𝜇 which is used in turn to generate random
transport distances between discrete scattering events for a particle. In reality, where an ion is propagating through,
for example, a solid material, scattering is not a discrete process but is continuous. However, it is a useful, and highly
accurate, simplification to reduce such scattering to a series of discrete events, by defining some minimum energy
transfer of interest, and setting the mean free path to be the path over which statistically one such minimal transfer has
occurred. This approach is identical to the approach developed for the original TRIM code [BH80]. As long as the
minimal interesting energy transfer is set small enough that the cumulative effect of all transfers smaller than that is
negligible, the approximation is valid. As long as the impact parameter selection is adjusted to be consistent with the
selected value of 𝑙𝜇, the physical result isn’t particularly sensitive to the value chosen.

Noting, then, that the actual physical result isn’t very sensitive to the selection of 𝑙𝜇, one can be relatively free about
defining the cross section 𝜎0 from which 𝑙𝜇 is computed. The choice used for this implementation is fairly simple.
Define a physical cutoff energy 𝐸𝑚𝑖𝑛 which is the smallest energy transfer to be included in the calculation. Then,
for a given incident particle with atomic number 𝑍1, mass 𝑚1, and lab energy 𝐸𝑖𝑛𝑐, and a target atom with atomic
number 𝑍2 and mass 𝑚2, compute the scattering angle 𝜃𝑐 which will transfer this much energy to the target from the
solution of

𝐸𝑚𝑖𝑛 = 𝐸𝑖𝑛𝑐
4𝑚1𝑚2

(𝑚1 +𝑚2)2
sin2 𝜃𝑐

2
.

Then, noting that 𝛼 from Eq.(8.17) is a number very close to unity, one can solve for an approximate impact parameter
𝑏 with a single root-finding operation to find the classical turning point. Then, define the total cross section to be
𝜎0 = 𝜋𝑏2, the area of the disk inside of which the passage of an ion will cause at least the minimum interesting
energy transfer. Because this process is relatively expensive, and the result is needed extremely frequently, the values
of 𝜎0(𝐸𝑖𝑛𝑐) are precomputed for each pairing of incident ion and target atom, and the results cached in a cubic-spline
interpolation table. However, since the actual result isn’t very critical, the cached results can be stored in a very
coarsely sampled table without degrading the calculation at all, as long as the values of the 𝑙𝜇 used in the impact
parameter selection are rigorously consistent with this table.

The final necessary piece of the scattering integral calculation is the statistical selection of the impact parameter 𝑏
to be used in each scattering event. This selection is done following the original algorithm from TRIM, where the
cumulative probability distribution for impact parameters is

𝑃 (𝑏) = 1 − exp

(︂
−𝜋 𝑏2

𝜎0

)︂
where 𝑁 𝜎0 ≡ 1/𝑙𝜇 where 𝑁 is the total number density of scattering centers in the target material and 𝑙𝜇 is the mean
free path computed in the conventional way. To produce this distribution from a uniform random variate 𝑟 on (0,1],
the necessary function is

𝑏 =

√︃
− log 𝑟

𝜋 𝑁 𝑙𝜇

This choice of sampling function does have the one peculiarity that it can produce values of the impact parameter
which are larger than the impact parameter which results in the cutoff energy transfer, as discussed above in the
section on the total cross section, with probability 1/𝑒. When this occurs, the scattering event is not processed further,
since the energy transfer is below threshold. For this reason, impact parameter selection is carried out very early in the
algorithm, so the effort spent on uninteresting events is minimized.

The above choice of impact sampling is modified when the mean-free-path is very short. If 𝜎0 > 𝜋
(︀
𝑙
2

)︀2
where 𝑙 is the

approximate lattice constant of the material, as defined by 𝑙 = 𝑁−1/3, the sampling is replaced by uniform sampling
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on a disk of radius 𝑙/2, so that

𝑏 =
𝑙

2

√
𝑟

This takes into account that impact parameters larger than half the lattice spacing do not occur, since then one is closer
to the adjacent atom. This also derives from TRIM.

One extra feature is included in our model, to accelerate the production of relatively rare events such as high-angle
scattering. This feature is a cross-section scaling algorithm, which allows the user access to an unphysical control of
the algorithm which arbitrarily scales the cross-sections for a selected fraction of interactions. This is implemented as
a two-parameter adjustment to the central algorithm. The first parameter is a selection frequency 𝑓ℎ which sets what
fraction of the interactions will be modified. The second parameter is the scaling factor for the cross-section. This is
implemented by, for a fraction 𝑓ℎ of interactions, scaling the impact parameter by 𝑏′ = 𝑏/

√
𝑠𝑐𝑎𝑙𝑒. This feature, if used

with care so that it does not provide excess multiple-scattering, can provide between 10 and 100-fold improvements
to event rates. If used without checking the validity by comparing to un-adjusted scattering computations, it can also
provide utter nonsense.

8.3.2 Implementation Details

The coefficients for the summation to approximate the integral for 𝛼 in Eq.(8.17) are derived from the values in
Abramowitz & Stegun [MA65], altered to make the change-of-variable used for this integral. There are two basic
steps to the transformation. First, since the provided abscissas 𝑥𝑖 and weights 𝑤𝑖 are for integration on [-1,1], with
only one half of the values provided, and in this work the integration is being carried out on [0,1], the abscissas are
transformed as:

𝑦𝑖 ∈
{︂

1 ∓ 𝑥𝑖
2

}︂
Then, the primary change-of-variable is applied resulting in:

𝑞𝑖 = cos
𝜋 𝑦𝑖
2

𝑤′
𝑖 =

𝑤𝑖

2
sin

𝜋 𝑦𝑖
2

except for the first coefficient𝑤′
1where the sin() part of the weight is taken into the limit of 𝜆0 as described in Eq.(8.18).

This value is just 𝑤′
1 = 𝑤1/2.

8.4 Single Scattering, Screened Coulomb Potential and NIEL

An alternative model of Coulomb scattering of ions have been developed based on [MJB11] and references therein.
The advantage of this model is the wide applicability range in energy from 50 keV to 100V TeV per nucleon.

8.4.1 Nucleus–Nucleus Interactions

As discussed in Ref. [MJB11], at small distances from the nucleus, the potential energy is a Coulomb potential, while,
at distances larger than the Bohr radius, the nuclear field is screened by the fields of atomic electrons. The interaction
between two nuclei is usually described in terms of an interatomic Coulomb potential (e.g., see Section 2.1.4.1 of
Ref. [LR09] and Section 4.1 of Ref. [BIA+93]), which is a function of the radial distance 𝑟 between the two nuclei

𝑉 (𝑟) =
𝑧𝑍𝑒2

𝑟
ΨI(𝑟r), (8.19)
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where 𝑒𝑧 (projectile) and 𝑒𝑍 (target) are the charges of the bare nuclei, ΨI is the interatomic screening function, and
𝑟r is given by

𝑟r =
𝑟

aI
,

with aI the screening length (also termed screening radius). In the framework of the Thomas–Fermi model of the
atom (e.g., see Ref. [MJB11] and references therein), and thus following the approach of ICRU Report 49 [BIA+93],
a commonly used screening length for 𝑧 = 1 incoming particles is that from Thomas–Fermi

aTF =
𝐶TF a0
𝑍1/3

, (8.20)

and, for incoming particles with 𝑧 ≥ 2, that introduced by Ziegler et al. [JFZ85] (and termed universal screening
length):

aU =
𝐶TF a0

𝑧0.23 + 𝑍0.23
, (8.21)

where

a0 =
~2

𝑚𝑒2

is the Bohr radius, 𝑚 is the electron rest mass and

𝐶TF =
1

2

(︂
3𝜋

4

)︂2/3

≃ 0.88534

is a constant introduced in the Thomas–Fermi model.

The simple scattering model due to Wentzel [Wen26], with a single exponential screening function ΨI(𝑟r) (e.g., see
Ref. [MJB11] and references therein), was repeatedly employed in treating single and multiple Coulomb-scattering
with screened potentials. The resulting elastic differential cross section differs from the Rutherford differential cross
section by an additional term, the screening parameter, which prevents the divergence of the cross section when the
angle 𝜃 of scattered particles approaches 0∘. The screening parameter 𝐴s (e.g., see Eq. (21) of [Bet53]) as derived by
Molière [Moliere47][Moliere48] for the single Coulomb scattering using a Thomas–Fermi potential is expressed as

𝐴s =

(︂
~

2 𝑝 𝑎I

)︂2
[︃

1.13 + 3.76 ×
(︂
𝛼𝑧𝑍

𝛽

)︂2
]︃
. (8.22)

𝑎I is the screening length from Eqs.(8.20) – (8.21) for particles with 𝑧 = 1 and 𝑧 ≥ 2, respectively; 𝛼 is the fine-
structure constant; 𝑝 𝛽𝑐 is the momentum (velocity) of the incoming particle undergoing the scattering onto a target
supposed to be initially at rest; 𝑐 and ~ are the speed of light and the reduced Planck constant, respectively. When the
(relativistic) mass, corresponding to rest mass 𝑚, of the incoming particle is much lower than the rest mass 𝑀 of the
target nucleus, the differential cross section obtained from the Wentzel–Molière treatment of the single scattering is:

𝑑𝜎WM(𝜃)

𝑑Ω
=

(︂
𝑧𝑍𝑒2

2 𝑝 𝛽𝑐

)︂2
1[︀

𝐴s + sin2(𝜃/2)
]︀2 . (8.23)

Equation (8.23) differs from Rutherford’s formula, as already mentioned, for the additional term 𝐴s to sin2(𝜃/2). As
discussed in Ref. [MJB11], for 𝛽 ≃ 1 (i.e., at very large 𝑝) and with 𝐴s ≪ 1, one finds that the cross section
approaches a constant:

𝜎WM
c ≃

(︂
2 𝑧𝑍𝑒2𝑎I

~𝑐

)︂2
𝜋

1.13 + 3.76 × (𝛼𝑧𝑍)
2 . (8.24)

As discussed in Ref. [MJB11] and references therein, for a scattering under the action of a central potential (for
instance that due to a screened Coulomb field), when the rest mass of the target particle is no longer much larger
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than the relativistic mass of the incoming particle, the expression of the differential cross section must properly be re-
written in the center of mass system in terms of an “effective particle” with momentum equal to that of the incoming
particle (𝑝′𝑖𝑛) and rest mass equal to the relativistic reduced mass

𝜇rel =
𝑚𝑀

𝑀1,2
. (8.25)

𝑀1,2 is the invariant mass; 𝑚 and 𝑀 are the rest masses of the incoming and target particles, respectively. The
“effective particle” velocity is given by:

𝛽r𝑐 = 𝑐

⎯⎸⎸⎷[︃1 +

(︂
𝜇rel𝑐

𝑝′𝑖𝑛

)︂2
]︃−1

.

Thus, one finds (e.g, see Ref. [MJB11]):

𝑑𝜎WM(𝜃′)

𝑑Ω′ =

(︂
𝑧𝑍𝑒2

2 𝑝′𝑖𝑛 𝛽r𝑐

)︂2
1[︀

𝐴s + sin2(𝜃′/2)
]︀2 , (8.26)

with

𝐴s =

(︂
~

2 𝑝′𝑖𝑛 𝑎I

)︂2
[︃

1.13 + 3.76 ×
(︂
𝛼𝑧𝑍

𝛽r

)︂2
]︃

(8.27)

and 𝜃′ the scattering angle in the center of mass system.

The energy 𝑇 transferred to the recoil target is related to the scattering angle as 𝑇 = 𝑇𝑚𝑎𝑥 sin2 (𝜃′/2), where 𝑇𝑚𝑎𝑥 is
the maximum energy which can be transferred in the scattering (e.g., see Section 1.5 of Ref. [LR09]), thus, assuming
an isotropic azimuthal distribution one can re-write Eq.(8.26) in terms of the kinetic recoil energy 𝑇 of the target

𝑑𝜎WM(𝑇 )

𝑑𝑇
= 𝜋

(︂
𝑧𝑍𝑒2

𝑝′𝑖𝑛 𝛽r𝑐

)︂2
𝑇𝑚𝑎𝑥

[𝑇𝑚𝑎𝑥𝐴s + 𝑇 ]
2 . (8.28)

Furthermore, one can demonstrate that Eq.(8.28) can be re-written as (e.g, see Ref. [MJB11]);

𝑑𝜎WM(𝑇 )

𝑑𝑇
= 2𝜋

(︀
𝑧𝑍𝑒2

)︀2 𝐸2

𝑝2𝑀𝑐4
1

[𝑇𝑚𝑎𝑥𝐴s + 𝑇 ]
2 (8.29)

with 𝑝 and 𝐸 the momentum and total energy of the incoming particle in the laboratory. Equation (8.29) expresses, as
already mentioned, the differential cross section as a function of the (kinetic) energy 𝑇 achieved by the recoil target.

8.4.2 Nuclear Stopping Power

Using Eq. (8.29), the nuclear stopping power in MeVcm−1 is obtained as

−
(︂
𝑑𝐸

𝑑𝑥

)︂
nucl

= 2𝑛𝐴𝜋
(︀
𝑧𝑍𝑒2

)︀2 𝐸2

𝑝2𝑀𝑐4

[︂
𝐴s

𝐴s + 1
− 1 + ln

(︂
𝐴s + 1

𝐴s

)︂]︂
. (8.30)

𝑛𝐴 is the number of nuclei (atoms) per unit of volume and, the negative sign indicates that the energy is lost by
the incoming particle. As discussed in Ref. [MJB11], a slight increase of the nuclear stopping power with energy is
expected because of the decrease of the screening parameter with energy.

For instance, in Fig. 8.2 the nuclear stopping power in silicon is shown as a function of the kinetic energy per nucleon
for protons, 𝛼-particles and 11B, 12C, 28Si, 56Fe, 115In, 208Pb nuclei.

A comparison of the present treatment with that obtained from Ref. [JFZ85], available in SRIM (2008) [JFZ08], using
the universal screening potential (see also Ref. [ZBZ08]) is discussed in Ref. [MJB11]: a good agreement is achieved
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Fig. 8.2: Nuclear stopping power from Ref. [MJB11] in MeV cm 2 g -1 calculated using Eq.(8.30) in silicon shown
as a function of the kinetic energy per nucleon from 50 keV/nucleon up 100 TeV/nucleon for protons, 𝛼-particles and
11B, 12C, 28Si, 56Fe, 115In, 208Pb nuclei.

down to about 150 keV/nucleon. At large energies, the non-relativistic approach due to Ref. [JFZ85] becomes less
appropriate and deviations from stopping powers calculated by means of the universal screening potential are expected
and observed.

The non-relativistic approach based on the universal screening potential of [JFZ85] was also used by ICRU (1993)
[BIA+93] to calculate nuclear stopping powers due to protons and 𝛼-particles in materials. ICRU (1993) used
as screening lengths those from Eqs.(8.20) for protons and (8.21) for 𝛼-particles, respectively. As discussed in
Ref. [MJB11], the stopping powers for protons (𝛼-particles) from Eq.(8.30) are less than ≈ 5% larger than those
reported by ICRU (1993) [BIA+93] from 50 keV/nucleon up to ≈ 8MeV (19 MeV/nucleon). At larger energies the
stopping powers from Eq.(8.30) differ from those from ICRU, as expected, due to the complete relativistic treatment
of the present approach (see Ref. [MJB11]).

The simple screening parameter used so far (Eq.(8.27)), derived by Molière [Moliere47]), can be modified by means
of a practical correction, i.e.,

𝐴′
s =

(︂
~

2 𝑝′𝑖𝑛 𝑎I

)︂2
[︃

1.13 + 3.76 × 𝐶

(︂
𝛼𝑧𝑍

𝛽r

)︂2
]︃
, (8.31)

to achieve a better agreement with low energy calculations of [JFZ85]. For instance, as discussed in Ref. [MJB11],
for 𝛼-particles and heavier ions, with

𝐶 = (10𝜋𝑧𝑍𝛼)
0.12 (8.32)

the stopping powers obtained from Eq.(8.30) (in which 𝐴′
s replaces 𝐴s) differ from the values of SRIM (2008) by less

than ≈ 4.7 (3.6)% for 𝛼-particles (lead ions) in silicon down to about 50 keV/nucleon. With respect to the tabulated
values of ICRU (1993), the agreement for 𝛼-particles is usually better than 4% at low energy down to 50 keV/nucleon.
A 5% agreement is achieved at about 50 keV/nucleon in case of a lead medium. At very high energy, the stopping
power is slightly affected when 𝐴′

s replaces 𝐴s (Ref. [MJB11]).

92 Chapter 8. Elastic scattering



Physics Reference Manual, Release 10.4

Fig. 8.3: Non-ionizing stopping power from Ref. [MJB11] calculated using Eq.(8.33) in silicon is shown as a function
of the kinetic energy per nucleon, from 50 keV/nucleon up 100 TeV/nucleon, for protons, 𝛼-particles and 11B, 12C,
28Si, 56Fe, 115In, 208Pb nuclei. The threshold energy for displacement is 21 eV in silicon.

8.4.3 Non-Ionizing Energy Loss due to Coulomb Scattering

A relevant process which causes permanent damage to the silicon bulk structure is the displacement damage (e.g., see
Chapter 4 of Ref. [LR09], Ref. [LR07] and references therein). Displacement damage may be inflicted when a primary
knocked-on atom (PKA) is generated. The interstitial atom and relative vacancy are termed a Frenkel pair (FP). In turn,
the displaced atom may have sufficient energy to migrate inside the lattice and, by further collisions, can displace other
atoms as in a collision cascade. This displacement process modifies the bulk characteristics of the device and causes
its degradation. The total number of FPs can be estimated calculating the energy density deposited from displacement
processes. In turn, this energy density is related to the Non-Ionizing Energy Loss (NIEL), i.e., the energy per unit path
lost by the incident particle due to displacement processes.

In case of Coulomb scattering on nuclei, the non-ionizing energy loss can be calculated using the Wentzel–Molière
differential cross section (Eq.(8.29)) discussed in Single Scattering, Screened Coulomb Potential and NIEL, i.e.,

−
(︂
𝑑𝐸

𝑑𝑥

)︂NIEL

nucl

= 𝑛𝐴

∫︁ 𝑇𝑚𝑎𝑥

𝑇𝑑

𝑇 𝐿(𝑇 )
𝑑𝜎WM(𝑇 )

𝑑𝑇
𝑑𝑇 , (8.33)

where 𝐸 is the kinetic energy of the incoming particle, 𝑇 is the kinetic energy transferred to the target atom, 𝐿(𝑇 )
is the fraction of 𝑇 deposited by means of displacement processes. The expression of 𝐿(𝑇 ), denoted the Lindhard
partition function, can be found, for instance, in Equations (4.94, 4.96) of Section 4.2.1.1 in Ref. [LR09] and references
therein. 𝑇de = 𝑇 𝐿(𝑇 ) is the damage energy, i.e., the energy deposited by a recoil nucleus with kinetic energy 𝑇 via
displacement damages inside the medium. The integral in Eq.(8.33) is computed from the minimum energy 𝑇𝑑, denoted
the threshold energy for displacement, i.e., that energy necessary to displace the atom from its lattice position, up to
the maximum energy 𝑇𝑚𝑎𝑥 that can be transferred during a single collision process. 𝑇𝑑 is about 21 eV in silicon. For
instance, in Fig. 8.3 the non-ionizing energy loss in silicon is shown as a function of the kinetic energy per nucleon for
protons, 𝛼-particles and 11B, 12C, 28Si, 56Fe, 115In, 208Pb nuclei.

A further discussion on the agreement with the results obtained by Jun et al. [JXM+03], using a relativistic treatment of
Coulomb scattering of protons with kinetic energies from 50 MeV to 1 GeV on silicon, can be found in Ref. [MJB11].
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8.4.4 G4IonCoulombScatteringModel

As discussed so far, high energy particles may inflict permanent damage to the electronic devices employed in a
radiation environment. In particular the nuclear energy loss is important for the formation of defects in semiconductor
devices. Nuclear energy loss is also responsible for the displacement damage which is the typical cause of degradation
for silicon devices. The electromagnetic model G4IonCoulombScatteringModel was created in order to simulate the
single scattering of protons, alpha particles and all heavier nuclei incident on all target materials in the energy range
from 50–100 keV/nucleon to 10 TeV.

8.4.5 The Method

The differential cross section previously described is calculated by means of the class G4IonCoulombCrossSection
where a modified version of the Wentzel’s cross section is used. To solve the scattering problem of heavy ions it is
necessary to introduce an effective particle whose mass is equal to the relativistic reduced mass of the system defined
as

𝜇𝑟 ≡ 𝑚1𝑚2𝑐
2

𝐸𝑐𝑚
.

𝑚1 and 𝑚2 are the incident and target rest masses respectively, and 𝐸𝑐𝑚 (in Eq.(8.25), 𝑀1,2 = 𝐸𝑐𝑚/𝑐
2) is the total

center of mass energy of the two particle system. The effective particle interacts with a fixed scattering center with
interacting potential expressed by Eq.(8.19). The momentum of the effective particle is equal to the momentum of the
incoming particle calculated in the center of mass system (p𝑟 ≡ p1𝑐𝑚). Since the target particle is inside the material
it can be considered at rest in the laboratory, and as a consequence the magnitude of p𝑟 is calculated as

𝑝𝑟 ≡ 𝑝1𝑐𝑚 = 𝑝1𝑙𝑎𝑏
𝑚2𝑐

2

𝐸𝑐𝑚
,

with 𝐸𝑐𝑚 given by

𝐸𝑐𝑚 =
√︀

(𝑚1𝑐2)2 + (𝑚2𝑐2)2 + 2𝐸1𝑙𝑎𝑏𝑚2𝑐2, (8.34)

where 𝑝1𝑙𝑎𝑏 is the momentum, and 𝐸1𝑙𝑎𝑏 the total energy, of the incoming particle in the laboratory system. The
velocity 𝛽𝑟 of the effective particle is obtained by the relation

1

𝛽2
𝑟

= 1 +

(︃
𝜇𝑟𝑐

2

𝑝𝑟𝑐

)︃2

.

The modified Wentzel’s cross section is then equal to:

𝑑𝜎(𝜃𝑟)

𝑑Ω
=

(︂
𝑍1𝑍2𝑒

2

𝑝𝑟𝑐 𝛽𝑟

)︂2
1

(2𝐴𝑠 + 1 − cos 𝜃𝑟)2
(8.35)

(in Eq.(8.26)) 𝑝′𝑖𝑛 ≡ 𝑝𝑟 where 𝑍1 and 𝑍2 are the nuclear proton numbers of projectile and of target respectively; 𝐴𝑠

is the screening coefficient (see Eq.(8.27)) and 𝜃𝑟 is the scattering angle of the effective particle which is equal to the
one in the center of mass system (𝜃𝑟 ≡ 𝜃1𝑐𝑚). Knowing the scattering angle, the recoil kinetic energy of the target
particle after scattering is calculated by

𝑇 = 𝑚2𝑐
2

(︃
𝑝1𝑙𝑎𝑏𝑐

𝐸𝑐𝑚

)︃2

(1 − cos 𝜃𝑟). (8.36)

The momentum and the total energy of the incident particle after scattering in the laboratory system are obtained by
the usual Lorentz transformations.
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8.4.6 Implementation Details

In the G4IonCoulombScatteringModel the scattering off electrons is not considered: only scattering off nuclei is
simulated. Secondary particles are generated when 𝑇 of Eq.(8.36) is greater than a given threshold for displacement
𝑇𝑑; it is not cut in range. The user can set this energy threshold 𝑇𝑑 by the method SetRecoilThreshold(G4double Td).
The default screening coefficient 𝐴𝑠 is given by Eq.(8.27). If the user wants to use the one given by Eq.(8.31) the
condition SetHeavyIonCorr(1) must be set. When 𝑍1 = 1, the Thomas-Fermi screening length (𝑎𝑇𝐹 of Eq. (8.20))
is used in the calculation of 𝐴𝑠. For 𝑍1 ≥ 2 the screening length is the universal one (𝑎𝑈 of Eq. (8.21)). In the
G4IonCoulombCrossSection the total differential cross section is obtained by the method NuclearCrossSection() where
the Eq.(8.35) is integrated in the interval (0, 𝜋):

𝜎 = 𝜋

(︂
𝑍1𝑍2𝑒

2

𝑝𝑟𝑐 𝛽𝑟

)︂2
1

𝐴𝑠(𝐴𝑠 + 1)
(8.37)

The cosine of the scattering angle is chosen randomly in the interval (-1, 1) according to the distribution of the total
cross section and it is given by the method SampleCosineTheta() which returns (1 − cos 𝜃𝑟).

8.5 Electron Screened Single Scattering and NIEL

The present treatment [MJB12] of electron–nucleus interaction is based on numerical and analytical approximations
of the Mott differential cross section. It accounts for effects due to screened Coulomb potentials, finite sizes and finite
rest masses of nuclei for electron with kinetic energies above 200 keV and up to ultra high. This treatment allows
one to determine both the total and differential cross sections, thus, to calculate the resulting nuclear and non-ionizing
stopping powers (NIEL). Above a few hundreds of MeV, neglecting the effects of finite sizes and rest masses of recoil
nuclei the stopping power and NIEL result to be largely underestimated, while, above a few tens of MeV prevents a
further large increase, thus, resulting in approaching almost constant values at high energies.

The non-ionizing energy loss (NIEL) is the energy lost from a particle traversing a unit length of a medium through
physical process resulting in permanent displacement damages (e.g. see Ref.[LR07]). The nuclear stopping power
and NIEL deposition due to elastic Coulomb scatterings from protons and light and heavy ions traversing an absorber
were previously described [MJB11] and are available in GEANT4 (Single Scattering, Screened Coulomb Potential and
NIEL) (see also Sections 1.6, 1.6.1, 2.1.4–2.1.4.2, 4.2.1.6 of Ref. [LR11]). In the present model included in GEANT4,
the nuclear stopping power and NIEL deposition due to elastic Coulomb scatterings of electrons are treated up to ultra
relativistic energies.

8.5.1 Scattering Cross Section of Electrons on Nuclei

The scattering of electrons by unscreened atomic nuclei was treated by Mott extending a method of Wentzel dealing
with incident and scattered waves on point-like nuclei and including effects related to the spin of electrons. The
differential cross section (DCS), denoted the Mott differential cross section (MDCS), was expressed by Mott as two
conditionally convergent infinite series in terms of Legendre expansions. In Mott–Wentzel treatment, the scattering
occurs on a field of force generating a radially dependent Coulomb, unscreened (screened) in Mott (Wentzel), potential.
Furthermore, the MDCS was derived in the laboratory reference system for infinitely heavy nuclei initially at rest with
negligible spin effects and must be numerically evaluated for any specific nuclear target. Effects related to the recoil
and finite rest mass of the target nucleus (𝑀 ) were neglected. Thus, in this framework the total energy of electrons
has to be smaller or much smaller than 𝑀𝑐2.

The MDCS is usually expressed as:

𝑑𝜎Mott(𝜃)

𝑑Ω
=
𝑑𝜎Rut

𝑑Ω
ℛMott, (8.38)

where ℛMott is the ratio between the MDCS and Rutherford’s formula (RDCS, see Equation (1) of Ref. [MJB12]).
For electrons with kinetic energies from several keV up to 900 MeV and target nuclei with 1 6 𝑍 6 90, Lijian et
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al. [LQZ95] provided a practical interpolated expression (Eq.(8.48)) for ℛMott with an average error less than 1%; in
the present treatment, that expression (Interpolated Expression for ) is the one assumed for ℛMott in Eq.(8.38) here-
after. The analytical expression derived by McKinley and Feshbach [MF48] for the ratio with respect to Rutherford’s
formula (Eq.(7) of Ref. [MF48]) is given by:

ℛMcF = 1 − 𝛽2 sin2(𝜃/2) + 𝑍 𝛼𝛽𝜋 sin(𝜃/2) [1 − sin(𝜃/2)] (8.39)

with the corresponding differential cross section (McFDCS)

𝑑𝜎McF

𝑑Ω
=
𝑑𝜎Rut

𝑑Ω
ℛMcF. (8.40)

Furthermore, for 𝑀𝑐2 much larger than the total energy of incoming electron energies the distinction between labo-
ratory (i.e., the system in which the target particle is initially at rest) and center-of-mass (CoM) systems disappears
(e.g., see discussion in Section 1.6.1 of Ref. [LR11]). Furthermore, in the CoM of the reaction the energy transferred
from an electron to a nucleus initially at rest in the laboratory system (i.e., its recoil kinetic energy 𝑇 ) is related with
the maximum energy transferable 𝑇max as

𝑇 = 𝑇max sin2(𝜃′/2) (8.41)

(e.g., see Eqs. (1.27, 1.95) at page 11 and 31, respectively, of Ref. [LR11]), where 𝜃′ is the scattering angle in the
CoM system. In addition, one obtains

𝑑𝑇 =
𝑇max

4𝜋
𝑑Ω′. (8.42)

Since for 𝑀𝑐2 much larger than the electron energy, 𝜃 ≈ 𝜃′, one finds that Eq.(8.41) can be approximated as

𝑇 ≃ 𝑇max sin2 (𝜃/2) , (8.43)

=⇒ sin2 (𝜃/2) =
𝑇

𝑇max
(8.44)

and

𝑑𝑇 ≃ 𝑇max

4𝜋
𝑑Ω. (8.45)

Using Eqs.(8.39), (8.44), (8.45), Rutherford’s formula and Eq.(8.40) can be respectively rewritten as:

=⇒ 𝑑𝜎Rut

𝑑𝑇
=

(︂
𝑍𝑒2

𝑝𝛽𝑐

)︂2
𝜋𝑇max

𝑇 2
,

=⇒ 𝑑𝜎McF

𝑇
=

(︂
𝑍𝑒2

𝑝𝛽𝑐

)︂2
𝜋𝑇max

𝑇 2

[︃
1−𝛽 𝑇

𝑇max
(𝛽+𝑍𝛼𝜋)+𝑍𝛼𝛽𝜋

√︂
𝑇

𝑇max

]︃

=

(︂
𝑍𝑒2

𝑝𝛽𝑐

)︂2
𝜋𝑇max

𝑇 2
ℛMcF(𝑇 )

(8.46)

with

ℛMcF(𝑇 ) =

[︃
1−𝛽 𝑇

𝑇max
(𝛽+𝑍𝛼𝜋)+𝑍𝛼𝛽𝜋

√︂
𝑇

𝑇max

]︃
. (8.47)

Finally, in a similar way the MDCS (Eq.(8.38)) is

𝑑𝜎Mott(𝑇 )

𝑑𝑇
=
𝑑𝜎Rut

𝑑𝑇
ℛMott(𝑇 )

=

(︂
𝑍𝑒2

𝑝𝛽𝑐

)︂2
𝜋𝑇max

𝑇 2
ℛMott(𝑇 )

with ℛMott(𝑇 ) from Eq.(8.50).
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Interpolated Expression for ℛMott

Fig. 8.4: ℛMott obtained from Eq.(8.48) at 100 MeV for Li, Si, Fe and Pb nuclei as a function of scattering angle.

Recently, Lijian, Quing and Zhengming [LQZ95] provided a practical interpolated expression (Eq.(8.48)) which is a
function of both 𝜃 and 𝛽 for electron energies from several keV up to 900 MeV, i.e.,

ℛMott =

4∑︁
j=0

𝑎j(𝑍, 𝛽)(1 − cos 𝜃)j/2, (8.48)

where

𝑎j(𝑍, 𝛽) =

6∑︁
k=1

𝑏k,j(𝑍)(𝛽 − 𝛽)k−1, (8.49)

and 𝛽 𝑐 = 0.7181287 𝑐 is the mean velocity of electrons within the above mentioned energy range. The coefficients
𝑏k,j(𝑍) are listed in Table 1 of Ref. [LQZ95] for 1 6 𝑍 6 90. Boschini et al. (2013) [BCG+13] provided an
extended numerical solution for the Mott differential cross section on nuclei up to 𝑍 = 118 for both electrons and
positrons. ℛMott obtained from Eq.(8.48) at 100 MeV is shown in Fig. 8.4 for Li, Si, Fe and Pb nuclei as a function of
scattering angle. Furthermore, it has to be remarked that the energy dependence of ℛMott from Eq.(8.48) was studied
and observed to be negligible above ≈ 10 MeV (for instance, see Eq.(8.49)).

Finally, from Eqs.(8.41), (8.48) (see also Equation (1.93) at page 31 of Ref.[LR11]), one finds that ℛMott can be
expressed in terms of the transferred energy 𝑇 as

ℛMott(𝑇 ) =

4∑︁
j=0

𝑎j(𝑍, 𝛽)

(︂
2𝑇

𝑇max

)︂j/2

. (8.50)

Screened Coulomb Potentials

The simple scattering model due to Wentzel with a single exponential screening function (see Eq. (2.71) of Ref.
[LR11]) was repeatedly employed in treating single and multiple Coulomb scattering with screened potentials. Ne-
glecting effects like those related to spin and finite size of nuclei, for proton and nucleus interactions on nuclei it
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was shown that the resulting elastic differential cross section of a projectile with bare nuclear-charge 𝑒𝑧 on a target
with bare nuclear-charge 𝑒𝑍 differs from the Rutherford differential cross section (RDCS) by an additional term, the
screening parameter, which prevents the divergence of the cross section when the angle 𝜃 of scattered particles ap-
proaches 0∘ (see Section 1.6.1 of Ref. [LR11]). For 𝑧 = 1 particles the screening parameter 𝐴s,M is expressed as

𝐴s,M =

(︂
~

2 𝑝 𝑎TF

)︂2
[︃

1.13 + 3.76 ×
(︂
𝛼𝑍

𝛽

)︂2
]︃

(8.51)

where 𝛼, 𝑐 and ~ are the fine-structure constant, speed of light and reduced Planck constant, respectively; 𝑝 (𝛽𝑐) is the
momentum (velocity) of the incoming particle undergoing the scattering onto a target supposed to be initially at rest,
i.e., in the laboratory system; 𝑎TF is the screening length suggested by Thomas–Fermi

aTF =
𝐶TF a0
𝑍1/3

with

a0 =
~2

𝑚𝑒2

the Bohr radius, 𝑚 the electron rest mass and

𝐶TF =
1

2

(︂
3𝜋

4

)︂2/3

≃ 0.88534

a constant introduced in the Thomas–Fermi model (see Ref. [MJB11], Eq.(2.73, 2,82) of Ref. [LR11], and refer-
ences therein). The modified Rutherford’s formula 𝑑𝜎WM(𝜃)/𝑑Ω, i.e., the differential cross section obtained from the
Wentzel–Molière treatment of the single scattering on screened nuclear potential is given by (see Eq.(2.84) of Ref.
[LR11] and Ref. [MJB11], and references therein):

𝑑𝜎WM(𝜃)

𝑑Ω
=

(︂
𝑧𝑍𝑒2

2 𝑝 𝛽𝑐

)︂2
1[︀

𝐴s,M + sin2(𝜃/2)
]︀2

=
𝑑𝜎Rut

𝑑Ω
F2(𝜃).

(8.52)

with

F(𝜃) =
sin2(𝜃/2)

𝐴s,M + sin2(𝜃/2)
. (8.53)

F(𝜃), the screening factor, depends on the scattering angle 𝜃 and the screening parameter 𝐴s,M. As discussed in Finite
Rest Mass of Target Nucleus, the term 𝐴s,M (the screening parameter) cannot be neglected in the DCS (Eq.(8.52)) for
scattering angles (𝜃) within a forward (with respect to the electron direction) angular region narrowing with increasing
energy from several degrees (for high-Z material) at 200 keV down to less than or much less than a mrad above 200
MeV.

An approximated description of elastic interactions of electrons with screened Coulomb fields of nuclei can be obtained
by the factorization of the MDCS, i.e., involving Rutherford’s formula 𝑑𝜎Rut/𝑑Ω for particle with 𝑧 = 1, the screening
factor F(𝜃) and the ratio ℛMott between the RDCS and MDCS:

𝑑𝜎Mott
sc (𝜃)

𝑑Ω
≃ 𝑑𝜎Rut

𝑑Ω
F2(𝜃) ℛMott. (8.54)

Thus, the corresponding screened differential cross section derived using the analytical expression from McKinley and
Feshbach [MF48] can be approximated with

𝑑𝜎McF
sc (𝜃)

𝑑Ω
≃ 𝑑𝜎Rut

𝑑Ω
F2(𝜃) ℛMcF. (8.55)

Zeitler and Olsen [ZO64] suggested that for electron energies above 200 keV the overlap of spin and screening effects
is small for all elements and for all energies; for lower energies the overlapping of the spin and screening effects may
be appreciable for heavy elements and large angles.
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Finite Nuclear Size

The ratio between the actual measured and that expected from the point-like differential cross section expresses the
square of nuclear form factor |𝐹 | which, in turn, depends on the momentum transfer 𝑞, i.e., that acquired by the target
initially at rest:

𝑞 =

√︀
𝑇 (𝑇 + 2𝑀𝑐2)

𝑐
, (8.56)

with 𝑇 from Eq.(8.41) or for 𝑀𝑐2 larger or much larger than the electron energy from its approximate expression
Eq.(8.43).

The approximated (factorized) differential cross section for elastic interactions of electrons with screened Coulomb
fields of nuclei (Eq.(8.54)) accounting for the effects due to the finite nuclear size is given by:

𝑑𝜎Mott
sc,𝐹 (𝜃)

𝑑Ω
≃ 𝑑𝜎Rut

𝑑Ω
F2(𝜃) ℛMott |𝐹 (𝑞)|2 . (8.57)

Thus, using the analytical expression derived by [MF48] (Eq.(8.39)) one obtains that the corresponding screened
differential cross section (Eq.(8.55)) accounting for the finite nuclear size effects

𝑑𝜎McF
sc,𝐹 (𝜃)

𝑑Ω
≃ 𝑑𝜎Rut

𝑑Ω
F2(𝜃) ℛMcF |𝐹 (𝑞)|2

=
𝑑𝜎Rut

𝑑Ω
F2(𝜃) |𝐹 (𝑞)|2

×
{︀

1−𝛽2 sin2(𝜃/2) + 𝑍 𝛼𝛽𝜋 sin(𝜃/2) [1 − sin(𝜃/2)]
}︀
.

In terms of kinetic energy, one can respectively rewrite Eqs.(8.57), (8.58) as

𝑑𝜎Mott
sc,𝐹 (𝑇 )

𝑑𝑇
=
𝑑𝜎Rut

𝑑𝑇
F2(𝑇 ) ℛMott(𝑇 ) |𝐹 (𝑞)|2

𝑑𝜎McF
sc,𝐹 (𝑇 )

𝑑𝑇
≃ 𝑑𝜎Rut(𝑇 )

𝑑𝑇
F2(𝑇 ) ℛMcF(𝑇 ) |𝐹 (𝑞)|2

(8.58)

with 𝑑𝜎Rut/𝑑𝑇 from Eq.(8.46), ℛMott(𝑇 ) from Eq.(8.50), ℛMcF(𝑇 ) from Eq.(8.47) and, using Eqs.(8.41), (8.43),
(8.53),

F(𝑇 ) =
𝑇

𝑇max𝐴s,M + 𝑇
.

For instance, the form factor 𝐹exp is

𝐹exp(𝑞) =

[︂
1 +

1

12

(︁𝑞𝑟n
~

)︁2]︂−2

, (8.59)

where 𝑟n is the nuclear radius, 𝑟n can be parameterized by

𝑟n = 1.27𝐴0.27 fm (8.60)

with 𝐴 the atomic weight. Equation (8.60) provides values of 𝑟n in agreement up to heavy nuclei (like Pb and U) with
those available, for instance, in Table 1 of Ref. [VJV87].

Finite Rest Mass of Target Nucleus

The DCS treated in Scattering Cross Section of Electrons on Nuclei to Finite Nuclear Size is based on the extension of
MDCS to include effects due to interactions on screened Coulomb potentials of nuclei and their finite size. However,
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the electron energies were considered small (or much smaller) with respect to that (𝑀𝑐2) corresponding to rest mass
(𝑀 ) target nuclei.

The Rutherford scattering on screened Coulomb fields, i.e., under the action of a central forces, by massive charged
particles at energies large or much larger than 𝑀𝑐2 was treated by Boschini et al. [MJB11] in the CoM system (see
also Sections 1.6, 1.6.1, 2.1.4.2 of Ref. [LR11] and references therein). It was shown that the differential cross section
(𝑑𝜎WM(𝜃′)/𝑑Ω′ with 𝜃′ the scattering angle in the CoM system) is that one derived for describing the interaction on
a fixed scattering center of a particle with

• momentum 𝑝′r equal to the momentum of the incoming particle (i.e., the electron in the present treatment) in the
CoM system

• rest mass equal to the relativistic reduced mass 𝜇rel (see Eqs.(1.80, 1.81) in Ref. [LR11]).

𝜇rel is given by

𝜇rel =
𝑚𝑀

𝑀1,2

=
𝑚𝑀𝑐√︁

𝑚2𝑐2 +𝑀2𝑐2 + 2𝑀
√︀
𝑚2𝑐4 + 𝑝2𝑐2

,

where 𝑝 is the momentum of the incoming particle (the electron in the present treatment) in the laboratory system; 𝑚
is the rest mass of the incoming particle (i.e., the electron rest mass); 𝑀1,2 is the invariant mass (Section 1.3.2 of Ref.
[LR11] of the two-particle system. Thus, the velocity of the interacting particle is (see Eq.(1.82) at of Ref. [LR11])

𝛽′
r𝑐 = 𝑐

⎯⎸⎸⎷[︃1 +

(︂
𝜇rel𝑐

𝑝′r

)︂2
]︃−1

.

For an incoming particle with 𝑧 = 1, 𝑑𝜎WM(𝜃′)/𝑑Ω′ is given by

𝑑𝜎WM′
(𝜃′)

𝑑Ω′ =

(︂
𝑍𝑒2

2 𝑝′r 𝛽
′
r𝑐

)︂2
1[︀

𝐴s + sin2(𝜃′/2)
]︀2 , (8.61)

with

𝐴s =

(︂
~

2 𝑝′r 𝑎TF

)︂2
[︃

1.13 + 3.76 ×
(︂
𝛼𝑍

𝛽′
r

)︂2
]︃

(8.62)

the screening factor (see Eqs.(2.87, 2.88) of Ref. [LR11]). Eq.(8.61) can be rewritten as

𝑑𝜎WM′
(𝜃′)

𝑑Ω′ =
𝑑𝜎Rut′(𝜃′)

𝑑Ω′ F2
CoM(𝜃′) (8.63)

with

𝑑𝜎Rut′(𝜃′)

𝑑Ω′ =

(︂
𝑍𝑒2

2𝑝′r𝛽
′
r𝑐

)︂2
1

sin4(𝜃′/2)
(8.64)

the corresponding RDCS for the reaction in the CoM system (see Eq.(1.79) of Ref. [LR11]] and

FCoM(𝜃′) =
sin2(𝜃′/2)

𝐴s + sin2(𝜃′/2)
(8.65)

the screening factor. Using Eqs.(8.41) and (8.42), one can respectively rewrite Eqs.(8.64), (8.65), (8.63), (8.61) as

𝑑𝜎Rut′

𝑑𝑇
= 𝜋

(︂
𝑍𝑒2

𝑝′r𝛽
′
r𝑐

)︂2
𝑇max

𝑇 2
(8.66)
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FCoM(𝑇 ) =
𝑇

𝑇max𝐴s + 𝑇
(8.67)

𝑑𝜎WM′
(𝑇 )

𝑑𝑇
=
𝑑𝜎Rut′

𝑑𝑇
FCoM(𝑇 )

𝑑𝜎WM′
(𝑇 )

𝑑𝑇
= 𝜋

(︂
𝑍𝑒2

𝑝′r𝛽
′
r𝑐

)︂2
𝑇max

(𝑇max𝐴s + 𝑇 )
2 .

(see Eq.(2.90) of Ref.[LR11] or Eq.(13) of Ref.[MJB11]).

To account for the finite rest mass of target nucleus the factorized MDCS (Eq.(8.57)) has to be re-expressed in the
CoM system using as:

𝑑𝜎Mott
sc,𝐹,CoM(𝜃′)

𝑑Ω′ ≃𝑑𝜎
Rut′(𝜃′)

𝑑Ω′ F2
CoM(𝜃′) ℛMott

CoM(𝜃′) |𝐹 (𝑞)|2, (8.68)

where 𝐹 (𝑞) is the nuclear form factor (Finite Nuclear Size) with 𝑞, the momentum transfer to the recoil nucleus
(Eq.(8.56)); finally, as discussed in Interpolated Expression for , ℛMott exhibits almost no dependence on electron
energy above ≈ 10 MeV, thus, since at low energies 𝜃 w 𝜃′ and 𝛽 w 𝛽′

r, ℛMott
CoM(𝜃′) is obtained replacing 𝜃 and 𝛽′

r with
𝜃′ and 𝛽′

r, respectively, in Eq.(8.48).

Using the analytical expression derived by McKinley and Feshbach [MF48], one finds that the corresponding screened
differential cross section accounting for the finite nuclear size effects (Eqs.(8.58)) can be re-expressed as

𝑑𝜎McF
sc,𝐹,CoM(𝜃′)

𝑑Ω′ ≃ 𝑑𝜎Rut′(𝜃′)

𝑑Ω′ F2
CoM(𝜃′) ℛMcF

CoM(𝜃′) |𝐹 (𝑞)|2 (8.69)

with

ℛMcF
CoM(𝜃′) =

{︀
1−𝛽2

r sin2(𝜃′/2)+𝑍 𝛼𝛽′
r𝜋 sin(𝜃′/2) [1−sin(𝜃′/2)]

}︀
. (8.70)

In terms of kinetic energy 𝑇 , from Eqs.(8.41) and (8.42), one can respectively rewrite Eqs.(8.68) and (8.69) as

𝑑𝜎Mott
sc,𝐹,CoM(𝑇 )

𝑑𝑇
=
𝑑𝜎Rut′

𝑑𝑇
F2
CoM(𝑇 ) ℛMott

CoM(𝑇 ) |𝐹 (𝑞)|2 (8.71)

𝑑𝜎McF
sc,𝐹,CoM(𝑇 )

𝑑𝑇
≃ 𝑑𝜎Rut′(𝑇 )

𝑑𝑇
F2
CoM(𝑇 ) ℛMcF

CoM(𝑇 ) |𝐹 (𝑞)|2 (8.72)

with 𝑑𝜎Rut′/𝑑𝑇 from Eq.(8.66), FCoM(𝑇 ) from Eq.(8.67) and ℛMcF
CoM(𝑇 ) replacing 𝛽 with 𝛽′

r in Eq.(8.47), i.e.,

ℛMcF
CoM(𝑇 ) =

[︃
1−𝛽′

r

𝑇

𝑇max
(𝛽′

r+𝑍𝛼𝜋)+𝑍𝛼𝛽′
r𝜋

√︂
𝑇

𝑇max

]︃
.

Finally, as discussed in Interpolated Expression for , ℛMott(𝑇 ) exhibits almost no dependence on electron energy
above ≈ 10 MeV, thus, since at low energies 𝜃 w 𝜃′ and 𝛽 w 𝛽′

r, ℛMott
CoM(𝑇 ) is obtained replacing 𝛽 with 𝛽′

r in
Eq.(8.50).

8.5.2 Nuclear Stopping Power of Electrons

Using Eq.(8.71), the nuclear stopping power in MeV cm-1 of Coulomb electron–nucleus interaction can be obtained
as

−
(︂
𝑑𝐸

𝑑𝑥

)︂Mott

nucl

= 𝑛𝐴

∫︁ 𝑇𝑚𝑎𝑥

0

𝑑𝜎Mott
sc,𝐹,CoM(𝑇 )

𝑑𝑇
𝑇 𝑑𝑇 (8.73)
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Fig. 8.5: In MeVcm2/g, nuclear stopping powers in 7Li, 12C, 28Si and 56Fe calculated from Eq.(8.74) and divided by
the density of the material as a function of the kinetic energy of electrons from 200 keV up to 1 TeV.

with 𝑛𝐴 the number of nuclei (atoms) per unit of volume (see Eq.(1.71) of Ref. [LR11]) and, finally, the negative sign
indicates that the energy is lost by the electron (thus, achieved by recoil targets). Using the analytical approximation
derived by McKinley and Feshbach [MF48], i.e., Eq.(8.72), for the nuclear stopping power one finds

−
(︂
𝑑𝐸

𝑑𝑥

)︂McF

nucl

= 𝑛𝐴

∫︁ 𝑇𝑚𝑎𝑥

0

𝑑𝜎McF
sc,𝐹,CoM(𝑇 )

𝑑𝑇
𝑇 𝑑𝑇. (8.74)

As already mentioned in Finite Rest Mass of Target Nucleus, the large momentum transfers corresponding to large
scattering angles are disfavored by effects due to the finite nuclear size accounted for by means of the nuclear form
factor (Finite Nuclear Size). For instance, the ratios of nuclear stopping powers of electrons in silicon are shown in
Ref. [MJB12] as a function of the kinetic energies of electrons from 200 keV up to 1 TeV. These ratios are the nuclear
stopping powers calculated neglecting

• nuclear size effects (i.e., for |𝐹exp|2 = 1)

• effects due to the finite rest mass of the target nucleus (i.e., in Eq.(8.74) replacing 𝑑𝜎McF
sc,𝐹,CoM(𝑇 )/𝑑𝑇 with

𝑑𝜎McF
sc,𝐹 (𝑇 )/𝑑𝑇 from Eq. (8.58) both divided by that one obtained using Eq.(8.74).

Above a few tens of MeV, a larger stopping power is found assuming |𝐹exp|2 = 1 and, in addition, above a few
hundreds of MeV the stopping power largely decreases when the effects of nuclear rest mass are not accounted for.

In Fig. 8.5, the nuclear stopping powers in 7Li, 12C, 28Si and 56Fe are shown as a function of the kinetic energy of
electrons from 200 keV up to 1 TeV. These nuclear stopping powers are calculated from Eq.(8.74) and divided by the
density of the medium.

8.5.3 Non-Ionizing Energy-Loss of Electrons

In case of Coulomb scattering of electrons on nuclei, the non-ionizing energy loss can be calculated using (as dis-
cussed in Scattering Cross Section of Electrons on Nuclei to Nuclear Stopping Power of Electrons) the MDCRS or
its approximate expression McFDCS (e.g., Eqs.(8.71), (8.72), respectively), once the screened Coulomb fields, finite
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sizes and rest masses of nuclei are accounted for, i.e., in MeV/cm

−
(︂
𝑑𝐸

𝑑𝑥

)︂NIEL

n,Mott

= 𝑛𝐴

∫︁ 𝑇𝑚𝑎𝑥

𝑇𝑑

𝑇 𝐿(𝑇 )
𝑑𝜎Mott

sc,𝐹,CoM(𝑇 )

𝑑𝑇
𝑑𝑇 (8.75)

or

−
(︂
𝑑𝐸

𝑑𝑥

)︂NIEL

n,McF

= 𝑛𝐴

∫︁ 𝑇𝑚𝑎𝑥

𝑇𝑑

𝑇 𝐿(𝑇 )
𝑑𝜎McF

sc,𝐹,CoM(𝑇 )

𝑑𝑇
𝑑𝑇 (8.76)

(see Eq.(4.113) and Sections 4.2.1–4.2.1.2 of Ref. [LR11]), where 𝑇 is the kinetic energy transferred to the target
nucleus, 𝐿(𝑇 ) is the fraction of 𝑇 deposited by means of displacement processes. The Lindhard partition function,
𝐿(𝑇 ), can be approximated using the Norgett–Robintson–Torrens expression (see Eqs.(4.121, 4.123) of Ref. [LR11]
and references therein). 𝑇de = 𝑇 𝐿(𝑇 ) is the damage energy, i.e., the energy deposited by a recoil nucleus with
kinetic energy 𝑇 via displacement damages inside the medium. In Eqs.(8.75) and (8.76), the integral is computed
from the minimum energy 𝑇𝑑, the threshold energy for displacement, i.e., that energy necessary to displace the atom
from its lattice position up to the maximum energy 𝑇𝑚𝑎𝑥 that can be transferred during a single collision process. For
instance, 𝑇𝑑 is about 21 eV in silicon requiring electrons with kinetic energies above ≈ 220 keV. As already discussed
with respect to nuclear stopping powers in Nuclear Stopping Power of Electrons, the large momentum transfers (corre-
sponding to large scattering angles) are disfavored by effects due to the finite nuclear size accounted for by the nuclear
form factor. For instance, the ratios of NIELs for electrons in silicon are shown in Ref. [MJB12] as a function of the
kinetic energy of electrons from 220 keV up to 1 TeV. These ratios are the NIELs calculated neglecting

• nuclear size effects (i.e., for |𝐹exp|2 = 1)

• effects due to the finite rest mass of the target nucleus (i.e., in Eq.(8.76) replacing 𝑑𝜎McF
sc,𝐹,CoM(𝑇 )/𝑑𝑇 with

𝑑𝜎McF
sc,𝐹 (𝑇 )/𝑑𝑇 from Eq.‘ (8.58) both divided by that one obtained using Eq.(8.76).

Above ~ 10 MeV, the NIEL is ~20% larger assuming |𝐹exp|2 = 1 and, in addition, above 100–200 MeV the calculated
NIEL largely decreases when the effects of nuclear rest mass are not accounted for.

8.6 G4eSingleScatteringModel

The G4eSingleScatteringModel performs the single scattering interaction of electrons on nuclei. The differential
cross section (DCS) for the energy transferred is define in the G4ScreeningMottCrossSection class. In this class the
M.Boschini’s et al. [BCG+13] Mott differential cross Section approximation is implemented. This CDS is modified
by the introduction of the Moliere’s [Moliere48] screening coefficient. In addition the exponential charge distribution
Nuclear Form Factor is applied [BKMM02]. This treatment is fully performed in the center of mass system and the
usual Lorentz transformations are applied to obtained the energy and momentum quantities in the laboratory system
after scattering. This model well simulates the interacting process for low scattering angles and it is suitable for high
energy electrons (from 200 keV) incident on medium light target nuclei. The nuclear energy loss (i.e. nuclear stopping
power) is calculated for every single interaction. In addition the production of secondary scattered nuclei is simulated
from a threshold kinetic energy which can be decided by the user (threshold energy for displacement).

8.6.1 The method

In the G4eSingleScatteringModel the method ComputeCrossSectionPerAtom() performs the total cross section com-
putation. The SetupParticle() and the DefineMaterial() methods are called to defined the incident and target particles.
Before the total cross section computation, the SetupKinematic() method of the G4ScreeningMottCrossSection class
calculates all the physical quantities in the center of mass system (CM). The scattering in the CM system is equivalent
to the one of an effective particle which interacts with a fixed scattering center. The effective particle rest mass is equal
to the relativistic reduced mass of the system 𝜇 whose expression is calculated by:

𝜇 = 𝑚
𝑀𝑐2

𝐸𝑐𝑚
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where 𝑚 and 𝑀 are rest masses of the electron and of the target nuclei respectively. 𝐸𝑐𝑚 is the total center of mass
energy and, since the target is at rest before scattering, its expression is calculated by:

𝐸𝑐𝑚 =
√︀

(𝑚𝑐2)2 + (𝑀𝑐2)2 + 2𝐸′𝑀𝑐2

where 𝐸 = 𝛾′𝑚𝑐2 is the total energy of the electron before scattering in the laboratory system. The momentum and
the scattering angle of the effective particle are equal to the corresponding quantities calculated in the center of mass
system (𝑝 ≡ 𝑝𝑐𝑚, 𝜃 ≡ 𝜃𝑐𝑚) of the incident electron:

𝑝𝑐 = 𝑝′𝑐
𝑀𝑐2

𝐸𝑐𝑚

where 𝑝′ is the momentum of the incident electron calculated in the laboratory system. The velocity of the effective
particle is related with its momentum by the following expression:

1

𝛽2
= 1 +

(︁𝜇𝑐2
𝑝𝑐

)︁2
The integration of the DCS is performed by the NuclearCrossSection() method of the G4ScreeningMottCrossSection:

𝜎𝑡𝑜𝑡 = 2𝜋

∫︁ 𝜃𝑚𝑎𝑥

𝜃𝑚𝑖𝑛

𝑑𝜎(𝜃)

𝑑Ω
sin 𝜃𝑑𝜃

The integration is performed in the scattering range [0 ;𝜋] but the user can decide to vary the minimum (𝜃𝑚𝑖𝑛) and the
maximum (𝜃𝑚𝑎𝑥) scattering angles. The DCS is then given by:

𝑑𝜎(𝜃)

𝑑Ω
=

(︃
𝑍𝑒2

𝜇𝑐2 𝛽2𝛾

)︃2
𝑅𝑀𝑐𝐹 |𝐹𝑁 (𝑞)|2(︀

2𝐴𝑠 + 2 sin2(𝜃/2)
)︀2

where 𝑍 is the atomic number of the nucleus, 𝐴𝑠 is the screening coefficient whose expression has been given by
Moliere [Moliere48] :

𝐴𝑠 =

(︂
~

2𝑝 𝑎𝑇𝐹

)︂2[︂
1.13 + 3.76

(︂
𝛼𝑍

𝛽

)︂2]︂
(8.77)

where 𝑎𝑇𝐹 is the Thomas-Fermi screening length given by:

𝑎𝑇𝐹 =
0.88534 𝑎0
𝑍1/3

and 𝑎0 is the Bohr radius. 𝑅𝑀𝑐𝐹 is the ratio of the Mott to the Rutherford DCS given by McKinley and Feshbach
approximation [MF48]:

𝑅𝑀𝑐𝐹 =

[︂
1 − 𝛽2 sin2(𝜃/2) + 𝑍𝛼𝛽𝜋 sin(𝜃/2)

(︀
1 − sin(𝜃/2)

)︀]︂
The nuclear form factor for the exponential charge distribution is given by [BKMM02]:

𝐹𝑁 (𝑞) =

[︃
1 +

(𝑞𝑅𝑁 )2

12~2

]︃−2

where 𝑅𝑁 is the nuclear radius that is parameterized by:

𝑅𝑁 = 1.27𝐴0.27 fm.

𝑞 is the momentum transferred to the nucleus and it is calculated as:

𝑞𝑐 =
√︀
𝑇 (𝑇 + 2𝑀𝑐2)
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where 𝑇 is the kinetic energy transferred to the nucleus. This kinetic energy is calculated in the GetNewDirection()
method as:

𝑇 =
2𝑀𝑐2(𝑝′𝑐)2

𝐸2
𝑐𝑚

sin2 𝜃/2.

The scattering angle 𝜃 calculation is performed in the GetScatteringAngle() method of G4ScreeningMottCrossSection
class. By means of AngleDistribution() function the scattering angle is chosen randomly according to the total cross
section distribution (p.d.f. probability density function) by means of the inverse transform method.

In the SampleSecondary() method of G4eSingleScatteringModel the kinetic energy of the incident particle after scat-
tering is then calculated as 𝐸′

𝑛𝑒𝑤 = 𝐸′ − 𝑇 where 𝐸′ is the electron incident kinetic energy (in lab.); in addition the
new particle direction and momentum are obtained from the scattering angle information.

8.6.2 Implementation Details

The scattering angle probability density function 𝑓(𝜃) (p.d.f.) is performed by the AngleDistribution() of
G4ScreeningMottCrossSection class where the inverse transform method is applied. The normalized cumulative func-
tion of the cross section is calculated as a function of the scattering angle in this way:

𝜎𝑛(𝜃) ≡
∫︁
𝑓(𝜃)𝑑𝜃 =

2𝜋

𝜎𝑡𝑜𝑡

∫︁ 𝜃

0

𝑑𝜎(𝑡)

𝑑Ω
sin 𝑡𝑑𝑡

The normalized cumulative function 𝜎𝑛(𝜃) depends on the DCS and its values range in the interval [0;1]. After this
calculation a random number 𝑟, uniformly distributed in the same interval [0;1], is chosen in order to fix the cumulative
function value (i.e. 𝑟 ≡ 𝜎𝑛(𝜃)). This number is the probability to find the scattering angle in the interval [𝜃; 𝜃 + 𝑑𝜃].
The scattering angle 𝜃 is then given by the inverse function of 𝜎𝑛(𝜃). The threshold energy for displacement Th can
by set by the user in her/his own Physics class by adding the electromagnetic model:

G4eSingleCoulombScatteringModel* mod =
new G4eSingleCoulombScatteringModel();

mod->SetRecoilThreshold(Th);

If the energy lost by the incident particle is grater then this threshold value a new secondary particle is created for trans-
portation processes. The energy lost is added to ProposeNonIonizingEnergyDeposit(). NIEL calculation is available
in test58.
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CHAPTER

NINE

ATOMIC RELAXATION

9.1 Atomic relaxation

Atomic relaxation processes can be induced by any ionisation process that leaves the interested atom in an excited state
(i.e. with a vacancy in its electronic structure). Processes inducing atomic relaxation in GEANT4 are photoelectric
effect, Compton and ionisation (both Standard and Lowenergy).

GEANT4 uses the Livermore Evaluation Atomic Data Library EADL [STPerkins], that contains data to describe the
relaxation of atoms back to neutrality after they are ionised. It is assumed that the binding energy of all subshells (from
now on shells are the same for neutral ground state atoms as for ionised atoms [STPerkins]).

Data in EADL includes the radiative and non-radiative transition probabilities for each sub-shell of each element,
for Z =1 to 100. The atom has been ionised by a process that has caused an electron to be ejected from an atom,
leaving a vacancy or “hole” in a given subshell. The EADL data are then used to calculate the complete radiative and
non-radiative spectrum of X-rays and electrons emitted as the atom relaxes back to neutrality.

Non-radiative de-excitation can occur via the Auger effect (the initial and secondary vacancies are in different shells)
or Coster-Kronig effect (transitions within the same shell).

9.1.1 Fluorescence

The simulation procedure for the fluorescence process is the following:

1. If the vacancy shell is not included in the data, energy equal to the binding energy of the shell is deposited
locally

2. If the vacancy subshell is included in the data, an outer subshell is randomly selected taking into account the
relative transition probabilities for all possible outer subshells.

3. In the case where the energy corresponding to the selected transition is larger than a user defined cut value (equal
to zero by default), a photon particle is created and emitted in a random direction in 4𝜋, with an energy equal to
the transition energy, provided by EADL.

4. the procedure is repeated from step 1, for the new vacancy subshell.

The final local energy deposit is the difference between the binding energy of the initial vacancy subshell and the sum
of all transition energies which were taken by fluorescence photons. The atom is assumed to be initially ionised with
an electric charge of +1𝑒.

Sub-shell data are provided in the EADL data bank [STPerkins] for 𝑍 = 1 through 100. However, transition prob-
abilities are only explicitly included for 𝑍 = 6 through 100, from the subshells of the K, L, M, N shells and some
O subshells. For subshells O,P,Q: transition probabilities are negligible (of the order of 0.1%) and smaller than the
precision with which they are known. Therefore, for the time being, for 𝑍 = 1 through 5, only a local energy deposit
corresponding to the binding energy B of an electron in the ionised subshell is simulated. For subshells of the O, P,
and Q shells, a photon is emitted with that energy B.
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9.1.2 Auger process

The Auger effect is complementary to fluorescence, hence the simulation process is the same as for the fluorescence,
with the exception that two random shells are selected, one for the transition electron that fills the original vacancy,
and the other for selecting the shell generating the Auger electron.

Subshell data are provided in the EADL data bank [STPerkins] for 𝑍 = 6 through 100. Since in EADL no data for
elements with 𝑍 < 5 are provided, Auger effects are only considered for 5 < 𝑍 < 100 and always due to the EADL
data tables, only for those transitions which have a probability to occur > 0.1% of the total non-radiative transition
probability. EADL probability data used are, however, normalized to one for Fluorescence + Auger.

9.1.3 PIXE

PIXE (Particle Induced X-Ray Emission) can be simulated for ionisation continuous processes performed by ions.
Ionised shells are selected randomly according the ionisation cross section of each shell once known the (continuous)
energy loss along the step Mean Energy Loss.

Different shell ionisation cross sections models are available in different energy ranges:

• ECPSSR [WBrandtGLapicki81][BL79] internal GEANT4 calculation for K and L shells.

• ECPSSR calculations from Factor Form according to Reis [AT11] for K and L shells from 0.1 to 100 MeV and
for M shells from 0.1 to 100 MeV.

• empirical “reference” K-shell values from Paul for protons [HP89] and for 𝑎𝑙𝑝ℎ𝑎 [HP93]. Energies ranges are
0.1 - 10 MeV/amu circa, depending on the atomic number that varies between 4 and 32.

• semi-empirical L-subshell values from Orlic [OST94a]. Energy Range 0.1-10 MeV for Z between 41 and 92.

Outside Z and energy of limited shell ionisation cross sections, the ECPSSR internal calculation method is applied.

Please refer to Ref.[AM11] and original papers to have detailed information of every model.

Alternative models for impact ionisation by hadrons and PIXE

Early developments of proton and 𝛼 particle impact ionisation cross sections in GEANT4 are reviewed in a detailed
paper devoted to PIXE simulation with GEANT4 [PWA+09]. This article also presents alternative developments for
PIXE simulation, their validation with respect to experimental data and the first GEANT4-based simulation involving
PIXE in a concrete experimental use case: the optimization of the graded shielding of the X-ray detectors of the
eROSITA [eal07] mission. The new developments described in [PWA+09] are released in GEANT4 in the pii package
(in source/processes/electromagnetic/pii).

The developments for PIXE simulation described in [PWA+09] provide a variety of proton and 𝛼 particle cross sec-
tions for the ionisation of K, L and M shells:

• theoretical calculations based on the ECPSSR [BL81] model and its variants (with Hartree-Slater corrections
[Lap05], with the “united atom” approximation [Cip07b] and specialized for high energies [Lap08]),

• theoretical calculations based on plane wave Born approximation (PWBA),

• empirical models based on fits to experimental data collected by Paul and Sacher [PS89] (for protons, K shell),
Paul and Bolik [PB93] (for 𝛼, K shell), Kahoul et al. [KND08]) (for protons, K, shell), Miyagawa et al.
[MNM88], Orlic et al. [OST94a] and Sow et al. [SOLT93] for L shell.

The cross section models available in GEANT4 are listed in Table 9.1.
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Table 9.1: Cross Section Models in GEANT4
Particle, shell Model Z range
Protons, K shell

ECPSSR 6-92
ECPSSR High Energy 6-92
ECPSSR Hartree-Slater 6-92
ECPSSR United Atom 6-92
ECPSSR reference [PS89] 6-92
PWBA 6-92
Paul and Sacher 6-92
Kahoul et al. 6-92

Protons, L shell
ECPSSR 6-92
ECPSSR United Atom 6-92
PWBA 6-92
Miyagawa et al. 40-92
Orlic et al. 43-92
Sow et al. 43-92

Protons, M shell
ECPSSR 6-92
PWBA 6-92

𝛼, K shell
ECPSSR 6-92
ECPSSR Hartree-Slater 6-92
ECPSSR reference [PB93] 6-92
PWBA 6-92

𝛼, L and M shell
ECPSSR 6-92
PWBA 6-92

The calculation of cross sections in the course of the simulation is based on the interpolation of tabulated values, which
are collected in a data library. The tabulations corresponding to theoretical calculations span the energy range between
10 keV and 10 GeV; empirical models are tabulated consistently with the energy range of validity documented by their
authors, that corresponds to the range of the data used in the empirical fits and varies along with the atomic number
and sub-shell.

ECPSSR tabulations have been produced using the ISICS software [LC96][Cip07a], 2006 version; an extended ver-
sion, kindly provided by ISICS author S. Cipolla [Cip08], has been exploited to produce tabulations associated with
recent high energy modelling developments [Lap08].

An example of the characteristics of different cross section models is illustrated in Fig. 9.1. Fig. 9.2 shows various
cross section models for the ionisation of carbon K shell by proton, compared to experimental data reported in [PS89].

The implemented cross section models have been subject to rigorous statistical analysis to evaluate their compatibility
with experimental measurements reported in [PS89], [OST94b], [SC84] and to compare the relative accuracy of the
various modelling options.

The validation process involved two stages: first goodness-of-fit analysis based on the 𝜒2 test to evaluate the hypothesis
of compatibility with experimental data, then categorical analysis exploiting contingency tables to determine whether
the various modelling options differ significantly in accuracy. Contingency tables were analyzed with the 𝜒2 test and
with Fisher’s exact test.

The complete set of validation results is documented in [PWA+09]. Only the main ones are summarized here; GEANT4
users interested in detailed results, like the accuracy of different cross section models for specific target elements,
should should refer to [PWA+09] for detailed information.
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Fig. 9.1: Cross section for the ionisation of copper K shell by proton impact according to the various implemented
modeling options: ECPSSR model, ECPSSR model with “united atom” (UA) approximation, Hartree-Slater (HS) cor-
rections and specialized for high energies (HE); plane wave Born approximation (PWBA); empirical models by Paul
and Sacher and Kahoul et al. The curves reproducing some of the model implementations can be hardly distinguished
in the plot due to their similarity.
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Fig. 9.2: Cross section for the ionisation of carbon K shell by proton impact according to the various implemented
modeling options, and comparison with experimental data [PS89]: ECPSSR model, ECPSSR model with “united
atom” (UA) approximation, Hartree-Slater (HS) corrections and specialized for high energies (HE); plane wave Born
approximation (PWBA); empirical models by Paul and Sacher and Kahoul et al. The curves reproducing some of the
model implementations can be hardly distinguished in the plot due to their similarity.

9.1. Atomic relaxation 111



Physics Reference Manual, Release 10.4

Regarding the K shell, the statistical analysis identified the ECPSSR model with Hartree-Slater correction as the
most accurate in the energy range up to approximately 10 MeV; at higher energies the ECPSSR model in its plain
formulation or the empirical Paul and Sacher one (within its range of applicability) exhibit the best performance. The
scarceness of high energy data prevents a definitive appraisal of the ECPSSR specialization for high energies.

Regarding the L shell, the ECPSSR model with “united atom” approximation exhibits the best accuracy among the
various implemented models; its compatibility with experimental measurements at 95% confidence level ranges from
approximately 90% of the test cases for the L3 sub-shell to approximately 65% for the L1 sub-shell. According to the
results of the categorical analysis, the ECPSSR model in its original formulation can be considered an equivalently
accurate alternative. The Orlic et al. model exhibits the worst accuracy with respect to experimental data; its accuracy
is significantly different from the one of the ECPSSR model in the “united atom” variant.

The implementation of these models for the hadron impact ionisation process is included in the
G4hImpactIonisation class, which is largely based on the original G4hLowEnergyIonisation process.
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CHAPTER

TEN

ELECTRON AND POSITRON INCIDENT

10.1 Ionisation

10.1.1 Method

The G4eIonisation class provides the continuous and discrete energy losses of electrons and positrons due to ionisation
in a material according to the approach described in Mean Energy Loss. The value of the maximum energy transferable
to a free electron 𝑇𝑚𝑎𝑥 is given by the following relation:

𝑇𝑚𝑎𝑥 =

{︂
𝐸 −𝑚𝑐2 for 𝑒+

(𝐸 −𝑚𝑐2)/2 for 𝑒−
(10.1)

where𝑚𝑐2 is the electron mass. Above a given threshold energy the energy loss is simulated by the explicit production
of delta rays by Möller scattering (𝑒−𝑒−), or Bhabha scattering (𝑒+𝑒−). Below the threshold the soft electrons ejected
are simulated as continuous energy loss by the incident 𝑒±.

10.1.2 Continuous Energy Loss

The integration of (7.1) leads to the Berger-Seltzer formula [MC70]:

𝑑𝐸

𝑑𝑥

]︂
𝑇<𝑇𝑐𝑢𝑡

= 2𝜋𝑟2𝑒𝑚𝑐
2𝑛𝑒𝑙

1

𝛽2

[︂
ln

2(𝛾 + 1)

(𝐼/𝑚𝑐2)2
+ 𝐹±(𝜏, 𝜏𝑢𝑝) − 𝛿

]︂
(10.2)

with

𝑟𝑒 = classical electron radius: 𝑒2/(4𝜋𝜖0𝑚𝑐
2)

𝑚𝑐2 = mass energy of the electron
𝑛𝑒𝑙 = electron density in the material
𝐼 = mean excitation energy in the material

𝛾 = 𝐸/𝑚𝑐2

𝛽2 = 1 − (1/𝛾2)

𝜏 = 𝛾 − 1

𝑇𝑐𝑢𝑡 = minimum energy cut for 𝛿-ray production

𝜏𝑐 = 𝑇𝑐𝑢𝑡/𝑚𝑐
2

𝜏𝑚𝑎𝑥 = maximum energy transfer:𝜏 for 𝑒+, 𝜏/2 for 𝑒−

𝜏𝑢𝑝 = min(𝜏𝑐, 𝜏𝑚𝑎𝑥)

𝛿 = density effect function.
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In an elemental material the electron density is

𝑛𝑒𝑙 = 𝑍 𝑛𝑎𝑡 = 𝑍
𝒩𝑎𝑣𝜌

𝐴
.

𝒩𝑎𝑣 is Avogadro’s number, 𝜌 is the material density, and 𝐴 is the mass of a mole. In a compound material

𝑛𝑒𝑙 =
∑︁
𝑖

𝑍𝑖 𝑛𝑎𝑡𝑖 =
∑︁
𝑖

𝑍𝑖
𝒩𝑎𝑣𝑤𝑖𝜌

𝐴𝑖
,

where 𝑤𝑖 is the proportion by mass of the 𝑖𝑡ℎ element, with molar mass 𝐴𝑖 .

The mean excitation energies 𝐼 for all elements are taken from [BIA+84].

The functions 𝐹± are given by :

𝐹+(𝜏, 𝜏𝑢𝑝) = ln(𝜏𝜏𝑢𝑝) −
𝜏2𝑢𝑝
𝜏

[︃
𝜏 + 2𝜏𝑢𝑝 −

3𝜏2𝑢𝑝𝑦

2
−

(︃
𝜏𝑢𝑝 −

𝜏3𝑢𝑝
3

)︃
𝑦2 −

(︃
𝜏2𝑢𝑝
2

− 𝜏
𝜏3𝑢𝑝
3

+
𝜏4𝑢𝑝
4

)︃
𝑦3

]︃

𝐹−(𝜏, 𝜏𝑢𝑝) = −1 − 𝛽2 + ln [(𝜏 − 𝜏𝑢𝑝)𝜏𝑢𝑝] +
𝜏

𝜏 − 𝜏𝑢𝑝
+

1

𝛾2

[︃
𝜏2𝑢𝑝
2

+ (2𝜏 + 1) ln
(︁

1 − 𝜏𝑢𝑝
𝜏

)︁]︃

where 𝑦 = 1/(𝛾 + 1).

The density effect correction is calculated according to the formalism of Sternheimer [SP71]:

𝑥 is a kinetic variable of the particle : 𝑥 = log10(𝛾𝛽) = ln(𝛾2𝛽2)/4.606, and 𝛿(𝑥) is defined by

for 𝑥 < 𝑥0 : 𝛿(𝑥) = 0
for 𝑥 ∈ [𝑥0, 𝑥1] : 𝛿(𝑥) = 4.606𝑥− 𝐶 + 𝑎(𝑥1 − 𝑥)𝑚

for 𝑥 > 𝑥1 : 𝛿(𝑥) = 4.606𝑥− 𝐶

where the matter-dependent constants are calculated as follows:

ℎ𝜈𝑝 = plasma energy of the medium =
√︀

4𝜋𝑛𝑒𝑙𝑟3𝑒𝑚𝑐
2/𝛼 =

√
4𝜋𝑛𝑒𝑙𝑟𝑒~𝑐

𝐶 = 1 + 2 ln(𝐼/ℎ𝜈𝑝)
𝑥𝑎 = 𝐶/4.606
𝑎 = 4.606(𝑥𝑎 − 𝑥0)/(𝑥1 − 𝑥0)𝑚

𝑚 = 3.

For condensed media

𝐼 < 100 eV
{︂

for 𝐶 ≤ 3.681 𝑥0 = 0.2 𝑥1 = 2
for 𝐶 > 3.681 𝑥0 = 0.326𝐶 − 1.0 𝑥1 = 2

𝐼 ≥ 100 eV
{︂

for 𝐶 ≤ 5.215 𝑥0 = 0.2 𝑥1 = 3
for 𝐶 > 5.215 𝑥0 = 0.326𝐶 − 1.5 𝑥1 = 3

and for gaseous media

for 𝐶 < 10. 𝑥0 = 1.6 𝑥1 = 4
for 𝐶 ∈ [10.0, 10.5[ 𝑥0 = 1.7 𝑥1 = 4
for 𝐶 ∈ [10.5, 11.0[ 𝑥0 = 1.8 𝑥1 = 4
for 𝐶 ∈ [11.0, 11.5[ 𝑥0 = 1.9 𝑥1 = 4
for 𝐶 ∈ [11.5, 12.25[ 𝑥0 = 2. 𝑥1 = 4
for 𝐶 ∈ [12.25, 13.804[ 𝑥0 = 2. 𝑥1 = 5
for 𝐶 ≥ 13.804 𝑥0 = 0.326𝐶 − 2.5 𝑥1 = 5.
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10.1.3 Total Cross Section per Atom and Mean Free Path

The total cross section per atom for Möller scattering (𝑒−𝑒−) and Bhabha scattering (𝑒+𝑒−) is obtained by integrating
Eq. (7.2). In GEANT4 𝑇𝑐𝑢𝑡 is always 1 keV or larger. For delta ray energies much larger than the excitation energy of
the material (𝑇 ≫ 𝐼), the total cross section becomes [MC70] for Möller scattering,

𝜎(𝑍,𝐸, 𝑇𝑐𝑢𝑡) =
2𝜋𝑟2𝑒𝑍

𝛽2(𝛾 − 1)

[︂
(𝛾 − 1)2

𝛾2

(︂
1

2
− 𝑥

)︂
+

1

𝑥
− 1

1 − 𝑥
− 2𝛾 − 1

𝛾2
ln

1 − 𝑥

𝑥

]︂
,

and for Bhabha scattering (𝑒+𝑒−),

𝜎(𝑍,𝐸, 𝑇𝑐𝑢𝑡) =
2𝜋𝑟2𝑒𝑍

(𝛾 − 1)

[︂
1

𝛽2

(︂
1

𝑥
− 1

)︂
+𝐵1 ln𝑥+𝐵2(1 − 𝑥) − 𝐵3

2
(1 − 𝑥2) +

𝐵4

3
(1 − 𝑥3)

]︂
.

Here

𝛾 = 𝐸/𝑚𝑐2 𝐵1 = 2 − 𝑦2

𝛽2 = 1 − (1/𝛾2) 𝐵2 = (1 − 2𝑦)(3 + 𝑦2)
𝑥 = 𝑇𝑐𝑢𝑡/(𝐸 −𝑚𝑐2) 𝐵3 = (1 − 2𝑦)2 + (1 − 2𝑦)3

𝑦 = 1/(𝛾 + 1) 𝐵4 = (1 − 2𝑦)3.

The above formulas give the total cross section for scattering above the threshold energies

𝑇 thr
Moller = 2𝑇𝑐𝑢𝑡 and 𝑇 thr

Bhabha = 𝑇𝑐𝑢𝑡.

In a given material the mean free path is then

𝜆 = (𝑛𝑎𝑡 · 𝜎)−1 or 𝜆 = (
∑︀

𝑖 𝑛𝑎𝑡𝑖 · 𝜎𝑖)
−1
.

10.1.4 Simulation of Delta-ray Production

Differential Cross Section

For 𝑇 ≫ 𝐼 the differential cross section per atom becomes [MC70] for Möller scattering,

𝑑𝜎

𝑑𝜖
=

2𝜋𝑟2𝑒𝑍

𝛽2(𝛾 − 1)

[︂
(𝛾 − 1)2

𝛾2
+

1

𝜖

(︂
1

𝜖
− 2𝛾 − 1

𝛾2

)︂
+

1

1 − 𝜖

(︂
1

1 − 𝜖
− 2𝛾 − 1

𝛾2

)︂]︂
(10.3)

and for Bhabha scattering,

𝑑𝜎

𝑑𝜖
=

2𝜋𝑟2𝑒𝑍

(𝛾 − 1)

[︂
1

𝛽2𝜖2
− 𝐵1

𝜖
+𝐵2 −𝐵3𝜖+𝐵4𝜖

2

]︂
. (10.4)

Here 𝜖 = 𝑇/(𝐸 −𝑚𝑐2). The kinematical limits of 𝜖 are

𝜖0 =
𝑇𝑐𝑢𝑡

𝐸 −𝑚𝑐2
≤ 𝜖 ≤ 1

2
for 𝑒−𝑒− 𝜖0 =

𝑇𝑐𝑢𝑡
𝐸 −𝑚𝑐2

≤ 𝜖 ≤ 1 for 𝑒+𝑒−.

Sampling

The delta ray energy is sampled according to methods discussed in Section 2. Apart from normalization, the cross
section can be factorized as

𝑑𝜎

𝑑𝜖
= 𝑓(𝜖)𝑔(𝜖).
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For 𝑒−𝑒− scattering

𝑓(𝜖) =
1

𝜖2
𝜖0

1 − 2𝜖0

𝑔(𝜖) =
4

9𝛾2 − 10𝛾 + 5

[︂
(𝛾 − 1)2𝜖2 − (2𝛾2 + 2𝛾 − 1)

𝜖

1 − 𝜖
+

𝛾2

(1 − 𝜖)2

]︂
and for 𝑒+𝑒− scattering

𝑓(𝜖) =
1

𝜖2
𝜖0

1 − 𝜖0

𝑔(𝜖) =
𝐵0 −𝐵1𝜖+𝐵2𝜖

2 −𝐵3𝜖
3 +𝐵4𝜖

4

𝐵0 −𝐵1𝜖0 +𝐵2𝜖20 −𝐵3𝜖30 +𝐵4𝜖40
.

Here 𝐵0 = 𝛾2/(𝛾2 − 1) and all other quantities have been defined above.

To choose 𝜖, and hence the delta ray energy,

1. 𝜖 is sampled from 𝑓(𝜖)

2. the rejection function 𝑔(𝜖) is calculated using the sampled value of 𝜖

3. 𝜖 is accepted with probability 𝑔(𝜖).

After the successful sampling of 𝜖, the direction of the ejected electron is generated with respect to the direction
of the incident particle. The azimuthal angle 𝜑 is generated isotropically and the polar angle 𝜃 is calculated from
energy-momentum conservation. This information is used to calculate the energy and momentum of both the scattered
incident particle and the ejected electron, and to transform them to the global coordinate system.

10.1.5 Penelope Model

The G4PenelopeIonisation class calculates the continuous energy loss due to electron and positron ionisation and
simulates the 𝛿-ray production by electrons and positrons. The electron production threshold 𝑇𝑐 for a given material is
used to separate the continuous and the discrete parts of the process. The simulation of inelastic collisions of electrons
and positrons is performed on the basis of a Generalized Oscillation Strength (GOS) model (see Ref. [FS01] for a
complete description). It is assumed that GOS splits into contributions from the different atomic electron shells.

Electrons

The total cross section 𝜎−(𝐸) for the inelastic collision of electrons of energy 𝐸 is calculated analytically. It can be
split into contributions from distant longitudinal, distant transverse and close interactions,

𝜎−(𝐸) = 𝜎𝑑𝑖𝑠,𝑙 + 𝜎𝑑𝑖𝑠,𝑡 + 𝜎−
𝑐𝑙𝑜.

The contributions from distant longitudinal and transverse interactions are

𝜎𝑑𝑖𝑠,𝑙 =
2𝜋𝑒4

𝑚𝑒𝑣2

∑︁
𝑠ℎ𝑒𝑙𝑙𝑠

𝑓𝑘
1

𝑊𝑘
ln
(︁ 𝑊𝑘

𝑄𝑚𝑖𝑛
𝑘

𝑄𝑚𝑖𝑛
𝑘 + 2𝑚𝑒𝑐

2

𝑊𝑘 + 2𝑚𝑒𝑐2

)︁
Θ(𝐸 −𝑊𝑘) (10.5)

and

𝜎𝑑𝑖𝑠,𝑡 =
2𝜋𝑒4

𝑚𝑒𝑣2

∑︁
𝑠ℎ𝑒𝑙𝑙𝑠

𝑓𝑘
1

𝑊𝑘

[︁
ln
(︁ 1

1 − 𝛽2

)︁
− 𝛽2 − 𝛿𝐹

]︁
Θ(𝐸 −𝑊𝑘) (10.6)
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respectively, where:

𝑚𝑒 = mass of the electron;
𝑣 = velocity of the electron;
𝛽 = velocity of the electron in units of 𝑐;
𝑓𝑘 = number of electrons in the 𝑘-th atomic shell;
Θ = Heaviside step function;

𝑊𝑘 = resonance energy of the 𝑘-th atomic shell oscillator;

𝑄𝑚𝑖𝑛
𝑘 = minimum kinematically allowed recoil energy for energy transfer 𝑊𝑘

=

√︂[︁√︀
𝐸(𝐸 + 2𝑚𝑒𝑐2) −

√︀
(𝐸 −𝑊𝑘)(𝐸 −𝑊𝑘 + 2𝑚𝑒𝑐2)

]︁2
+𝑚2

𝑒𝑐
4 −𝑚𝑒𝑐

2;

𝛿𝐹 = Fermi density effect correction.

𝛿𝐹 is computed as described in Ref. [Fan63].

The value of 𝑊𝑘 is calculated from the ionisation energy 𝑈𝑘 of the 𝑘-th shell as 𝑊𝑘 = 1.65 𝑈𝑘. This relation is
derived from the hydrogenic model, which is valid for the innermost shells. In this model, the shell ionisation cross
sections are only roughly approximated; nevertheless the ionisation of inner shells is a low probability process and the
approximation has a weak effect on the global transport properties1.

The integrated cross section for close collisions is the Møller cross section

𝜎−
𝑐𝑙𝑜 =

2𝜋𝑒4

𝑚𝑒𝑣2

∑︁
𝑠ℎ𝑒𝑙𝑙𝑠

𝑓𝑘

∫︁ 𝐸
2

𝑊𝑘

1

𝑊 2
𝐹−(𝐸,𝑊 )𝑑𝑊, (10.7)

where

𝐹−(𝐸,𝑊 ) = 1 +
(︁ 𝑊

𝐸 −𝑊

)︁2
− 𝑊

𝐸 −𝑊
+
(︁ 𝐸

𝐸 +𝑚𝑒𝑐2

)︁2(︁ 𝑊

𝐸 −𝑊
+
𝑊 2

𝐸2

)︁
.

The integral of Eq.(10.7) can be evaluated analytically. In the final state there are two indistinguishable free electrons
and the fastest one is considered as the “primary”; accordingly, the maximum allowed energy transfer in close colli-
sions is 𝐸/2. The GOS model also allows evaluation of the spectrum 𝑑𝜎−/𝑑𝑊 of the energy 𝑊 lost by the primary
electron as the sum of distant longitudinal, distant transverse and close interaction contributions,

𝑑𝜎−

𝑑𝑊
=
𝑑𝜎−

𝑐𝑙𝑜

𝑑𝑊
+
𝑑𝜎𝑑𝑖𝑠,𝑙
𝑑𝑊

+
𝑑𝜎𝑑𝑖𝑠,𝑡
𝑑𝑊

. (10.8)

In particular,

𝑑𝜎𝑑𝑖𝑠,𝑙
𝑑𝑊

=
2𝜋𝑒4

𝑚𝑒𝑣2

∑︁
𝑠ℎ𝑒𝑙𝑙𝑠

𝑓𝑘
1

𝑊𝑘
ln
(︁𝑊𝑘

𝑄−

𝑄− + 2𝑚𝑒𝑐
2

𝑊𝑘 + 2𝑚𝑒𝑐2

)︁
𝛿(𝑊 −𝑊𝑘)Θ(𝐸 −𝑊𝑘), (10.9)

where

𝑄− =

√︂[︁√︀
𝐸(𝐸 + 2𝑚𝑒𝑐2) −

√︀
(𝐸 −𝑊 )(𝐸 −𝑊 + 2𝑚𝑒𝑐2)

]︁2
+𝑚2

𝑒𝑐
4 −𝑚𝑒𝑐

2,

𝑑𝜎𝑑𝑖𝑠,𝑡
𝑑𝑊

=
2𝜋𝑒4

𝑚𝑒𝑣2

∑︁
𝑠ℎ𝑒𝑙𝑙𝑠

𝑓𝑘
1

𝑊𝑘

[︁
ln
(︁ 1

1 − 𝛽2

)︁
− 𝛽2 − 𝛿𝐹

]︁
Θ(𝐸 −𝑊𝑘)𝛿(𝑊 −𝑊𝑘) (10.10)

and

𝑑𝜎−
𝑐𝑙𝑜

𝑑𝑊
=

2𝜋𝑒4

𝑚𝑒𝑣2

∑︁
𝑠ℎ𝑒𝑙𝑙𝑠

𝑓𝑘
1

𝑊 2
𝐹−(𝐸,𝑊 )Θ(𝑊 −𝑊𝑘). (10.11)

1 In cases where inner-shell ionisation is directly observed, a more accurate description of the process should be used.
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Eqs.(10.5), (10.6) and (10.7) derive respectively from the integration in 𝑑𝑊 of Eqs.(10.9), (10.10) and (10.11) in
the interval [0,𝑊𝑚𝑎𝑥], where 𝑊𝑚𝑎𝑥 = 𝐸 for distant interactions and 𝑊𝑚𝑎𝑥 = 𝐸/2 for close. The analytical
GOS model provides an accurate average description of inelastic collisions. However, the continuous energy loss
spectrum associated with single distant excitations of a given atomic shell is approximated as a single resonance (a 𝛿
distribution). As a consequence, the simulated energy loss spectra show unphysical narrow peaks at energy losses that
are multiples of the resonance energies. These spurious peaks are automatically smoothed out after multiple inelastic
collisions. The explicit expression of 𝑑𝜎−/𝑑𝑊 , Eq.(10.8), allows the analytic calculation of the partial cross sections
for soft and hard ionisation events, i.e.

𝜎−
𝑠𝑜𝑓𝑡 =

∫︁ 𝑇𝑐

0

𝑑𝜎−

𝑑𝑊
𝑑𝑊 and 𝜎−

ℎ𝑎𝑟𝑑 =

∫︁ 𝑊𝑚𝑎𝑥

𝑇𝑐

𝑑𝜎−

𝑑𝑊
𝑑𝑊.

The first stage of the simulation is the selection of the active oscillator 𝑘 and the oscillator branch (distant or close).
In distant interactions with the 𝑘-th oscillator, the energy loss 𝑊 of the primary electron corresponds to the excitation
energy 𝑊𝑘, i.e. 𝑊=𝑊𝑘. If the interaction is transverse, the angular deflection of the projectile is neglected, i.e.
cos 𝜃 = 1. For longitudinal collisions, the distribution of the recoil energy 𝑄 is given by

𝑃𝑘(𝑄) =
1

𝑄[1+𝑄/(2𝑚𝑒𝑐2)]
if 𝑄− < 𝑄 < 𝑊𝑚𝑎𝑥

0 otherwise

Once the energy loss 𝑊 and the recoil energy 𝑄 have been sampled, the polar scattering angle is determined as

cos 𝜃 =
𝐸(𝐸 + 2𝑚𝑒𝑐

2) + (𝐸 −𝑊 )(𝐸 −𝑊 + 2𝑚𝑒𝑐
2) −𝑄(𝑄+ 2𝑚𝑒𝑐

2)

2
√︀
𝐸(𝐸 + 2𝑚𝑒𝑐2)(𝐸 −𝑊 )(𝐸 −𝑊 + 2𝑚𝑒𝑐2)

.

The azimuthal scattering angle 𝜑 is sampled uniformly in the interval (0, 2𝜋). For close interactions, the distributions
for the reduced energy loss 𝜅 ≡𝑊/𝐸 for electrons are

𝑃−
𝑘 (𝜅) =

[︁ 1

𝜅2
+

1

(1 − 𝜅)2
− 1

𝜅(1 − 𝜅)
+
(︁ 𝐸

𝐸 +𝑚𝑒𝑐2

)︁2(︁
1 +

1

𝜅(1 − 𝜅)

)︁]︁
Θ(𝜅− 𝜅𝑐)Θ(

1

2
− 𝜅)

with 𝜅𝑐 = max(𝑊𝑘, 𝑇𝑐)/𝐸. The maximum allowed value of 𝜅 is 1/2, consistent with the indistinguishability of the
electrons in the final state. After the sampling of the energy loss 𝑊 = 𝜅𝐸, the polar scattering angle 𝜃 is obtained as

cos2 𝜃 =
𝐸 −𝑊

𝐸

𝐸 + 2𝑚𝑒𝑐
2

𝐸 −𝑊 + 2𝑚𝑒𝑐2
.

The azimuthal scattering angle 𝜑 is sampled uniformly in the interval (0, 2𝜋). According to the GOS model, each
oscillator 𝑊𝑘 corresponds to an atomic shell with 𝑓𝑘 electrons and ionisation energy 𝑈𝑘. In the case of ionisation of
an inner shell 𝑖 (K or L), a secondary electron (𝛿-ray) is emitted with energy 𝐸𝑠 = 𝑊 −𝑈𝑖 and the residual ion is left
with a vacancy in the shell (which is then filled with the emission of fluorescence x-rays and/or Auger electrons). In
the case of ionisation of outer shells, the simulated 𝛿-ray is emitted with kinetic energy 𝐸𝑠 = 𝑊 and the target atom
is assumed to remain in its ground state. The polar angle of emission of the secondary electron is calculated as

cos2 𝜃𝑠 =
𝑊 2/𝛽2

𝑄(𝑄+ 2𝑚𝑒𝑐2)

[︁
1 +

𝑄(𝑄+ 2𝑚𝑒𝑐
2) −𝑊 2

2𝑊 (𝐸 +𝑚𝑒𝑐2)

]︁2
(for close collisions 𝑄 = 𝑊 ), while the azimuthal angle is 𝜑𝑠 = 𝜑 + 𝜋. In this model, the Doppler effects on the
angular distribution of the 𝛿 rays are neglected. The stopping power due to soft interactions of electrons, which is used
for the computation of the continuous part of the process, is analytically calculated as

𝑆−
𝑖𝑛 = 𝑁

∫︁ 𝑇𝑐

0

𝑊
𝑑𝜎−

𝑑𝑊
𝑑𝑊

from the expression (10.8), where 𝑁 is the number of scattering centers (atoms or molecules) per unit volume.
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Positrons

The total cross section 𝜎+(𝐸) for the inelastic collision of positrons of energy 𝐸 is calculated analytically. As in the
case of electrons, it can be split into contributions from distant longitudinal, distant transverse and close interactions,

𝜎+(𝐸) = 𝜎𝑑𝑖𝑠,𝑙 + 𝜎𝑑𝑖𝑠,𝑡 + 𝜎+
𝑐𝑙𝑜.

The contributions from distant longitudinal and transverse interactions are the same as for electrons, Eq.(10.5) and
(10.6), while the integrated cross section for close collisions is the Bhabha cross section

𝜎+
𝑐𝑙𝑜 =

2𝜋𝑒4

𝑚𝑒𝑣2

∑︁
𝑠ℎ𝑒𝑙𝑙𝑠

𝑓𝑘

∫︁ 𝐸

𝑊𝑘

1

𝑊 2
𝐹+(𝐸,𝑊 )𝑑𝑊, (10.12)

where

𝐹+(𝐸,𝑊 ) = 1 − 𝑏1
𝑊

𝐸
+ 𝑏2

𝑊 2

𝐸2
− 𝑏3

𝑊 3

𝐸3
+ 𝑏4

𝑊 4

𝐸4
;

the Bhabha factors are

𝑏1 =
(︁𝛾 − 1

𝛾

)︁2 2(𝛾 + 1)2 − 1

𝛾2 − 1
,

𝑏2 =
(︁𝛾 − 1

𝛾

)︁2 3(𝛾 + 1)2 + 1

(𝛾 + 1)2
,

𝑏3 =
(︁𝛾 − 1

𝛾

)︁2 2(𝛾 − 1)𝛾

(𝛾 + 1)2
,

𝑏4 =
(︁𝛾 − 1

𝛾

)︁2 (𝛾 − 1)2

(𝛾 + 1)2
,

and 𝛾 is the Lorentz factor of the positron. The integral of Eq.(10.12) can be evaluated analytically. The particles in the
final state are not indistinguishable so the maximum energy transfer 𝑊𝑚𝑎𝑥 in close collisions is 𝐸. As for electrons,
the GOS model allows the evaluation of the spectrum 𝑑𝜎+/𝑑𝑊 of the energy 𝑊 lost by the primary positron as the
sum of distant longitudinal, distant transverse and close interaction contributions,

𝑑𝜎+

𝑑𝑊
=
𝑑𝜎+

𝑐𝑙𝑜

𝑑𝑊
+
𝑑𝜎𝑑𝑖𝑠,𝑙
𝑑𝑊

+
𝑑𝜎𝑑𝑖𝑠,𝑡
𝑑𝑊

, (10.13)

where the distant terms 𝑑𝜎𝑑𝑖𝑠,𝑙

𝑑𝑊 and 𝑑𝜎𝑑𝑖𝑠,𝑡

𝑑𝑊 are those from Eqs.(10.9) and (10.10), while the close contribution is

𝑑𝜎+
𝑐𝑙𝑜

𝑑𝑊
=

2𝜋𝑒4

𝑚𝑒𝑣2

∑︁
𝑠ℎ𝑒𝑙𝑙𝑠

𝑓𝑘
1

𝑊 2
𝐹+(𝐸,𝑊 )Θ(𝑊 −𝑊𝑘).

Also in this case, the explicit expression of 𝑑𝜎+/𝑑𝑊 , Eq.(10.13), allows an analytic calculation of the partial cross
sections for soft and hard ionisation events, i.e.

𝜎+
𝑠𝑜𝑓𝑡 =

∫︁ 𝑇𝑐

0

𝑑𝜎+

𝑑𝑊
𝑑𝑊 and 𝜎+

ℎ𝑎𝑟𝑑 =

∫︁ 𝐸

𝑇𝑐

𝑑𝜎+

𝑑𝑊
𝑑𝑊.

The sampling of the final state in the case of distant interactions (transverse or longitudinal) is performed in the same
way as for primary electrons, see Electrons. For close positron interactions with the 𝑘-th oscillator, the distribution for
the reduced energy loss 𝜅 ≡𝑊/𝐸 is

𝑃+
𝑘 (𝜅) =

[︁ 1

𝜅2
− 𝑏1
𝜅

+ 𝑏2 − 𝑏3𝜅+ 𝑏4𝜅
2
]︁
Θ(𝜅− 𝜅𝑐)Θ(1 − 𝜅)

with 𝜅𝑐 = max(𝑊𝑘, 𝑇𝑐)/𝐸. In this case, the maximum allowed reduced energy loss 𝜅 is 1. After sampling the energy
loss 𝑊 = 𝜅𝐸, the polar angle 𝜃 and the azimuthal angle 𝜑 are obtained using the equations introduced for electrons
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in Electrons. Similarly, the generation of 𝛿 rays is performed in the same way as for electrons. Finally, the stopping
power due to soft interactions of positrons, which is used for the computation of the continuous part of the process, is
analytically calculated as

𝑆+
𝑖𝑛 = 𝑁

∫︁ 𝑇𝑐

0

𝑊
𝑑𝜎+

𝑑𝑊
𝑑𝑊

from the expression (10.13), where 𝑁 is the number of scattering centers per unit volume.

10.1.6 Livermore Model

The class G4LivermoreIonisationModel calculates the continuous energy loss due to electron ionisation and simulates
𝛿-ray production by electrons. The 𝛿-electron production threshold for a given material, 𝑇𝑐, is used to separate the
continuous and the discrete parts of the process. The energy loss of an electron with the incident energy, 𝑇 , is expressed
via the sum over all atomic shells, 𝑠, and the integral over the energy, 𝑡, of 𝛿-electrons:

𝑑𝐸

𝑑𝑥
=
∑︁
𝑠

(︃
𝜎𝑠(𝑇 )

∫︀ 𝑇𝑐

0.1𝑒𝑉
𝑡𝑑𝜎𝑑𝑡 𝑑𝑡∫︀ 𝑇𝑚𝑎𝑥

0.1𝑒𝑉
𝑑𝜎
𝑑𝑡 𝑑𝑡

)︃
,

where 𝑇𝑚𝑎𝑥 = 0.5𝑇 is the maximum energy transferred to a 𝛿-electron, 𝜎𝑠(𝑇 ) is the total cross-section for the shell,
𝑠, at a given incident kinetic energy, 𝑇 , and 0.1 eV is the low energy limit of the EEDL data. The 𝛿-electron production
cross-section is a complementary function:

𝜎(𝑇 ) =
∑︁
𝑠

(︃
𝜎𝑠(𝑇 )

∫︀ 𝑇𝑚𝑎𝑥

𝑇𝑐

𝑑𝜎
𝑑𝑡 𝑑𝑡∫︀ 𝑇𝑚𝑎𝑥

0.1𝑒𝑉
𝑑𝜎
𝑑𝑡 𝑑𝑡

)︃
.

The partial sub-shell cross-sections, 𝜎𝑠, are obtained from an interpolation of the evaluated cross-section data in the
EEDL library [STPerkins89], according to the formula (5.1) in Generic Calculation of Total Cross Sections.

The probability of emission of a 𝛿-electron with kinetic energy, 𝑡, from a sub-shell, 𝑠, of binding energy, 𝐵𝑠, as the
result of the interaction of an incoming electron with kinetic energy, 𝑇 , is described by:

𝑑𝜎

𝑑𝑡
=
𝑃 (𝑥)

𝑥2
, with 𝑥 =

𝑡+𝐵𝑠

𝑇 +𝐵𝑠
,

where the parameter 𝑥 is varied from 𝑥𝑚𝑖𝑛 = (0.1𝑒𝑉 + 𝐵𝑠)/(𝑇 + 𝐵𝑠) to 0.5. The function, 𝑃 (𝑥), is parametrised
differently in 3 regions of 𝑥: from 𝑥𝑚𝑖𝑛 to 𝑥1 the linear interpolation with linear scale of 4 points is used; from 𝑥1
to 𝑥2 the linear interpolation with logarithmic scale of 16 points is used; from 𝑥2 to 0.5 the following interpolation is
applied:

𝑃 (𝑥) = 1 − 𝑔𝑥+ (1 − 𝑔)𝑥2 +
𝑥2

1 − 𝑥

(︂
1

1 − 𝑥
− 𝑔

)︂
+𝐴 * (0.5 − 𝑥)/𝑥, (10.14)

where 𝐴 is a fit coefficient, 𝑔 is expressed via the gamma factor of the incoming electron:

𝑔 = (2𝛾 − 1)/𝛾2. (10.15)

For the high energy case (𝑥 ≫ 1) the formula ((10.14)) is transformed to the Möller electron-electron scattering
formula [Bru93][MC70].

The value of the coefficient, 𝐴, for each element is obtained as a result of the fit on the spectrum from the EEDL
data for those energies which are available in the database. The values of 𝑥1 and 𝑥2 are chosen for each atomic shell
according to the spectrum of 𝛿-electrons in this shell. Note that 𝑥1 corresponds to the maximum of the spectrum, if the
maximum does not coincide with 𝑥𝑚𝑖𝑛. The dependence of all 24 parameters on the incident energy, 𝑇 , is evaluated
from a logarithmic interpolation (5.1).
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The sampling of the final state proceeds in three steps. First a shell is randomly selected, then the energy of the
𝛿-electron is sampled, finally the angle of emission of the scattered electron and of the 𝛿-ray is determined by energy-
momentum conservation taken into account electron motion on the atomic orbit.

The interaction leaves the atom in an excited state. The deexcitation of the atom is simulated as described in Atomic
relaxation. Sampling of the excitations is carried out for both the continuous and the discrete parts of the process.

10.2 Bremsstrahlung

The class G4eBremsstrahlung provides the energy loss of electrons and positrons due to the radiation of photons in
the field of a nucleus according to the approach described in Mean Energy Loss. Above a given threshold energy the
energy loss is simulated by the explicit production of photons. Below the threshold the emission of soft photons is
treated as a continuous energy loss.

Below electron/positron energies of 1 GeV, the cross section evaluation is based on a dedicated parameterization,
above this limit an analytic cross section is used. In GEANT4 the Landau-Pomeranchuk-Migdal effect has also been
implemented.

10.2.1 Seltzer-Berger bremsstrahlung model

In order to improve accuracy of the model described above a new model G4SeltzerBergerModel have been design
which implementing cross section based on interpolation of published tables [SB85][SB86]. Single-differential cross
section can be written as a sum of a contribution of bremsstrahlung produced in the field of the screened atomic nucleus
𝑑𝜎𝑛/𝑑𝑘, and the part 𝑍 𝑑𝜎𝑒/𝑑𝑘 corresponding to bremsstrahlung produced in the field of the Z atomic electrons,

𝑑𝜎

𝑑𝑘
=
𝑑𝜎𝑛
𝑑𝑘

+ 𝑍
𝑑𝜎𝑒
𝑑𝑘

.

The differential cross section depends on the energy 𝑘 of the emitted photon, the kinetic energy 𝑇1 of the incident
electron and the atomic number 𝑍 of the target atom.

Seltzer and Berger have published extensive tables for the differential cross section 𝑑𝜎𝑛/𝑑𝑘 and 𝑑𝜎𝑒/𝑑𝑘
[SB85][SB86], covering electron energies from 1 keV up to 10 GeV, substantially extending previous publications
[PTL+77]. The results are in good agreement with experimental data, and provided also the basis of bremsstrahlung
implementations in many Monte Carlo programs (e.g. Penelope, EGS). The estimated uncertainties for 𝑑𝜎/𝑑𝑘 are:

• 3% to 5% in the high energy region (𝑇1 ≥ 50 MeV),

• 5% to 10% in the intermediate energy region (2 ≥ 𝑇1 ≤ 50 MeV),

• and 10% at low energies region compared with Pratt results. (𝑇1 ≤ 2 MeV).

The restricted cross section (7.2) and the energy loss (7.3) are obtained by numerical integration performed at initiali-
sation stage of GEANT4. This method guarantees consistent description independent of the energy cutoff. The current
version uses an interpolation in tables for 52 available electron energy points versus 31 photon energy points, and for
atomic number Z ranging from 1 to 99. It is the default bremsstrahlung model in GEANT4 since version 9.5. Fig.
10.1 shows a comparison of the total bremsstrahlung cross sections with the previous implementation, and with the
relativistic model.

After the successful sampling of 𝜖, the polar angles of the radiated photon are generated with respect to the parent
electron’s momentum. It is difficult to find simple formulae for this angle in the literature. For example the double
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Fig. 10.1: Total cross section comparison between models for𝑍 = 29: Parametrized Bremsstrahlung Model, Relativis-
tic Model, Bremsstrahlung Model (GEANT4 9.4) and Seltzer-Berger Model. The discontinuities in the Paramretized
Model and the Relativistic Model at 1 Mev and 1 GeV, respectively, mark the validity range of these models.

differential cross section reported by Tsai [Tsa74][Tsa77] is

𝑑𝜎

𝑑𝑘𝑑Ω
=

2𝛼2𝑒2

𝜋𝑘𝑚4

{︂[︂
2𝜖− 2

(1 + 𝑢2)2
+

12𝑢2(1 − 𝜖)

(1 + 𝑢2)4

]︂
𝑍(𝑍 + 1)

+

[︂
2 − 2𝜖− 𝜖2

(1 + 𝑢2)2
− 4𝑢2(1 − 𝜖)

(1 + 𝑢2)4

]︂ [︀
𝑋 − 2𝑍2𝑓𝑐((𝛼𝑍)2)

]︀}︂
𝑢 =

𝐸𝜃

𝑚

𝑋 =

∫︁ 𝑚2(1+𝑢2)2

𝑡𝑚𝑖𝑛

[︀
𝐺𝑒𝑙

𝑍 (𝑡) +𝐺𝑖𝑛
𝑍 (𝑡)

]︀ 𝑡− 𝑡𝑚𝑖𝑛

𝑡2
𝑑𝑡

𝐺𝑒𝑙,𝑖𝑛
𝑍 (𝑡) : atomic form factors

𝑡𝑚𝑖𝑛 =

[︂
𝑘𝑚2(1 + 𝑢2)

2𝐸(𝐸 − 𝑘)

]︂2
=

[︂
𝜖𝑚2(1 + 𝑢2)

2𝐸(1 − 𝜖)

]︂2
.

The sampling of this distribution is complicated. It is also only an approximation to within a few percent, due at least
to the presence of the atomic form factors. The angular dependence is contained in the variable 𝑢 = 𝐸𝜃𝑚−1. For a
given value of 𝑢 the dependence of the shape of the function on 𝑍, 𝐸 and 𝜖 = 𝑘/𝐸 is very weak. Thus, the distribution
can be approximated by a function

𝑓(𝑢) = 𝐶
(︀
𝑢𝑒−𝑎𝑢 + 𝑑𝑢𝑒−3𝑎𝑢

)︀
where

𝐶 =
9𝑎2

9 + 𝑑
𝑎 = 0.625 𝑑 = 27

where 𝐸 is in GeV. While this approximation is good at high energies, it becomes less accurate around a few MeV.
However in that region the ionisation losses dominate over the radiative losses. The sampling of the function 𝑓(𝑢) can
be done with three random numbers 𝑟𝑖, uniformly distributed on the interval [0,1]:
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1. choose between 𝑢𝑒−𝑎𝑢 and 𝑑𝑢𝑒−3𝑎𝑢:

𝑏 =

{︂
𝑎 if 𝑟1 < 9/(9 + 𝑑)
3𝑎 if 𝑟1 ≥ 9/(9 + 𝑑)

2. sample 𝑢𝑒−𝑏𝑢:

𝑢 = − log(𝑟2𝑟3)

𝑏

3. check that:

𝑢 ≤ 𝑢𝑚𝑎𝑥 =
𝐸𝜋

𝑚

otherwise go back to 1.

The probability of failing the last test is reported in Table 10.1.

Table 10.1: Probability of failing test.
E (MeV) P(%)
0.511 3.4
0.6 2.2
0.8 1.2
1.0 0.7
2.0 < 0.1

The function 𝑓(𝑢) can also be used to describe the angular distribution of the photon in 𝜇 bremsstrahlung and to
describe the angular distribution in photon pair production. The azimuthal angle 𝜑 is generated isotropically. Along
with 𝜃, this information is used to calculate the momentum vectors of the radiated photon and parent recoiled electron,
and to transform them to the global coordinate system. The momentum transfer to the atomic nucleus is neglected.

10.2.2 Bremsstrahlung of high-energy electrons

Above an electron energy of 1 GeV an analytic differential cross section representation is used [Per94], which was
modified to account for the density effect and the Landau-Pomeranchuk-Migdal (LPM) effect [Kle99][SVS+82].

Relativistic Bremsstrahlung cross section

The basis of the implementation is the well known high energy limit of the Bremsstrahlung process [Per94],

𝑑𝜎

𝑑𝑘
=

4𝛼𝑟2𝑒
3𝑘

[︂
{𝑦2 + 2[1 + (1 − 𝑦)2]}[𝑍2(𝐹𝑒𝑙 − 𝑓) + 𝑍𝐹𝑖𝑛𝑒𝑙] + (1 − 𝑦)

𝑍2 + 𝑍

3

]︂
(10.16)

The elastic from factor 𝐹𝑒𝑙 and inelastic form factor 𝐹𝑖𝑛𝑒𝑙, describe the scattering on the nucleus and on the shell
electrons, respectively, and for 𝑍 > 4 are given by [CA08]

𝐹𝑒𝑙 = log

(︂
184.15

𝑍
1
3

)︂
𝐹𝑖𝑛𝑒𝑙 = log

(︂
1194.

𝑍
2
3

)︂
.
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This corresponds to the complete screening approximation. The Coulomb correction is defined as [CA08]

𝑓 = 𝛼2𝑍2
∞∑︁

𝑛=1

1

𝑛(𝑛2 + 𝛼2𝑍2)

This approach provides an analytic differential cross section for an efficient evaluation in a Monte Carlo computer
code. Note that in this approximation the differential cross section 𝑑𝜎/𝑑𝑘 is independent of the energy of the initial
electron and is also valid for positrons.

The total integrated cross section
∫︀
𝑑𝜎/𝑑𝑘 𝑑𝑘 is divergent, but the energy loss integral

∫︀
𝑘𝑑𝜎/𝑑𝑘 𝑑𝑘 is finite. This

allows the usual separation into continuous energy loss, and discrete photon production according to Eqs. (7.3) and
(7.2).

Landau Pomeranchuk Migdal (LPM) effect

At higher energies matter effects become more and more important. In GEANT4 the two leading matter effects,
the LPM effect and the dielectric suppression (or Ter-Mikaelian effect), are considered. The analytic cross section
representation, (10.16), provides the basis for the incorporation of these matter effects.

The LPM effect (see for example [GG64][ABSB+97][HUggerhjB+04]) is the suppression of photon production due
to the multiple scattering of the electron. If an electron undergoes multiple scattering while traversing the so called
“formation zone”, the bremsstrahlung amplitudes from before and after the scattering can interfere, reducing the
probability of bremsstrahlung photon emission (a similar suppression occurs for pair production). The suppression
becomes significant for photon energies below a certain value, given by

𝑘

𝐸
<

𝐸

𝐸𝐿𝑃𝑀
,

where

𝑘 photon energy
𝐸 electron energy
𝐸𝐿𝑃𝑀 characteristic energy for LPM effect (depend on the medium).

The value of the LPM characteristic energy can be written as

𝐸𝐿𝑃𝑀 =
𝛼𝑚2𝑋0

4ℎ𝑐
, (10.17)

where

𝛼 fine structure constant
𝑚 electron mass
𝑋0 radiation length in the material
ℎ Planck constant
𝑐 velocity of light in vacuum.

At high energies (approximately above 1 GeV) the differential cross section including the Landau-Pomeranchuk-
Migdal effect, can be expressed using an evaluation based on [Mig56][SVS+82][Kle99]

𝑑𝜎

𝑑𝑘
=

4𝛼𝑟2𝑒
3𝑘

[︂
𝜉(𝑠){𝑦2𝐺(𝑠) + 2[1 + (1 − 𝑦)2]𝜑(𝑠)}

×[𝑍2(𝐹𝑒𝑙 − 𝑓) + 𝑍𝐹𝑖𝑛𝑒𝑙] + (1 − 𝑦)
𝑍2 + 𝑍

3

]︂ (10.18)

where LPM suppression functions are defined by [Mig56]

𝐺(𝑠) = 24𝑠2
(︂
𝜋

2
−
∫︁ ∞

0

𝑒−𝑠𝑡 sin(𝑠𝑡)

sinh( 𝑡
2 )
𝑑𝑡

)︂
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and

𝜑(𝑠) = 12𝑠2

(︃
−𝜋

2
+

∫︁ ∞

0

𝑒−𝑠𝑡 sin(𝑠𝑡) sinh
(︁ 𝑡

2

)︁
𝑑𝑡

)︃

They can be piecewise approximated with simple analytic functions, see e.g. [SVS+82]. The suppression function
𝜉(𝑠) is recursively defined via

𝑠 =

√︃
𝑘 𝐸LPM

8𝐸(𝐸 − 𝑘)𝜉(𝑠)

but can be well approximated using an algorithm introduced by [SVS+82]. The material dependent characteristic
energy 𝐸LPM is defined in Eq.(10.17) according to [ABSB+97]. Note that this definition differs from other definition
(e.g. [Kle99]) by a factor 1

2 .

An additional multiplicative factor governs the dielectric suppression effect (Ter-Mikaelian effect) [TER54].

𝑆(𝑘) =
𝑘2

𝑘2 + 𝑘2𝑝

The characteristic photon energy scale 𝑘𝑝 is given by the plasma frequency of the media, defined as

𝑘𝑝 = ~𝜔𝑝
𝐸𝑒

𝑚𝑒𝑐2
=

~𝐸𝑒

𝑚𝑒𝑐2
·

√︃
𝑛𝑒𝑒2

𝜖0𝑚𝑒
.

Both suppression effects, dielectric suppression and LPM effect, reduce the effective formation length of the photon,
so the suppressions do not simply multiply. A consistent treatment of the overlap region, where both suppression
mechanism, was suggested by [TM72]. The algorithm guaranties that the LPM suppression is turned off as the density
effect becomes important. This is achieved by defining a modified suppression variable 𝑠 via

𝑠 = 𝑠 ·
(︂

1 +
𝑘2𝑝
𝑘2

)︂
and using 𝑠 in the LPM suppression functions 𝐺(𝑠) and 𝜑(𝑠) instead of 𝑠 in Eq.(10.18).

10.2.3 Penelope Model

Introduction

The class G4PenelopeBremsstrahlung calculates the continuous energy loss due to soft 𝛾 emission and simulates the
photon production by electrons and positrons. As usual, the gamma production threshold 𝑇𝑐 for a given material is
used to separate the continuous and the discrete parts of the process.

Electrons

The total cross sections are calculated from the data [STPerkins89], as described in Generic Calculation of Total Cross
Sections and Livermore Model. The energy distribution 𝑑𝜎

𝑑𝑊 (𝐸), i.e. the probability of the emission of a photon with
energy 𝑊 given an incident electron of kinetic energy 𝐸, is generated according to the formula

𝑑𝜎

𝑑𝑊
(𝐸) =

𝐹 (𝜅)

𝜅
, 𝜅 =

𝑊

𝐸
.

The functions 𝐹 (𝜅) describing the energy spectra of the outgoing photons are taken from Ref.[SB86]. For each
element 𝑍 from 1 to 92, 32 points in 𝜅, ranging from 10−12 to 1, are used for the linear interpolation of this function.
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𝐹 (𝜅) is normalized using the condition 𝐹 (10−12) = 1. The energy distribution of the emitted photons is available in
the library [SB86] for 57 energies of the incident electron between 1 keV and 100 GeV. For other primary energies,
logarithmic interpolation is used to obtain the values of the function 𝐹 (𝜅). The direction of the emitted bremsstrahlung
photon is determined by the polar angle 𝜃 and the azimuthal angle 𝜑. For isotropic media, with randomly oriented
atoms, the bremsstrahlung differential cross section is independent of 𝜑 and can be expressed as

𝑑2𝜎

𝑑𝑊𝑑 cos 𝜃
=

𝑑𝜎

𝑑𝑊
𝑝(𝑍,𝐸, 𝜅; cos 𝜃).

Numerical values of the “shape function” 𝑝(𝑍,𝐸, 𝜅; cos 𝜃), calculated by partial-wave methods, have been published
in Ref. [KQP83] for the following benchmark cases: 𝑍= 2, 8, 13, 47, 79 and 92; 𝐸= 1, 5, 10, 50, 100 and 500 keV;
𝜅= 0, 0.6, 0.8 and 0.95. It was found in Ref. [FS01] that the benchmark partial-wave shape function of Ref. [KQP83]
can be closely approximated by the analytical form (obtained in the Lorentz-dipole approximation)

𝑝(cos 𝜃) = 𝐴
3

8

[︁
1 +

(︁ cos 𝜃 − 𝛽′

1 − 𝛽′ cos 𝜃

)︁2]︁ 1 − 𝛽
′2

(1 − 𝛽′ cos 𝜃)2
+ (1 −𝐴)

3

4

[︁
1 −

(︁ cos 𝜃 − 𝛽′

1 − 𝛽′ cos 𝜃
𝑚
)︁2]︁ 1 − 𝛽

′2

(1 − 𝛽′ cos 𝜃)2
,

with 𝛽′ = 𝛽(1 + 𝐵), if one considers 𝐴 and 𝐵 as adjustable parameters. The parameters 𝐴 and 𝐵 have been
determined, by least squares fitting, for the 144 combinations of atomic numbers, electron energies and reduced
photon energies corresponding to the benchmark shape functions tabulated in [KQP83]. The quantities ln(𝐴𝑍𝛽) and
𝐵𝛽 vary smoothly with Z, 𝛽 and 𝜅 and can be obtained by cubic spline interpolation of their values for the benchmark
cases. This permits the fast evaluation of the shape function 𝑝(𝑍,𝐸, 𝜅; cos 𝜃) for any combination of 𝑍, 𝛽 and 𝜅. The
stopping power 𝑑𝐸/𝑑𝑥 due to soft bremsstrahlung is calculated by interpolating in 𝐸 and 𝜅 the numerical data of
scaled cross sections of Ref. [BS82]. The energy and the direction of the outgoing electron are determined by using
energy-momentum balance.

Positrons

The radiative differential cross section 𝑑𝜎+(𝐸)/𝑑𝑊 for positrons reduces to that for electrons in the high-energy limit,
but is smaller for intermediate and low energies. Owing to the lack of more accurate calculations, the differential cross
section for positrons is obtained by multiplying the electron differential cross section 𝑑𝜎−(𝐸)/𝑑𝑊 by a 𝜅-independent
factor, i.e.

𝑑𝜎+

𝑑𝑊
= 𝐹𝑝(𝑍,𝐸)

𝑑𝜎−

𝑑𝑊
.

The factor 𝐹𝑝(𝑍,𝐸) is set equal to the ratio of the radiative stopping powers for positrons and electrons, which has
been calculated in Ref.[LKim86]. For the actual calculation, the following analytical approximation is used:

𝐹𝑝(𝑍,𝐸) = 1 − exp(−1.2359 · 10−1𝑡+ 6.1274 · 10−2𝑡2 − 3.1516 · 10−2𝑡3

+ 7.7446 · 10−3𝑡4 − 1.0595 · 10−3𝑡5 + 7.0568 · 10−5𝑡6 − 1.8080 · 10−6𝑡7),

where

𝑡 = ln
(︁

1 +
106

𝑍2

𝐸

𝑚𝑒𝑐2

)︁
.

Because the factor 𝐹𝑝(𝑍,𝐸) is independent on 𝜅, the energy distribution of the secondary 𝛾’s has the same shape as
electron bremsstrahlung. Similarly, owing to the lack of numerical data for positrons, it is assumed that the shape of
the angular distribution 𝑝(𝑍,𝐸, 𝜅; cos 𝜃) of the bremsstrahlung photons for positrons is the same as for the electrons.
The energy and direction of the outgoing positron are determined from energy-momentum balance.

10.2.4 Livermore Model

The class G4LivermoreBremsstrahlungModel calculates the continuous energy loss due to low energy gamma emission
and simulates the gamma production by electrons. The gamma production threshold for a given material 𝜔𝑐 is used to
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separate the continuous and the discrete parts of the process. The energy loss of an electron with the incident energy
𝑇 are expressed via the integrand over energy of the gammas:

𝑑𝐸

𝑑𝑥
= 𝜎(𝑇 )

∫︀ 𝜔𝑐

0.1𝑒𝑉
𝑡 𝑑𝜎𝑑𝜔𝑑𝜔∫︀ 𝑇

0.1𝑒𝑉
𝑑𝜎
𝑑𝜔𝑑𝜔

,

where 𝜎(𝑇 ) is the total cross-section at a given incident kinetic energy, 𝑇 , 0.1 eV is the low energy limit of the EEDL
data. The production cross-section is a complementary function:

𝜎 = 𝜎(𝑇 )

∫︀ 𝑇

𝜔𝑐

𝑑𝜎
𝑑𝜔𝑑𝜔∫︀ 𝑇

0.1𝑒𝑉
𝑑𝜎
𝑑𝜔𝑑𝜔

.

The total cross-section, 𝜎𝑠, is obtained from an interpolation of the evaluated cross-section data in the EEDL library
[STPerkins89], according to the formula (5.1) in Generic Calculation of Total Cross Sections.

The EEDL data [JA99] of total cross-sections are parametrised [STPerkins89] according to (5.1). The probability of
the emission of a photon with energy, 𝜔, considering an electron of incident kinetic energy, 𝑇 , is generated according
to the formula:

𝑑𝜎

𝑑𝜔
=
𝐹 (𝑥)

𝑥
, with 𝑥 =

𝜔

𝑇
.

The function, 𝐹 (𝑥), describing energy spectra of the outgoing photons is taken from the EEDL library. For each
element 15 points in 𝑥 from 0.01 to 1 are used for the linear interpolation of this function. The function 𝐹 is normalised
by the condition 𝐹 (0.01) = 1. The energy distributions of the emitted photons available in the EEDL library are for
only a few incident electron energies (about 10 energy points between 10 eV and 100 GeV). For other energies a
logarithmic interpolation formula (5.1) is used to obtain values for the function, 𝐹 (𝑥). For high energies, the spectral
function is very close to:

𝐹 (𝑥) = 1 − 𝑥+ 0.75𝑥2.

Bremsstrahlung angular distributions

The angular distribution of the emitted photons with respect to the incident electron can be sampled according
to three alternative generators described below. The direction of the outgoing electron is determined from the
energy-momentum balance. This generators are currently implemented in G4ModifiedTsai, G4Generator2BS and
G4Generator2BN classes.

G4ModifiedTsai

The angular distribution of the emitted photons is obtained from a simplified [Bru93] formula based on the Tsai
cross-section [Tsa74][Tsa77], which is expected to become isotropic in the low energy limit.

G4Generator2BS

In G4Generator2BS generator, the angular distribution of the emitted photons is obtained from the 2BS Koch and
Motz bremsstrahlung double differential cross-section [KM59]:

𝑑𝜎𝑘,𝜃 =
4𝑍2𝑟20

137

𝑑𝑘

𝑘
𝑦𝑑𝑦

{︂
16𝑦2𝐸

(𝑦2 + 1)4𝐸0
− (𝐸0 + 𝐸)2

(𝑦2 + 1)2𝐸2
0

+

[︂
𝐸2

0 + 𝐸2

(𝑦2 + 1)2𝐸2
0

− 4𝑦2𝐸

(𝑦2 + 1)4𝐸0

]︂
ln𝑀(𝑦)

}︂
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where 𝑘 the photon energy, 𝜃 the emission angle, 𝐸0 and 𝐸 are the initial and final electron energy in units of 𝑚𝑒𝑐
2,

𝑟0 is the classical electron radius and 𝑍 the atomic number of the material. 𝑦 and 𝑀(𝑦) are defined as:

𝑦 = 𝐸0𝜃

1

𝑀(𝑦)
=

(︂
𝑘

2𝐸0𝐸

)︂2

+

(︂
𝑍1/3

111(𝑦2 + 1)

)︂2

The adopted sampling algorithm is based on the sampling scheme developed by A. F. Bielajew et al. [AFBC89], and
later implemented in EGS4. In this sampling algorithm only the angular part of 2BS is used, with the emitted photon
energy, 𝑘, determined by GEANT4 𝑑𝜎/𝑑𝑘) differential cross-section.

G4Generator2BN

The angular distribution of the emitted photons is obtained from the 2BN Koch and Motz bremsstrahlung double
differential cross-section [KM59] that can be written as:

𝑑𝜎𝑘,𝜃 =
𝑍2𝑟20
8𝜋137

𝑑𝑘

𝑘

𝑝

𝑝0
𝑑Ω𝑘

{︂
8 sin2 𝜃(2𝐸2

0 + 1)

𝑝20∆4
0

−

2(5𝐸2
0 + 2𝐸𝐸0 + 3)

𝑝20∆2
0

− 2(𝑝20 − 𝑘2)

𝑄2∆0
+

4𝐸

𝑝22∆0
+

𝐿

𝑝𝑝0[︂
4𝐸0 sin2 𝜃(3𝑘 − 𝑝20𝐸)

𝑝20∆4
+

4𝐸2
0(𝐸2

0 + 𝐸2)

𝑝20∆2
0

+

2 − 2(7𝐸2
0 − 3𝐸𝐸0 + 𝐸2)

𝑝20∆2
0

+
2𝑘(𝐸2

0 + 𝐸𝐸0 − 1)

𝑝20∆0

]︂
−
(︂

4𝜖

𝑝∆0

)︂
+

(︂
𝜖𝑄

𝑝𝑄

)︂[︂
4

∆2
0

− 6𝑘

∆0
− 2𝑘(𝑝20 − 𝑘2)

𝑄2∆0

]︂}︂
in which:

𝐿 = ln

[︂
𝐸𝐸0 − 1 + 𝑝𝑝0
𝐸𝐸0 − 1 − 𝑝𝑝0

]︂
∆0 = 𝐸0 − 𝑝0 cos 𝜃

𝑄2 = 𝑝20 + 𝑘2 − 2𝑝0𝑘 cos 𝜃

𝜖 = ln

[︂
𝐸 + 𝑝

𝐸 − 𝑝

]︂
𝜖𝑄 = ln

[︂
𝑄+ 𝑝

𝑄− 𝑝

]︂
where 𝑘 is the photon energy, 𝜃 the emission angle and (𝐸0, 𝑝0) and (𝐸, 𝑝) are the total (energy, momentum) of the
electron before and after the radiative emission, all in units of 𝑚𝑒𝑐

2.

Since the 2BN cross–section is a 2-dimensional non-factorized distribution an acceptance-rejection technique was the
adopted. For the 2BN distribution, two functions 𝑔1(𝑘) and 𝑔2(𝜃) were defined:

𝑔1(𝑘) = 𝑘−𝑏 𝑔2(𝜃) =
𝜃

1 + 𝑐𝜃2

such that:

𝐴𝑔1(𝑘)𝑔2(𝜃) ≥ 𝑑𝜎

𝑑𝑘𝑑𝜃

where A is a global constant to be completed. Both functions have an analytical integral 𝐺 and an analytical inverse
𝐺−1. The 𝑏 parameter of 𝑔1(𝑘) was empirically tuned and set to 1.2. For positive 𝜃 values, 𝑔2(𝜃) has a maximum at
1/
√︀

(𝑐). 𝑐 parameter controls the function global shape and it was used to tune 𝑔2(𝜃) according to the electron kinetic
energy.
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To generate photon energy 𝑘 according to 𝑔1 and 𝜃 according to 𝑔2 the inverse-transform method was used. The
integration of these functions gives

𝐺1 = 𝐶1

∫︁ 𝑘𝑚𝑎𝑥

𝑘𝑚𝑖𝑛

𝑘′−𝑏𝑑𝑘′ = 𝐶1
𝑘1−𝑏 − 𝑘1−𝑏

𝑚𝑖𝑛

1 − 𝑏

𝐺2 = 𝐶2

∫︁ 𝜃

0

𝜃′

1 + 𝑐𝜃′2
𝑑𝜃′ = 𝐶2

log(1 + 𝑐𝜃2)

2𝑐

where 𝐶1 and 𝐶2 are two global constants chosen to normalize the integral in the overall range to the unit. The photon
momentum 𝑘 will range from a minimum cut value 𝑘𝑚𝑖𝑛 (required to avoid infrared divergence) to a maximum value
equal to the electron kinetic energy 𝐸𝑘, while the polar angle ranges from 0 to 𝜋, resulting for 𝐶1 and 𝐶2:

𝐶1 =
1 − 𝑏

𝐸1−𝑏
𝑘

𝐶2 =
2𝑐

log(1 + 𝑐𝜋2)

𝑘 and 𝜃 are then sampled according to:

𝑘 =

[︂
1 − 𝑏

𝐶1
𝜉1 + 𝑘1−𝑏

𝑚𝑖𝑛

]︂
𝜃 =

⎯⎸⎸⎷exp
(︁

2𝑐𝜉2
𝐶1

)︁
2𝑐

where 𝜉1 and 𝜉2 are uniformly sampled in the interval (0,1). The event is accepted if:

𝑢𝐴𝑔1(𝑘)𝑔2(𝜃) ≤ 𝑑𝜎

𝑑𝑘𝑑𝜃

where 𝑢 is a random number with uniform distribution in (0,1). The𝐴 and 𝑐 parameters were computed in a logarithmic
grid, ranging from 1 keV to 1.5 MeV with 100 points per decade. Since the 𝑔2(𝜃) function has a maximum at 𝜃 = 1√

𝑐
,

the 𝑐 parameter was computed using the relation 𝑐 = 1
𝜃𝑚𝑎𝑥

. At the point (𝑘𝑚𝑖𝑛, 𝜃𝑚𝑎𝑥) where 𝑘𝑚𝑖𝑛 is the 𝑘 cut value,
the double differential cross-section has its maximum value, since it is monotonically decreasing in 𝑘 and thus the
global normalization parameter 𝐴 is estimated from the relation:

𝐴𝑔1(𝑘𝑚𝑖𝑛)𝑔2(𝜃𝑚𝑎𝑥) =

(︂
𝑑2𝜎

𝑑𝑘𝑑𝜃

)︂
𝑚𝑎𝑥

where 𝑔1(𝑘𝑚𝑖𝑛)𝑔2(𝜃𝑚𝑎𝑥) =
𝑘−𝑏
𝑚𝑖𝑛

2
√
𝑐

. Since 𝐴 and 𝑐 can only be retrieved for a fixed number of electron kinetic energies

there exists the possibility that 𝐴𝑔1(𝑘𝑚𝑖𝑛)𝑔2(𝜃𝑚𝑎𝑥) ≤
(︁

𝑑2𝜎
𝑑𝑘𝑑𝜃

)︁
𝑚𝑎𝑥

for a given 𝐸𝑘. This is a small violation that can
be corrected introducing an additional multiplicative factor to the 𝐴 parameter, which was empirically determined to
be 1.04 for the entire energy range.

Comparisons between Tsai, 2BS and 2BN generators

The currently available generators can be used according to the user required precision and timing requirements.
Regarding the energy range, validation results indicate that for lower energies (≤ 100 keV) there is a significant
deviation on the most probable emission angle between Tsai/2BS generators and the 2BN generator - Fig. 10.2 to
Fig. 10.4. The 2BN generator maintains however a good agreement with Kissel data [LKP83], derived from the work
of Tseng and co-workers [HKTL79], and it should be used for energies between 1 keV and 100 keV [PR03]. As the
electron kinetic energy increases, the different distributions tend to overlap and all generators present a good agreement
with Kissel data.

In Fig. 10.5 the sampling efficiency for the different generators are presented. The sampling generation efficiency
was defined as the ratio between the number of generated events and the total number of trials. As energies increases
the sampling efficiency of the 2BN algorithm decreases from 0.65 at 1 keV electron kinetic energy down to almost
0.35 at 1 MeV. For energies up to 10 keV the 2BN sampling efficiency is superior or equivalent to the one of the
2BS generator. These results are an indication that precision simulation of low energy bremsstrahlung can be obtained
with little performance degradation. For energies above 500 keV, Tsai generator can be used, retaining a good physics
accuracy and a sampling efficiency superior to the 2BS generator.
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Fig. 10.2: Comparison of polar angle distribution of bremsstrahlung photons (𝑘/𝑇 = 0.5) for 10 keV electrons in
silver, obtained with Tsai, 2BS and 2BN generator

Fig. 10.3: Comparison of polar angle distribution of bremsstrahlung photons (𝑘/𝑇 = 0.5) for 100 keV electrons in
silver, obtained with Tsai, 2BS and 2BN generator
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Fig. 10.4: Comparison of polar angle distribution of bremsstrahlung photons (𝑘/𝑇 = 0.5) for 500 keV electrons in
silver, obtained with Tsai, 2BS and 2BN generator

Fig. 10.5: Sampling efficiency for Tsai generator, 2BS and 2BN Koch and Motz generators.
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10.3 Positron - Electron Annihilation

10.3.1 Introduction

The process G4eplusAnnihilation simulates the in-flight annihilation of a positron with an atomic electron. As is
usually done in shower programs [NHR85], it is assumed here that the atomic electron is initially free and at rest. Also,
annihilation processes producing one, or three or more, photons are ignored because these processes are negligible
compared to the annihilation into two photons [NHR85][MC70].

10.3.2 Cross Section

The annihilation in flight of a positron and electron is described by the cross section formula of Heitler
[Hei54][NHR85]:

𝜎(𝑍,𝐸) =
𝑍𝜋𝑟2𝑒
𝛾 + 1

[︃
𝛾2 + 4𝛾 + 1

𝛾2 − 1
ln
(︁
𝛾 +

√︀
𝛾2 − 1

)︁
− 𝛾 + 3√︀

𝛾2 − 1

]︃

where

𝐸 = total energy of the incident positron

𝛾 = 𝐸/𝑚𝑐2

𝑟𝑒 = classical electron radius

10.3.3 Sampling the final state

The final state of the 𝑒+ 𝑒− annihilation process

𝑒+ 𝑒− → 𝛾𝑎 𝛾𝑏

is simulated by first determining the kinematic limits of the photon energy and then sampling the photon energy
within those limits using the differential cross section. Conservation of energy-momentum is then used to determine
the directions of the final state photons.

If the incident 𝑒+ has a kinetic energy 𝑇 , then the total energy is 𝐸𝑒 = 𝑇 + 𝑚𝑐2 and the momentum is 𝑃𝑐 =√︀
𝑇 (𝑇 + 2𝑚𝑐2). The total available energy is 𝐸𝑡𝑜𝑡 = 𝐸𝑒 + 𝑚𝑐2 = 𝐸𝑎 + 𝐸𝑏 and momentum conservation requires

𝑃 = 𝑃𝛾𝑎 + 𝑃𝛾𝑏
. The fraction of the total energy transferred to one photon (say 𝛾𝑎) is

𝜖 =
𝐸𝑎

𝐸𝑡𝑜𝑡
≡ 𝐸𝑎

𝑇 + 2𝑚𝑐2
.

The energy transferred to 𝛾𝑎 is largest when 𝛾𝑎 is emitted in the direction of the incident 𝑒+. In that case 𝐸𝑎,𝑚𝑎𝑥 =
(𝐸𝑡𝑜𝑡 + 𝑃𝑐)/2 . The energy transferred to 𝛾𝑎 is smallest when 𝛾𝑎 is emitted in the opposite direction of the incident
𝑒+. Then 𝐸𝑎,𝑚𝑖𝑛 = (𝐸𝑡𝑜𝑡 − 𝑃𝑐)/2 . Hence,

𝜖𝑚𝑎𝑥 =
𝐸𝑎,𝑚𝑎𝑥

𝐸𝑡𝑜𝑡
=

1

2

[︂
1 +

√︂
𝛾 − 1

𝛾 + 1

]︂
𝜖𝑚𝑖𝑛 =

𝐸𝑎,𝑚𝑖𝑛

𝐸𝑡𝑜𝑡
=

1

2

[︂
1 −

√︂
𝛾 − 1

𝛾 + 1

]︂
where 𝛾 = (𝑇 +𝑚𝑐2)/𝑚𝑐2 . Therefore the range of 𝜖 is [𝜖𝑚𝑖𝑛 ; 𝜖𝑚𝑎𝑥] (≡ [𝜖𝑚𝑖𝑛 ; 1 − 𝜖𝑚𝑖𝑛]).
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10.3.4 Sampling the Gamma Energy

A short overview of the sampling method is given in Section 2. The differential cross section of the two-photon
positron-electron annihilation can be written as [Hei54][NHR85]:

𝑑𝜎(𝑍, 𝜖)

𝑑𝜖
=
𝑍𝜋𝑟2𝑒
𝛾 − 1

1

𝜖

[︂
1 +

2𝛾

(𝛾 + 1)2
− 𝜖− 1

(𝛾 + 1)2
1

𝜖

]︂
where 𝑍 is the atomic number of the material, 𝑟𝑒 the classical electron radius, and 𝜖 ∈ [𝜖𝑚𝑖𝑛 ; 𝜖𝑚𝑎𝑥] . The differential
cross section can be decomposed as

𝑑𝜎(𝑍, 𝜖)

𝑑𝜖
=
𝑍𝜋𝑟2𝑒
𝛾 − 1

𝛼𝑓(𝜖)𝑔(𝜖)

where

𝛼 = ln(𝜖𝑚𝑎𝑥/𝜖𝑚𝑖𝑛)

𝑓(𝜖) =
1

𝛼𝜖

𝑔(𝜖) =

[︂
1 +

2𝛾

(𝛾 + 1)2
− 𝜖− 1

(𝛾 + 1)2
1

𝜖

]︂
≡ 1 − 𝜖+

2𝛾𝜖− 1

𝜖(𝛾 + 1)2

Given two random numbers 𝑟, 𝑟′ ∈ [0, 1], the photon energies are chosen as follows:

1. sample 𝜖 from 𝑓(𝜖): 𝜖 = 𝜖𝑚𝑖𝑛

(︁
𝜖𝑚𝑎𝑥

𝜖𝑚𝑖𝑛

)︁𝑟
2. test the rejection function: if 𝑔(𝜖) ≥ 𝑟′ accept 𝜖, otherwise return to step 1.

Then the photon energies are 𝐸𝑎 = 𝜖𝐸𝑡𝑜𝑡 𝐸𝑏 = (1 − 𝜖)𝐸𝑡𝑜𝑡.

Computing the Final State Kinematics

If 𝜃 is the angle between the incident 𝑒+ and 𝛾𝑎, then from energy-momentum conservation,

cos 𝜃 =
1

𝑃𝑐

[︂
𝑇 +𝑚𝑐2

2𝜖− 1

𝜖

]︂
=
𝜖(𝛾 + 1) − 1

𝜖
√︀
𝛾2 − 1

.

The azimuthal angle, 𝜑, is generated isotropically and the photon momentum vectors, 𝑃𝛾𝑎 and 𝑃𝛾𝑏
, are computed from

energy-momentum conservation and transformed into the lab coordinate system.

Annihilation at Rest

The method AtRestDoIt treats the special case when a positron comes to rest before annihilating. It generates two
photons, each with energy 𝑘 = 𝑚𝑐2 and an isotropic angular distribution.

10.3.5 Penelope Model for positron-electron annihilation

Total Cross Section

The total cross section (per target electron) for the annihilation of a positron of energy 𝐸 into two photons is evaluated
from the analytical formula [Hei54][NHR85]

𝜎(𝐸) =
𝜋𝑟2𝑒

(𝛾 + 1)(𝛾2 − 1)
×
{︁

(𝛾2 + 4𝛾 + 1) ln
[︁
𝛾 +

√︀
𝛾2 − 1

]︁
− (3 + 𝛾)

√︀
𝛾2 − 1

}︁
.

where 𝑟𝑒 = classical radius of the electron, and 𝛾 = Lorentz factor of the positron.
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Sampling of the Final State

The target electrons are assumed to be free and at rest: binding effects, that enable one-photon annihilation [Hei54],
are neglected. When the annihilation occurs in flight, the two photons may have different energies, say 𝐸− and 𝐸+

(the photon with lower energy is denoted by the superscript “−”), whose sum is 𝐸 + 2𝑚𝑒𝑐
2. Each annihilation event

is completely characterized by the quantity

𝜁 =
𝐸−

𝐸 + 2𝑚𝑒𝑐2
,

which is in the interval 𝜁𝑚𝑖𝑛 ≤ 𝜁 ≤ 1
2 , with

𝜁𝑚𝑖𝑛 =
1

𝛾 + 1 +
√︀
𝛾2 − 1

.

The parameter 𝜁 is sampled from the differential distribution

𝑃 (𝜁) =
𝜋𝑟2𝑒

(𝛾 + 1)(𝛾2 − 1)
[𝑆(𝜁) + 𝑆(1 − 𝜁)],

where 𝛾 is the Lorentz factor and

𝑆(𝜁) = −(𝛾 + 1)2 + (𝛾2 + 4𝛾 + 1)
1

𝜁
− 1

𝜁2
.

From conservation of energy and momentum, it follows that the two photons are emitted in directions with polar angles

cos 𝜃− =
1√︀
𝛾2 − 1

(︁
𝛾 + 1 − 1

𝜁

)︁
and

cos 𝜃+ =
1√︀
𝛾2 − 1

(︁
𝛾 + 1 − 1

1 − 𝜁

)︁
that are completely determined by 𝜁; in particular, when 𝜁 = 𝜁𝑚𝑖𝑛, cos 𝜃− = −1. The azimuthal angles are 𝜑− and
𝜑+ = 𝜑− + 𝜋; owing to the axial symmetry of the process, the angle 𝜑− is uniformly distributed in (0, 2𝜋).

10.4 Positron Annihilation into 𝜇+𝜇− Pair in Media

The class G4AnnihiToMuPair simulates the electromagnetic production of muon pairs by the annihilation of high-
energy positrons with atomic electrons [eal06]. Details of the implementation are given below and can also be found
in Ref. [HBK03].

10.4.1 Total Cross Section

The annihilation of positrons and target electrons producing muon pairs in the final state (𝑒+𝑒− → 𝜇+𝜇−) may give
an appreciable contribution to the total number of muons produced in high-energy electromagnetic cascades. The
threshold positron energy in the laboratory system for this process with the target electron at rest is

𝐸th = 2𝑚2
𝜇/𝑚𝑒 −𝑚𝑒 ≈ 43.69 GeV , (10.19)

where 𝑚𝜇 and 𝑚𝑒 are the muon and electron masses, respectively. The total cross section for the process on the
electron is

𝜎 =
𝜋 𝑟2𝜇

3
𝜉

(︂
1 +

𝜉

2

)︂√︀
1 − 𝜉 , (10.20)

134 Chapter 10. Electron and Positron Incident



Physics Reference Manual, Release 10.4

Fig. 10.6: Total cross section for the process e+e− → 𝜇+𝜇− as a function of the positron energy 𝐸 in the laboratory
system.

where 𝑟𝜇 = 𝑟𝑒𝑚𝑒/𝑚𝜇 is the classical muon radius, 𝜉 = 𝐸th/𝐸, and 𝐸 is the total positron energy in the laboratory
frame. In Eq.(10.20), approximations are made that utilize the inequality 𝑚2

𝑒 ≪ 𝑚2
𝜇.

The cross section as a function of the positron energy 𝐸 is shown in Fig. 10.6. It has a maximum at 𝐸 = 1.396𝐸th

and the value at the maximum is 𝜎max = 0.5426 𝑟2𝜇 = 1.008𝜇b.

10.4.2 Sampling of Energies and Angles

It is convenient to simulate the muon kinematic parameters in the center-of-mass (c.m.) system, and then to convert
into the laboratory frame.

The energies of all particles are the same in the c.m. frame and equal to

𝐸cm =

√︂
1

2
𝑚𝑒(𝐸 +𝑚𝑒) . (10.21)

The muon momenta in the c.m. frame are 𝑃cm =
√︁
𝐸2

cm −𝑚2
𝜇. In what follows, let the cosine of the angle between

the c.m. momenta of the 𝜇+ and 𝑒+ be denoted as 𝑥 = cos 𝜃cm .

From the differential cross section it is easy to derive that, apart from normalization, the distribution in 𝑥 is described
by

𝑓(𝑥) 𝑑𝑥 = (1 + 𝜉 + 𝑥2 (1 − 𝜉)) 𝑑𝑥 , −1 ≤ 𝑥 ≤ 1 . (10.22)

The value of this function is contained in the interval (1 + 𝜉) ≤ 𝑓(𝑥) ≤ 2 and the generation of 𝑥 is straightforward
using the rejection technique. Fig. 10.7 shows both generated and analytic distributions.

The transverse momenta of the 𝜇+ and 𝜇− particles are the same, both in the c.m. and the lab frame, and their absolute
values are equal to

𝑃⊥ = 𝑃cm sin 𝜃cm = 𝑃cm

√︀
1 − 𝑥2 . (10.23)

The energies and longitudinal components of the muon momenta in the lab system may be obtained by means of a
Lorentz transformation. The velocity and Lorentz factor of the center-of-mass in the lab frame may be written as

𝛽 =

√︂
𝐸 −𝑚𝑒

𝐸 +𝑚𝑒
, 𝛾 ≡ 1√︀

1 − 𝛽2
=

√︂
𝐸 +𝑚𝑒

2𝑚𝑒
=
𝐸cm

𝑚𝑒
. (10.24)
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Fig. 10.7: Generated histograms with 106 entries each and the expected cos 𝜃cm distributions (dashed lines) at 𝐸 = 50
and 500 GeV positron energy in the lab frame. The asymptotic 1 + cos 𝜃2cm distribution valid for 𝐸 → ∞ is shown as
dotted line.

The laboratory energies and longitudinal components of the momenta of the positive and negative muons may then be
obtained:

𝐸+ = 𝛾 (𝐸cm + 𝑥𝛽 𝑃cm) , 𝑃+‖ = 𝛾 (𝛽𝐸cm + 𝑥𝑃cm) ,

𝐸− = 𝛾 (𝐸cm − 𝑥𝛽 𝑃cm) , 𝑃−‖ = 𝛾 (𝛽𝐸cm − 𝑥𝑃cm) .

Finally, for the vectors of the muon momenta one obtains:

P+ = (+𝑃⊥ cos𝜙,+𝑃⊥ sin𝜙, 𝑃+‖) ,

P− = (−𝑃⊥ cos𝜙,−𝑃⊥ sin𝜙, 𝑃−‖) ,
(10.25)

where 𝜙 is a random azimuthal angle chosen between 0 and 2𝜋. The 𝑧-axis is directed along the momentum of the
initial positron in the lab frame.

The maximum and minimum energies of the muons are given by

𝐸max ≈ 1

2
𝐸
(︁

1 +
√︀

1 − 𝜉
)︁
,

𝐸min ≈ 1

2
𝐸
(︁

1 −
√︀

1 − 𝜉
)︁

=
𝐸th

2
(︁

1 +
√︀

1 − 𝜉
)︁ . (10.26)

The fly-out polar angles of the muons are approximately

𝜃+ ≈ 𝑃⊥/𝑃+‖ , 𝜃− ≈ 𝑃⊥/𝑃−‖ ; (10.27)

the maximal angle 𝜃max ≈ 𝑚𝑒

𝑚𝜇

√︀
1 − 𝜉 is always small compared to 1.

10.4.3 Validity

The process described is assumed to be purely electromagnetic. It is based on virtual 𝛾 exchange, and the 𝑍-boson
exchange and 𝛾 − 𝑍 interference processes are neglected. The 𝑍-pole corresponds to a positron energy of 𝐸 =
𝑀2

𝑍/2𝑚𝑒 = 8136 TeV. The validity of the current implementation is therefore restricted to initial positron energies
of less than about 1000 TeV.
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10.5 Positron Annihilation into Hadrons in Media

10.5.1 Introduction

The process G4eeToHadrons simulates the in-flight annihilation of a positron with an atomic electron into hadrons
[eal06]. It is assumed here that the atomic electron is initially free and at rest. Currently accurate cross section is
available with a validity range up to 1 TeV.

10.5.2 Cross Section

The annihilation of positrons and target electrons producing pion pairs in the final state (𝑒+𝑒− → 𝜋+𝜋−) may give an
appreciable contribution to electron-jet conversion at the LHC, and for the increasing total number of muons produced
in the beam pipe of the linear collider [eal06]. The threshold positron energy in the laboratory system for this process
with the target electron at rest is

𝐸th = 2𝑚2
𝜋/𝑚𝑒 −𝑚𝑒 ≈ 70.35 GeV , (10.28)

where 𝑚𝜋 and 𝑚𝑒 are the pion and electron masses, respectively. The total cross section is dominated by the reaction

𝑒+𝑒− → 𝜌𝛾 → 𝜋+𝜋−𝛾, (10.29)

where 𝛾 is a radiative photon and 𝜌(770) is a well known vector meson. This radiative correction is essential, because
it significantly modifies the shape of the resonance. Details of the theory are described in [BEIS99], in which the main
term and the leading 𝛼2 corrections are taken into account.

Additional contribution to the hadron production cross section come from 𝜔(783) and 𝜑(1020) resonances with
𝜋+𝜋−𝜋0, 𝐾+𝐾−, 𝐾𝐿𝐾𝑆 , 𝜂𝛾, and 𝜋0𝛾 final states.

10.5.3 Sampling the final state

The final state of the 𝑒+𝑒− annihilation process is simulated by first sampling of radiative gamma using a sum of all
hadronic cross sections in the center of mass system. Photon energy is used to define new differential cross section.
After that, hadronic channel is randomly selected according to it partial cross section. Final state is sampled and final
particles transformed to the laboratory system.
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CHAPTER

ELEVEN

MUON INCIDENT

11.1 Muon Ionisation

The class G4MuIonisation provides the continuous energy loss due to ionisation and simulates the ‘discrete’ part of
the ionisation, that is, delta rays produced by muons. Inside this class the following models are used:

• G4BraggModel (valid for protons with 𝑇 < 0.2 MeV)

• G4BetheBlochModel (valid for protons with 0.2 MeV < T < 1 GeV)

• G4MuBetheBlochModel (valid for protons with 𝑇 > 1 GeV)

The limit energy 0.2 MeV is equivalent to the proton limit energy 2 MeV because of scaling relation (7.5), which allows
simulation for muons with energy below 1 GeV in the same way as for point-like hadrons with spin 1/2 described in
Mean Energy Loss.

For higher energies the G4MuBetheBlochModel is applied, in which leading radiative corrections are taken into ac-
count [KelnerKokoulinPetrukhin97]. Simple analytical formula for the cross section, derived with the logarithmic are
used. Calculation results appreciably differ from usual elastic 𝜇 − 𝑒 scattering in the region of high energy transfers
𝑚𝑒 ≪ 𝑇 < 𝑇𝑚𝑎𝑥 and give non-negligible correction to the total average energy loss of high-energy muons. The total
cross section is written as following:

𝜎(𝐸, 𝜖) = 𝜎𝐵𝐵(𝐸, 𝜖)

[︂
1 +

𝛼

2𝜋
ln

(︂
1 +

2𝜖

𝑚𝑒

)︂
ln

(︂
4𝑚𝑒𝐸(𝐸 − 𝜖)

𝑚2
𝜇(2𝜖+𝑚𝑒)

)︂]︂
, (11.1)

here 𝜎(𝐸, 𝜖) is the differential cross sections, 𝜎(𝐸, 𝜖)𝐵𝐵 is the Bethe-Bloch cross section (12.8), 𝑚𝑒 is the electron
mass, 𝑚𝜇 is the muon mass, 𝐸 is the muon energy, 𝜖 is the energy transfer, 𝜖 = 𝜔+ 𝑇 , where T is the electron kinetic
energy and 𝜔 is the energy of radiative gamma.

For computation of the truncated mean energy loss (7.1) the partial integration of the expression (11.1) is performed

𝑆(𝐸, 𝜖𝑢𝑝) = 𝑆𝐵𝐵(𝐸, 𝜖𝑢𝑝) + 𝑆𝑅𝐶(𝐸, 𝜖𝑢𝑝), 𝜖𝑢𝑝 = min(𝜖𝑚𝑎𝑥, 𝜖𝑐𝑢𝑡),

where term 𝑆𝐵𝐵 is the Bethe-Bloch truncated energy loss (12.2) for the interval of energy transfer (0− 𝜖𝑢𝑝) and term
𝑆𝑅𝐶 is a correction due to radiative effects. The function become smooth after log-substitution and is computed by
numerical integration

𝑆𝑅𝐶(𝐸, 𝜖𝑢𝑝) =

∫︁ ln 𝜖𝑢𝑝

ln 𝜖1

𝜖2(𝜎(𝐸, 𝜖) − 𝜎𝐵𝐵(𝐸, 𝜖))𝑑(ln 𝜖),

where lower limit 𝜖1 does not effect result of integration in first order and in the class G4MuBetheBlochModel the
default value 𝜖1 = 100 keV is used.

For computation of the discrete cross section (7.2) another substitution is used in order to perform numerical integration
of a smooth function

𝜎(𝐸) =

∫︁ 1/𝜖𝑢𝑝

1/𝜖𝑚𝑎𝑥

𝜖2𝜎(𝐸, 𝜖)𝑑(1/𝜖).
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The sampling of energy transfer is performed between 1/𝜖𝑢𝑝 and 1/𝜖𝑚𝑎𝑥 using rejection constant for the function
𝜖2𝜎(𝐸, 𝜖). After the successful sampling of the energy transfer, the direction of the scattered electron is generated
with respect to the direction of the incident particle. The energy of radiative gamma is neglected. The azimuthal
electron angle 𝜑 is generated isotropically. The polar angle 𝜃 is calculated from energy-momentum conservation. This
information is used to calculate the energy and momentum of both scattered particles and to transform them into the
global coordinate system.

11.2 Bremsstrahlung

Bremsstrahlung dominates other muon interaction processes in the region of catastrophic collisions (𝑣 ≥ 0.1 ), that is
at “moderate” muon energies above the kinematic limit for knock–on electron production. At high energies (𝐸 ≥ 1
TeV) this process contributes about 40% of the average muon energy loss.

11.2.1 Differential Cross Section

The differential cross section for muon bremsstrahlung (in units of cm2/(g GeV) can be written as

𝑑𝜎(𝐸, 𝜖, 𝑍,𝐴)

𝑑𝜖
=

16

3
𝛼𝑁𝐴(

𝑚

𝜇
𝑟𝑒)

2 1

𝜖𝐴
𝑍(𝑍Φ𝑛 + Φ𝑒)(1 − 𝑣 +

3

4
𝑣2)

= 0 if 𝜖 ≥ 𝜖max = 𝐸 − 𝜇,

where 𝜇 and 𝑚 are the muon and electron masses, 𝑍 and 𝐴 are the atomic number and atomic weight of the material,
and 𝑁𝐴 is Avogadro’s number. If 𝐸 and 𝑇 are the initial total and kinetic energy of the muon, and 𝜖 is the emitted
photon energy, then 𝜖 = 𝐸 − 𝐸′ and the relative energy transfer 𝑣 = 𝜖/𝐸.

Φ𝑛 represents the contribution of the nucleus and can be expressed as

Φ𝑛 = ln
𝐵𝑍−1/3(𝜇+ 𝛿(𝐷′

𝑛

√
𝑒− 2))

𝐷′
𝑛(𝑚+ 𝛿

√
𝑒𝐵𝑍−1/3)

;

= 0 if negative.

Φ𝑒 represents the contribution of the electrons and can be expressed as

Φ𝑒 = ln
𝐵′𝑍−2/3𝜇(︂

1 +
𝛿𝜇

𝑚2
√
𝑒

)︂
(𝑚+ 𝛿

√
𝑒𝐵′𝑍−2/3)

;

= 0 if𝜖 ≥ 𝜖′max = 𝐸/(1 + 𝜇2/2𝑚𝐸);

= 0 if negative.

In Φ𝑛 and Φ𝑒, for all nuclei except hydrogen,

𝛿 = 𝜇2𝜖/2𝐸𝐸′ = 𝜇2𝑣/2(𝐸 − 𝜖);

𝐷′
𝑛 = 𝐷(1−1/𝑍)

𝑛 , 𝐷𝑛 = 1.54𝐴0.27;

𝐵 = 183,

𝐵′ = 1429,
√
𝑒 = 1.648(721271).

For hydrogen (𝑍=1) 𝐵 = 202.4, 𝐵′ = 446, 𝐷′
𝑛 = 𝐷𝑛.

These formulae are taken mostly from Refs. [KKP95] and [KelnerKokoulinPetrukhin97]. They include improved
nuclear size corrections in comparison with Ref. [PS68] in the region 𝑣 ∼ 1 and low 𝑍. Bremsstrahlung on atomic
electrons (taking into account target recoil and atomic binding) is introduced instead of a rough substitution 𝑍(𝑍+1).
A correction for processes with nucleus excitation is also included [ABB94].
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Applicability and Restrictions of the Method

The above formulae assume that:

1. 𝐸 ≫ 𝜇, hence the ultrarelativistic approximation is used;

2. 𝐸 ≤ 1020 eV; above this energy, LPM suppression can be expected;

3. 𝑣 ≥ 10−6 ; below 10−6 Ter-Mikaelyan suppression takes place. However, in the latter region the cross section
of muon bremsstrahlung is several orders of magnitude less than that of other processes.

The Coulomb correction (for high 𝑍) is not included. However, existing calculations [AB97] show that for muon
bremsstrahlung this correction is small.

11.2.2 Continuous Energy Loss

The restricted energy loss for muon bremsstrahlung (𝑑𝐸/𝑑𝑥)rest with relative transfers 𝑣 = 𝜖/(𝑇 + 𝜇) ≤ 𝑣cut can be
calculated as follows : (︂

𝑑𝐸

𝑑𝑥

)︂
rest

=

∫︁ 𝜖cut

0

𝜖 𝜎(𝐸, 𝜖) 𝑑𝜖 = (𝑇 + 𝜇)

∫︁ 𝑣cut

0

𝜖 𝜎(𝐸, 𝜖) 𝑑𝑣 .

If the user cut 𝑣cut ≥ 𝑣max = 𝑇/(𝑇 + 𝜇), the total average energy loss is calculated. Integration is done using
Gaussian quadratures, and binning provides an accuracy better than about 0.03% for 𝑇 = 1 GeV, 𝑍 = 1. This rapidly
improves with increasing 𝑇 and 𝑍.

11.2.3 Total Cross Section

The integration of the differential cross section over 𝑑𝜖 gives the total cross section for muon bremsstrahlung:

𝜎tot(𝐸, 𝜖cut) =

∫︁ 𝜖max

𝜖cut

𝜎(𝐸, 𝜖)𝑑𝜖 =

∫︁ ln 𝑣max

ln 𝑣cut

𝜖𝜎(𝐸, 𝜖)𝑑(ln 𝑣),

where 𝑣max = 𝑇/(𝑇 + 𝜇). If 𝑣cut ≥ 𝑣max , 𝜎tot = 0.

11.2.4 Sampling

The photon energy 𝜖𝑝 is found by numerically solving the equation :

𝑃 =

∫︁ 𝜖max

𝜖𝑝

𝜎(𝐸, 𝜖, 𝑍,𝐴) 𝑑𝜖

⧸︂∫︁ 𝜖max

𝜖cut

𝜎(𝐸, 𝜖, 𝑍,𝐴) 𝑑𝜖 .

Here 𝑃 is the random uniform probability, 𝜖max = 𝑇 , and 𝜖cut = (𝑇 + 𝜇) · 𝑣cut. 𝑣𝑚𝑖𝑛.𝑐𝑢𝑡 = 10−5 is the minimal
relative energy transfer adopted in the algorithm.

For fast sampling, the solution of the above equation is tabulated at initialization time for selected 𝑍, 𝑇 and 𝑃 . During
simulation, this table is interpolated in order to find the value of 𝜖𝑝 corresponding to the probability 𝑃 .

The tabulation routine uses accurate functions for the differential cross section. The table contains values of

𝑥𝑝 = ln(𝑣𝑝/𝑣max)/ ln(𝑣max/𝑣cut), (11.2)

where 𝑣𝑝 = 𝜖𝑝/(𝑇 + 𝜇) and 𝑣max = 𝑇/(𝑇 + 𝜇). Tabulation is performed in the range 1 ≤ 𝑍 ≤ 128, 1 ≤ 𝑇 ≤
1000 PeV, 10−5 ≤ 𝑃 ≤ 1 with constant logarithmic steps. Atomic weight (which is a required parameter in the cross
section) is estimated here with an iterative solution of the approximate relation:

𝐴 = 𝑍 (2 + 0.015𝐴2/3).
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For 𝑍 = 1, 𝐴 = 1 is used.

To find 𝑥𝑝 (and thus 𝜖𝑝) corresponding to a given probability 𝑃 , the sampling method performs a linear interpolation
in ln𝑍 and ln𝑇 , and a cubic, 4 point Lagrangian interpolation in ln𝑃 . For 𝑃 ≤ 𝑃min, a linear interpolation in (𝑃, 𝑥)
coordinates is used, with 𝑥 = 0 at 𝑃 = 0. Then the energy 𝜖𝑝 is obtained from the inverse transformation of (11.2) :

𝜖𝑝 = (𝑇 + 𝜇)𝑣max(𝑣max/𝑣cut)
𝑥𝑝

The algorithm with the parameters described above has been tested for various 𝑍 and 𝑇 . It reproduces the differential
cross section to within 0.2 – 0.7 % for 𝑇 ≥ 10 GeV. The average total energy loss is accurate to within 0.5%. While
accuracy improves with increasing 𝑇 , satisfactory results are also obtained for 1 ≤ 𝑇 ≤ 10 GeV.

It is important to note that this sampling scheme allows the generation of 𝜖𝑝 for different user cuts on 𝑣 which are
above 𝑣min.cut. To perform such a simulation, it is sufficient to define a new probability variable

𝑃 ′ = 𝑃 𝜎tot (𝑣user.cut)/𝜎tot(𝑣min.cut)

and use it in the sampling method. Time consuming re-calculation of the 3-dimensional table is therefore not required
because only the tabulation of 𝜎tot(𝑣user.cut) is needed.

The small-angle, ultrarelativistic approximation is used for the simulation (with about 20% accuracy at 𝜃 ≤ 𝜃* ≈ 1)
of the angular distribution of the final state muon and photon. Since the target recoil is small, the muon and photon
are directed symmetrically (with equal transverse momenta and coplanar with the initial muon):

𝑝⊥𝜇 = 𝑝⊥𝛾 , where 𝑝⊥𝜇 = 𝐸′𝜃𝜇, 𝑝⊥𝛾 = 𝜖𝜃𝛾 .

𝜃𝜇 and 𝜃𝛾 are muon and photon emission angles. The distribution in the variable 𝑟 = 𝐸𝜃𝛾/𝜇 is given by

𝑓(𝑟)𝑑𝑟 ∼ 𝑟𝑑𝑟/(1 + 𝑟2)2.

Random angles are sampled as follows:

𝜃𝛾 =
𝜇

𝐸
𝑟 𝜃𝜇 =

𝜖

𝐸′ 𝜃𝛾 ,

where

𝑟 =

√︂
𝑎

1 − 𝑎
, 𝑎 = 𝜉

𝑟2max

1 + 𝑟2max

, 𝑟max = min(1, 𝐸′/𝜖) · 𝐸 𝜃*/𝜇 ,

and 𝜉 is a random number uniformly distributed between 0 and 1.

11.3 Positron - Electron Pair Production by Muons

Direct electron pair production is one of the most important muon interaction processes. At TeV muon energies,
the pair production cross section exceeds those of other muon interaction processes over a range of energy transfers
between 100 MeV and 0.1𝐸𝜇. The average energy loss for pair production increases linearly with muon energy, and
in the TeV region this process contributes more than half the total energy loss rate.

To adequately describe the number of pairs produced, the average energy loss and the stochastic energy loss distribu-
tion, the differential cross section behavior over an energy transfer range of 5 MeV ≤ 𝜖 ≤ 0.1 ·𝐸𝜇 must be accurately
reproduced. This is is because the main contribution to the total cross section is given by transferred energies 5 MeV
≤ 𝜖 ≤ 0.01 ·𝐸𝜇, and because the contribution to the average muon energy loss is determined mostly in the region
0.001 · 𝐸𝜇 ≤ 𝜖 ≤ 0.1 ·𝐸𝜇 .

For a theoretical description of the cross section, the formulae of Ref. [KokoulinPetrukhin70] are used, along with a
correction for finite nuclear size [RPKokoulinAAPetrukhin71]. To take into account electron pair production in the
field of atomic electrons, the inelastic atomic form factor contribution of Ref. [Kelner98] is also applied.
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11.3.1 Differential Cross Section

Definitions and Applicability

In the following discussion, these definitions are used:

• 𝑚 and 𝜇 are the electron and muon masses, respectively

• 𝐸 ≡ 𝐸𝜇 is the total muon energy, 𝐸 = 𝑇 + 𝜇

• 𝑍 and 𝐴 are the atomic number and weight of the material

• 𝜖 is the total pair energy or, approximately, the muon energy loss (𝐸 − 𝐸′)

• 𝑣 = 𝜖/𝐸

• 𝑒 = 2.718 . . .

• 𝐴⋆ = 183.

The formula for the differential cross section applies when:

• 𝐸𝜇 ≫ 𝜇 (𝐸 ≥ 2 – 5 GeV) and 𝐸𝜇 ≤ 1015 – 1017 eV. If muon energies exceed this limit, the LPM (Landau
Pomeranchuk Migdal) effect may become important, depending on the material

• the muon energy transfer 𝜖 lies between 𝜖min = 4𝑚 and 𝜖max = 𝐸𝜇 − 3
√
𝑒

4 𝜇𝑍1/3, although the formal lower
limit is 𝜖≫ 2𝑚, and the formal upper limit requires 𝐸′

𝜇 ≫ 𝜇.

• 𝑍 ≤ 40 – 50. For higher 𝑍, the Coulomb correction is important but has not been sufficiently studied theoreti-
cally.

Formulae

The differential cross section for electron pair production by muons 𝜎(𝑍,𝐴,𝐸, 𝜖) can be written as :

𝜎(𝑍,𝐴,𝐸, 𝜖) =
4

3𝜋

𝑍(𝑍 + 𝜁)

𝐴
𝑁𝐴 (𝛼𝑟0)2

1 − 𝑣

𝜖

∫︁ 𝜌max

0

𝐺(𝑍,𝐸, 𝑣, 𝜌) 𝑑𝜌, (11.3)

where

𝐺(𝑍,𝐸, 𝑣, 𝜌) = Φ𝑒 + (𝑚/𝜇)2Φ𝜇,

Φ𝑒,𝜇 = 𝐵𝑒,𝜇𝐿
′
𝑒,𝜇

and

Φ𝑒,𝜇 = 0 whenever Φ𝑒,𝜇 < 0.

𝐵𝑒 and 𝐵𝜇 do not depend on 𝑍,𝐴, and are given by

𝐵𝑒 = [(2 + 𝜌2)(1 + 𝛽) + 𝜉(3 + 𝜌2)] ln

(︂
1 +

1

𝜉

)︂
+

1 − 𝜌2 − 𝛽

1 + 𝜉
− (3 + 𝜌2);

≈ 1

2𝜉
[(3 − 𝜌2) + 2𝛽(1 + 𝜌2)] for 𝜉 ≥ 103;

𝐵𝜇 =

[︂
(1 + 𝜌2)

(︂
1 +

3𝛽

2

)︂
− 1

𝜉
(1 + 2𝛽)(1 − 𝜌2)

]︂
ln(1 + 𝜉) +

𝜉(1 − 𝜌2 − 𝛽)

1 + 𝜉
+ (1 + 2𝛽)(1 − 𝜌2);

𝐵𝜇 ≈ 𝜉

2
[(5 − 𝜌2) + 𝛽(3 + 𝜌2)] for 𝜉 ≤ 10−3;
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Also,

𝜉 =
𝜇2𝑣2

4𝑚2

(1 − 𝜌2)

(1 − 𝑣)
; 𝛽 =

𝑣2

2(1 − 𝑣)
;

𝐿′
𝑒 = ln

𝐴*𝑍−1/3
√︀

(1 + 𝜉)(1 + 𝑌𝑒)

1 + 2𝑚
√
𝑒𝐴*𝑍−1/3(1+𝜉)(1+𝑌𝑒)

𝐸𝑣(1−𝜌2)

− 1

2
ln

[︃
1 +

(︂
3𝑚𝑍1/3

2𝜇

)︂2

(1 + 𝜉)(1 + 𝑌𝑒)

]︃
;

𝐿′
𝜇 = ln

(𝜇/𝑚)𝐴*𝑍−1/3
√︀

(1 + 1/𝜉)(1 + 𝑌𝜇)

1 +
2𝑚

√
𝑒𝐴*𝑍−1/3(1+𝜉)(1+𝑌𝜇)

𝐸𝑣(1−𝜌2)

− ln

[︂
3

2
𝑍1/3

√︁
(1 + 1/𝜉)(1 + 𝑌𝜇)

]︂
.

For faster computing, the expressions for 𝐿′
𝑒,𝜇 are further algebraically transformed. The functions 𝐿′

𝑒,𝜇 include the
nuclear size correction [RPKokoulinAAPetrukhin71] in comparison with parameterization [KokoulinPetrukhin70] :

𝑌𝑒 =
5 − 𝜌2 + 4𝛽 (1 + 𝜌2)

2(1 + 3𝛽) ln(3 + 1/𝜉) − 𝜌2 − 2𝛽(2 − 𝜌2)
;

𝑌𝜇 =
4 + 𝜌2 + 3𝛽 (1 + 𝜌2)

(1 + 𝜌2)( 3
2 + 2𝛽) ln(3 + 𝜉) + 1 − 3

2 𝜌
2

;

𝜌max = [1 − 6𝜇2/𝐸2(1 − 𝑣)]
√︀

1 − 4𝑚/𝐸𝑣.

Comment on the Calculation of the Integral
∫︀
𝑑𝜌 in Eq.(11.3)

The integral
𝜌max∫︀
0

𝐺(𝑍,𝐸, 𝑣, 𝜌) 𝑑𝜌 is computed with the substitutions:

𝑡 = ln(1 − 𝜌),

1 − 𝜌 = exp(𝑡),

1 + 𝜌 = 2 − exp(𝑡),

1 − 𝜌2 = 𝑒𝑡 (2 − 𝑒𝑡).

After that, ∫︁ 𝜌max

0

𝐺(𝑍,𝐸, 𝑣, 𝜌) 𝑑𝜌 =

∫︁ 0

𝑡min

𝐺(𝑍,𝐸, 𝑣, 𝜌) 𝑒𝑡 𝑑𝑡, (11.4)

where

𝑡min = ln
4𝑚
𝜖 + 12𝜇2

𝐸𝐸′

(︀
1 − 4𝑚

𝜖

)︀
1 +

(︁
1 − 6𝜇2

𝐸𝐸′

)︁√︁
1 − 4𝑚

𝜖

.

To compute the integral of Eq.(11.4) with an accuracy better than 0.5%, Gaussian quadrature with 𝑁 = 8 points is
sufficient.

The function 𝜁(𝐸,𝑍) in Eq.(11.3) serves to take into account the process on atomic electrons (inelastic atomic form
factor contribution). To treat the energy loss balance correctly, the following approximation, which is an algebraic
transformation of the expression in Ref. [Kelner98], is used:

𝜁(𝐸,𝑍) =
0.073 ln 𝐸/𝜇

1+𝛾1𝑍2/3𝐸/𝜇
− 0.26

0.058 ln 𝐸/𝜇
1+𝛾2𝑍1/3𝐸/𝜇

− 0.14
;

= 0 if the numerator is negative.

For E ≤ 35𝜇, 𝜁(𝐸,𝑍) = 0. Also 𝛾1 = 1.95 · 10−5 and 𝛾2 = 5.30 · 10−5.

The above formulae make use of the Thomas-Fermi model which is not good enough for light elements. For hydrogen
(𝑍 = 1) the following parameters must be changed:
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• 𝐴* = 183 ⇒ 202.4;

• 𝛾1 = 1.95 · 10−5 ⇒ 4.4 · 10−5;

• 𝛾2 = 5.30 · 10−5 ⇒ 4.8 · 10−5.

11.3.2 Total Cross Section and Restricted Energy Loss

If the user’s cut for the energy transfer 𝜖cut is greater than 𝜖min, the process is represented by continuous restricted
energy loss for interactions with 𝜖 ≤ 𝜖cut, and discrete collisions with 𝜖 > 𝜖cut. Respective values of the total cross
section and restricted energy loss rate are defined as:

𝜎tot =

∫︁ 𝜖max

𝜖cut

𝜎(𝐸, 𝜖) 𝑑𝜖; (𝑑𝐸/𝑑𝑥)restr =

∫︁ 𝜖cut

𝜖min

𝜖 𝜎(𝐸, 𝜖) 𝑑𝜖.

For faster computing, ln 𝜖 substitution and Gaussian quadratures are used.

11.3.3 Sampling of Positron - Electron Pair Production

The e+e− pair energy 𝜖𝑃 , is found numerically by solving the equation

𝑃 =

∫︁ 𝜖max

𝜖𝑃

𝜎(𝑍,𝐴, 𝑇, 𝜖)𝑑𝜖
⧸︁∫︁ 𝜖max

𝑐𝑢𝑡

𝜎(𝑍,𝐴, 𝑇, 𝜖)𝑑𝜖 (11.5)

or

1 − 𝑃 =

∫︁ 𝜖𝑃

𝑐𝑢𝑡

𝜎(𝑍,𝐴, 𝑇, 𝜖)𝑑𝜖
⧸︁∫︁ 𝜖max

𝑐𝑢𝑡

𝜎(𝑍,𝐴, 𝑇, 𝜖)𝑑𝜖 (11.6)

To reach high sampling speed, solutions of Eqs.(11.5), (11.6) are tabulated at initialization time. Two 3-dimensional
tables (referred to here as A and B) of 𝜖𝑃 (𝑃, 𝑇, 𝑍) are created, and then interpolation is used to sample 𝜖𝑃 .

The number and spacing of entries in the table are chosen as follows:

• a constant increment in ln𝑇 is chosen such that there are four points per decade in the range 𝑇min − 𝑇max. The
default range of muon kinetic energies in GEANT4 is 𝑇 = 1 GeV − 1000 PeV.

• a constant increment in ln𝑍 is chosen. The shape of the sampling distribution does depend on 𝑍, but very
weakly, so that eight points in the range 1 ≤ 𝑍 ≤ 128 are sufficient. There is practically no dependence on the
atomic weight 𝐴.

• for probabilities 𝑃 ≤ 0.5, Eq.(11.5) is used and Table A is computed with a constant increment in ln𝑃 in the
range 10−7 ≤ 𝑃 ≤ 0.5. The number of points in ln𝑃 for Table A is about 100.

• for 𝑃 ≥ 0.5, Eq.(11.6) is used and Table B is computed with a constant increment in ln(1 − 𝑃 ) in the range
10−5 ≤ (1 − 𝑃 ) ≤ 0.5. In this case 50 points are sufficient.

The values of ln(𝜖𝑃 − 𝑐𝑢𝑡) are stored in both Table A and Table B.

To create the “probability tables” for each (𝑇,𝑍) pair, the following procedure is used:

• a temporary table of ∼ 2000 values of 𝜖 · 𝜎(𝑍,𝐴, 𝑇, 𝜖) is constructed with a constant increment (∼ 0.02) in ln 𝜖
in the range (𝑐𝑢𝑡, 𝜖max). 𝜖 is taken in the middle of the corresponding bin in ln 𝜖.

• the accumulated cross sections

𝜎1 =

∫︁ ln 𝜖max

ln 𝜖

𝜖 𝜎(𝑍,𝐴, 𝑇, 𝜖) 𝑑(ln 𝜖)

11.3. Positron - Electron Pair Production by Muons 145



Physics Reference Manual, Release 10.4

and

𝜎2 =

∫︁ ln 𝜖

ln(𝑐𝑢𝑡)

𝜖 𝜎(𝑍,𝐴, 𝑇, 𝜖) 𝑑(ln 𝜖)

are calculated by summing the temporary table over the values above ln 𝜖 (for 𝜎1) and below ln 𝜖 (for 𝜎2) and
then normalizing to obtain the accumulated probability functions.

• finally, values of ln(𝜖𝑃 − 𝑐𝑢𝑡) for corresponding values of ln𝑃 and ln(1−𝑃 ) are calculated by linear interpola-
tion of the above accumulated probabilities to form Tables A and B. The monotonic behavior of the accumulated
cross sections is very useful in speeding up the interpolation procedure.

The random transferred energy corresponding to a probability 𝑃 , is then found by linear interpolation in ln𝑍 and
ln𝑇 , and a cubic interpolation in ln𝑃 for Table A or in ln(1 − 𝑃 ) for Table B. For 𝑃 ≤ 10−7 and (1 − 𝑃 ) ≤ 10−5,
linear extrapolation using the entries at the edges of the tables may be safely used. Electron pair energy is related to
the auxiliary variable 𝑥 = ln(𝜖𝑃 − 𝑐𝑢𝑡) found by the trivial interpolation 𝜖𝑃 = 𝑒𝑥 + 𝑐𝑢𝑡.

Similar to muon bremsstrahlung (Bremsstrahlung), this sampling algorithm does not re-initialize the tables for user
cuts greater than 𝑐𝑢𝑡𝑚𝑖𝑛. Instead, the probability variable is redefined as

𝑃 ′ = 𝑃𝜎tot(𝑐𝑢𝑡𝑢𝑠𝑒𝑟)/𝜎tot(𝑐𝑢𝑡𝑚𝑖𝑛),

and 𝑃 ′ is used for sampling.

In the simulation of the final state, the muon deflection angle (which is of the order of 𝑚/𝐸) is neglected. The
procedure for sampling the energy partition between 𝑒+ and 𝑒− and their emission angles is similar to that used for
the 𝛾 → 𝑒+ 𝑒− conversion.

11.4 Muon Photonuclear Interaction

The inelastic interaction of muons with nuclei is important at high muon energies (𝐸 ≥ 10 GeV), and at relatively high
energy transfers 𝜈 (𝜈/𝐸 ≥ 10−2). It is especially important for light materials and for the study of detector response
to high energy muons, muon propagation and muon-induced hadronic background. The average energy loss for this
process increases almost linearly with energy, and at TeV muon energies constitutes about 10% of the energy loss rate.

The main contribution to the cross section 𝜎(𝐸, 𝜈) and energy loss comes from the low 𝑄2–region ( 𝑄2 ≪ 1 GeV2).
In this domain, many simplifications can be made in the theoretical consideration of the process in order to obtain
convenient and simple formulae for the cross section. Most widely used are the expressions given by Borog and
Petrukhin [BorogPetrukhin75], and Bezrukov and Bugaev [BB81]. Results from these authors agree within 10% for
the differential cross section and within about 5% for the average energy loss, provided the same photonuclear cross
section, 𝜎𝛾𝑁 , is used in the calculations.

11.4.1 Differential Cross Section

The Borog and Petrukhin formula for the cross section is based on:

• Hand’s formalism [Han63] for inelastic muon scattering,

• a semi-phenomenological inelastic form factor, which is a Vector Dominance Model with parameters estimated
from experimental data, and

• nuclear shadowing effects with a reasonable theoretical parameterization [BCG72].

For 𝐸 ≥ 10 GeV, the Borog and Petrukhin cross section, differential in transferred energy, is

𝜎(𝐸, 𝜈) = Ψ(𝜈)Φ(𝐸, 𝑣), (11.7)
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Ψ(𝜈) =
𝛼

𝜋

𝐴eff𝑁𝐴𝑉

𝐴
𝜎𝛾𝑁 (𝜈)

1

𝜈
, (11.8)

Φ(𝐸, 𝑣) = 𝑣 − 1 +

[︂
1 − 𝑣 +

𝑣2

2

(︂
1 +

2𝜇2

Λ2

)︂]︂
ln

𝐸2(1−𝑣)
𝜇2

(︁
1 + 𝜇2𝑣2

Λ2(1−𝑣)

)︁
1 + 𝐸𝑣

Λ

(︀
1 + Λ

2𝑀 + 𝐸𝑣
Λ

)︀ , (11.9)

where 𝜈 is the energy lost by the muon, 𝑣 = 𝜈/E, and 𝜇 and𝑀 are the muon and nucleon (proton) masses, respectively.
Λ is a Vector Dominance Model parameter in the inelastic form factor which is estimated to be Λ2 = 0.4 GeV2.

For 𝐴eff , which includes the effect of nuclear shadowing, the parameterization [BCG72]

𝐴eff = 0.22𝐴+ 0.78𝐴0.89

is chosen.

A reasonable choice for the photonuclear cross section, 𝜎𝛾𝑁 , is the parameterization obtained by Caldwell et al.
[DOC79] based on the experimental data on photoproduction by real photons:

𝜎𝛾𝑁 = (49.2 + 11.1 ln𝐾 + 151.8/
√
𝐾) · 10−30cm2, 𝐾 in GeV. (11.10)

The upper limit of the transferred energy is taken to be 𝜈max = 𝐸 −𝑀/2. The choice of the lower limit 𝜈min is less
certain since the formula (11.7), (11.8), (11.9) is not valid in this domain. Fortunately, 𝜈min influences the total cross
section only logarithmically and has no practical effect on the average energy loss for high energy muons. Hence, a
reasonable choice for 𝜈min is 0.2 GeV.

In Eq.(11.8), 𝐴eff and 𝜎𝛾𝑁 appear as factors. A more rigorous theoretical approach may lead to some dependence
of the shadowing effect on 𝜈 and 𝐸; therefore in the differential cross section and in the sampling procedure, this
possibility is foreseen and the atomic weight 𝐴 of the element is kept as an explicit parameter.

The total cross section is obtained by integration of Eq.(11.7) between 𝜈min and 𝜈max; to facilitate the computation, a
ln(𝜈) substitution is used.

11.4.2 Sampling

Sampling the Transferred Energy

The muon photonuclear interaction is always treated as a discrete process with its mean free path determined by the
total cross section. The total cross section is obtained by the numerical integration of Eq.(11.7) within the limits 𝜈min

and 𝜈max. The process is considered for muon energies 1GeV ≤ T ≤ 1000 PeV, though it should be noted that above
100 TeV the extrapolation (Eq.(11.10)) of 𝜎𝛾𝑁 may be too crude. The random transferred energy, 𝜈𝑝, is found from
the numerical solution of the equation :

𝑃 =

∫︁ 𝜈max

𝜈𝑝

𝜎(𝐸, 𝜈)𝑑𝜈

⧸︂∫︁ 𝜈max

𝜈min

𝜎(𝐸, 𝜈)𝑑𝜈 . (11.11)

Here 𝑃 is the random uniform probability, with 𝜈max = 𝐸 − 𝑀/2 and 𝜈min = 0.2 GeV. For fast sampling, the
solution of Eq.(11.11) is tabulated at initialization time. During simulation, the sampling method returns a value of 𝜈𝑝
corresponding to the probability 𝑃 , by interpolating the table. The tabulation routine uses Eq.(11.7) for the differential
cross section. The table contains values of

𝑥𝑝 = ln(𝜈𝑝/𝜈max)/ ln(𝜈max/𝜈min), (11.12)

calculated at each point on a three-dimensional grid with constant spacings in ln(𝑇 ), ln(𝐴) and ln(𝑃 ) . The sampling
uses linear interpolations in ln(𝑇 ) and ln(𝐴), and a cubic interpolation in ln(𝑃 ). Then the transferred energy is
calculated from the inverse transformation of Eq.(11.12), 𝜈𝑝 = 𝜈max(𝜈max/𝜈min)𝑥𝑝 . Tabulated parameters reproduce
the theoretical dependence to better than 2% for 𝑇 > 1 GeV and better than 1% for 𝑇 > 10 GeV.
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Sampling the Muon Scattering Angle

According to Refs. [BorogPetrukhin75][BKUP77], in the region where the four-momentum transfer is not very large
(𝑄2 ≤ 3GeV2), the 𝑡-dependence of the cross section may be described as:

𝑑𝜎

𝑑𝑡
∼ (1 − 𝑡/𝑡max)

𝑡(1 + 𝑡/𝜈2)(1 + 𝑡/𝑚2
0)

[(1 − 𝑦)(1 − 𝑡min/𝑡) + 𝑦2/2], (11.13)

where 𝑡 is the square of the four-momentum transfer, 𝑄2 = 2(𝐸𝐸′ − 𝑃𝑃 ′ cos 𝜃 − 𝜇2). Also, 𝑡min = (𝜇𝑦)2/(1 − 𝑦),
𝑦 = 𝜈/𝐸 and 𝑡max = 2𝑀𝜈. 𝜈 = 𝐸 − 𝐸′ is the energy lost by the muon and 𝐸 is the total initial muon energy. 𝑀 is
the nucleon (proton) mass and 𝑚2

0 ≡ Λ2 ≃ 0.4 GeV2 is a phenomenological parameter determining the behavior of
the inelastic form factor. Factors which depend weakly, or not at all, on 𝑡 are omitted.

To simulate random 𝑡 and hence the random muon deflection angle, it is convenient to represent Eq.(11.13) in the form
:

𝜎(𝑡) ∼ 𝑓(𝑡)𝑔(𝑡),

where

𝑓(𝑡) =
1

𝑡(1 + 𝑡/𝑡1)
,

𝑔(𝑡) =
1 − 𝑡/𝑡max

1 + 𝑡/𝑡2
· (1 − 𝑦)(1 − 𝑡min/𝑡) + 𝑦2/2

(1 − 𝑦) + 𝑦2/2
,

(11.14)

and

𝑡1 = min(𝜈2,𝑚2
0) 𝑡2 = max(𝜈2,𝑚2

0). (11.15)

𝑡𝑃 is found analytically from Eq.(11.14) :

𝑡𝑃 =
𝑡max𝑡1

(𝑡max + 𝑡1)
[︁
𝑡max(𝑡min+𝑡1)
𝑡min(𝑡max+𝑡1)

]︁𝑃
− 𝑡max

,

where 𝑃 is a random uniform number between 0 and 1, which is accepted with probability 𝑔(𝑡). The conditions of
Eq.(11.15) make use of the symmetry between 𝜈2 and𝑚2

0 in Eq.(11.13) and allow increased selection efficiency, which
is typically ≥ 0.7. The polar muon deflection angle 𝜃 can easily be found from1.

sin2(𝜃/2) =
𝑡𝑃 − 𝑡min

4 (𝐸𝐸′ − 𝜇2) − 2 𝑡min
.

The hadronic vertex is generated by the hadronic processes taking into account the four-momentum transfer.

1 This convenient formula has been shown to the authors by D.A. Timashkov.
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CHAPTER

TWELVE

CHARGED HADRON INCIDENT

12.1 Hadron and Ion Ionisation

12.1.1 Method

The class G4hIonisation provides the continuous energy loss due to ionisation and simulates the ‘discrete’ part of the
ionisation, that is, 𝛿-rays produced by charged hadrons. The class G4ionIonisation is intended for the simulation of
energy loss by positive ions with change greater than unit. Inside these classes the following models are used:

• G4BetheBlochModel, valid for protons with 𝑇 > 2 MeV

• G4BraggModel,valid for protons with 𝑇 < 2 MeV

• G4BraggIonModel, valid for protons with 𝑇 < 2 MeV

• G4ICRU73QOModel, valid for anti-protons with 𝑇 < 2 MeV

The scaling relation (7.5) is a basic conception for the description of ionisation of heavy charged particles. It is used
both in energy loss calculation and in determination of the validity range of models. Namely the 𝑇𝑝 = 2 MeV limit for
protons is scaled for a particle with mass 𝑀𝑖 by the ratio of the particle mass to the proton mass 𝑇𝑖 = 𝑇𝑝𝑀𝑝/𝑀𝑖.

For all ionisation models the value of the maximum energy transferable to a free electron 𝑇𝑚𝑎𝑥 is given by the
following relation [WMY06]:

𝑇𝑚𝑎𝑥 =
2𝑚𝑒𝑐

2(𝛾2 − 1)

1 + 2𝛾(𝑚𝑒/𝑀) + (𝑚𝑒/𝑀)2
, (12.1)

where 𝑚𝑒 is the electron mass and 𝑀 is the mass of the incident particle. The method of calculation of the continuous
energy loss and the total cross-section are explained below.

12.1.2 Continuous Energy Loss

The integration of (7.1) leads to the Bethe-Bloch restricted energy loss (𝑇 < 𝑇𝑐𝑢𝑡) formula [WMY06], which is
modified taking into account various corrections [Ahl80]:

𝑑𝐸

𝑑𝑥
= 2𝜋𝑟2𝑒𝑚𝑐

2𝑛𝑒𝑙
𝑧2

𝛽2

[︂
ln

(︂
2𝑚𝑐2𝛽2𝛾2𝑇𝑢𝑝

𝐼2

)︂
− 𝛽2

(︂
1 +

𝑇𝑢𝑝
𝑇𝑚𝑎𝑥

)︂
− 𝛿 − 2𝐶𝑒

𝑍
+ 𝑆 + 𝐹

]︂
(12.2)
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where

𝑟𝑒 = classical electron radius = 𝑒2/(4𝜋𝜖0𝑚𝑐
2)

𝑚𝑐2 = mass-energy of the electron
𝑛𝑒𝑙 = electron density in the material
𝐼 = mean excitation energy in the material
𝑍 = atomic number of the material
𝑧 = charge of the hadron in units of the electron change

𝛾 = 𝐸/𝑚𝑐2

𝛽2 = 1 − (1/𝛾2)

𝑇𝑢𝑝 = min(𝑇𝑐𝑢𝑡, 𝑇𝑚𝑎𝑥)

𝛿 = density effect function
𝐶𝑒 = shell correction function

𝑆 = spin term = 0𝑓𝑜𝑟𝑠 = 0,

(︂
0.5𝑇𝑢𝑝
𝐸

)︂2

𝑓𝑜𝑟𝑠 = 1/2

𝐸 = primary energy
𝐹 = high order corrections

For spin large that 1/2 the same S term is used in the current model. In a single element the electron density is

𝑛𝑒𝑙 = 𝑍 𝑛𝑎𝑡 = 𝑍
𝒩𝑎𝑣𝜌

𝐴

(𝒩𝑎𝑣: Avogadro number, 𝜌: density of the material, 𝐴: mass of a mole). In a compound material

𝑛𝑒𝑙 =
∑︁
𝑖

𝑍𝑖 𝑛𝑎𝑡𝑖 =
∑︁
𝑖

𝑍𝑖
𝒩𝑎𝑣𝑤𝑖𝜌

𝐴𝑖
.

𝑤𝑖 is the proportion by mass of the 𝑖𝑡ℎ element, with molar mass 𝐴𝑖.

The mean excitation energy 𝐼 for all elements is tabulated according to the NIST recommended values for GEANT4
NIST materials, for other materials ICRU recommended values [BIA+84] are used.

Shell Correction

2𝐶𝑒/𝑍 is the so-called shell correction term which accounts for the fact of interaction of atomic electrons with atomic
nucleus. This term more visible at low energies and for heavy atoms. The classical expression for the term [BIA+93]
is used

𝐶 =
∑︁

𝐶𝜈(𝜃𝜈 , 𝜂𝜈), 𝜈 = 𝐾,𝐿,𝑀, ..., 𝜃 =
𝐽𝜈
𝜖𝜈
, 𝜂𝜈 =

𝛽2

𝛼2𝑍2
𝜈

, (12.3)

where 𝛼 is the fine structure constant, 𝛽 is the hadron velocity, 𝐽𝜈 is the ionisation energy of the shell 𝜈, 𝜖𝜈 is Bohr
ionisation energy of the shell 𝜈, 𝑍𝜈 is the effective charge of the shell 𝜈. First terms 𝐶𝐾 and 𝐶𝐿 can be analytically
computed in using an assumption non-relativistic hydrogenic wave functions [Wal52][Wal56]. The results [Kha68]
of tabulation of these computations in the interval of parameters 𝜂𝜈 = 0.005–10 and 𝜃𝜈 = 0.25–0.95 are used directly.
For higher values of 𝜂𝜈 the parameterization [Kha68] is applied:

𝐶𝜈 =
𝐾1

𝜂
+
𝐾2

𝜂2
+
𝐾3

𝜂3
,

where coefficients 𝐾𝑖 provide smooth shape of the function. The effective nuclear charge for the 𝐿-shell can be
reproduced as 𝑍𝐿 = 𝑍 − 𝑑, 𝑑 is a parameter shown in Table 12.1.

150 Chapter 12. Charged Hadron Incident



Physics Reference Manual, Release 10.4

Table 12.1: Effective nuclear charge for the 𝐿-shell [BIA+93].
𝑍 3 4 5 6 7 8 9 >9
𝑑 1.72 2.09 2.48 2.82 3.16 3.53 3.84 4.15

For outer shells the calculations are not available, so 𝐿-shell parameterization is used and the following scaling relation
[BIA+93][Bic92] is applied:

𝐶𝜈 = 𝑉𝜈𝐶𝐿(𝜃𝐿, 𝐻𝜈𝜂𝐿), 𝑉𝜈 =
𝑛𝜈
𝑛𝐿

, 𝐻𝜈 =
𝐽𝜈
𝐽𝐿
, (12.4)

where 𝑉𝜈 is a vertical scaling factor proportional to number of electrons at the shell 𝑛𝜈 . The contribution of the shell
correction term is about 10% for protons at 𝑇 = 2 MeV.

Density Correction

𝛿 is a correction term which takes into account the reduction in energy loss due to the so-called density effect. This
becomes important at high energies because media have a tendency to become polarized as the incident particle
velocity increases. As a consequence, the atoms in a medium can no longer be considered as isolated. To correct for
this effect the formulation of Sternheimer [SP71] is used:

𝑥 is a kinetic variable of the particle : 𝑥 = log10(𝛾𝛽) = ln(𝛾2𝛽2)/4.606, and 𝛿(𝑥) is defined by

for 𝑥 < 𝑥0 : 𝛿(𝑥) = 0
for 𝑥 ∈ [𝑥0, 𝑥1] : 𝛿(𝑥) = 4.606𝑥− 𝐶 + 𝑎(𝑥1 − 𝑥)𝑚

for 𝑥 > 𝑥1 : 𝛿(𝑥) = 4.606𝑥− 𝐶
(12.5)

where the matter-dependent constants are calculated as follows:

ℎ𝜈𝑝 = plasma energy of the medium =
√︀

4𝜋𝑛𝑒𝑙𝑟3𝑒𝑚𝑐
2/𝛼 =

√
4𝜋𝑛𝑒𝑙𝑟𝑒~𝑐

𝐶 = 1 + 2 ln(𝐼/ℎ𝜈𝑝)

𝑥𝑎 = 𝐶/4.606

𝑎 = 4.606(𝑥𝑎 − 𝑥0)/(𝑥1 − 𝑥0)𝑚

𝑚 = 3.

(12.6)

For condensed media

𝐼 < 100 eV
{︂

for 𝐶 ≤ 3.681 𝑥0 = 0.2 𝑥1 = 2
for 𝐶 > 3.681 𝑥0 = 0.326𝐶 − 1.0 𝑥1 = 2

𝐼 ≥ 100 eV
{︂

for 𝐶 ≤ 5.215 𝑥0 = 0.2 𝑥1 = 3
for 𝐶 > 5.215 𝑥0 = 0.326𝐶 − 1.5 𝑥1 = 3

and for gaseous media

for 𝐶 < 10. 𝑥0 = 1.6 𝑥1 = 4
for 𝐶 ∈ [10.0, 10.5[ 𝑥0 = 1.7 𝑥1 = 4
for 𝐶 ∈ [10.5, 11.0[ 𝑥0 = 1.8 𝑥1 = 4
for 𝐶 ∈ [11.0, 11.5[ 𝑥0 = 1.9 𝑥1 = 4
for 𝐶 ∈ [11.5, 12.25[ 𝑥0 = 2. 𝑥1 = 4
for 𝐶 ∈ [12.25, 13.804[ 𝑥0 = 2. 𝑥1 = 5
for 𝐶 ≥ 13.804 𝑥0 = 0.326𝐶 − 2.5 𝑥1 = 5.
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High Order Corrections

High order corrections term to Bethe-Bloch formula (12.2) can be expressed as

𝐹 = 𝐺− 𝑆 + 2(𝑧𝐿1 + 𝑧2𝐿2), (12.7)

where G is the Mott correction term, S is the finite size correction term, 𝐿1 is the Barkas correction, 𝐿2 is the Bloch
correction. The Mott term [Ahl80] describes the close-collision corrections tend to become more important at large
velocities and higher charge of projectile. The Fermi result is used:

𝐺 = 𝜋𝛼𝑧𝛽.

The Barkas correction term describes distant collisions. The parameterization is expressed in the form:

𝐿1 =
1.29𝐹𝐴(𝑏/𝑥1/2)

𝑍1/2𝑥3/2
, 𝑥 =

𝛽2

𝑍𝛼2
,

where 𝐹𝐴 is tabulated function [ARB73], b is scaled minimum impact parameter shown in Table 12.2 [BIA+93]. This
and other corrections depending on atomic properties are assumed to be additive for mixtures and compounds.

Table 12.2: Scaled minimum impact parameter b.
𝑍 1 (𝐻2 gas) 1 2 3 - 10 11 - 17 18 19 - 25 26 - 50 > 50
𝑑 0.6 1.8 0.6 1.8 1.4 1.8 1.4 1.35 1.3

For the Bloch correction term the classical expression [BIA+93] is following:

𝑧2𝐿2 = −𝑦2
∞∑︁

𝑛=1

1

𝑛(𝑛2 + 𝑦2)
, 𝑦 =

𝑧𝛼

𝛽
.

The finite size correction term takes into account the space distribution of charge of the projectile particle. For muon it
is zero, for hadrons this term become visible at energies above few hundred GeV and the following parameterization
[Ahl80] is used:

𝑆 = ln(1 + 𝑞), 𝑞 =
2𝑚𝑒𝑇𝑚𝑎𝑥

𝜀2
,

where 𝑇𝑚𝑎𝑥 is given in relation (12.1), 𝜀 is proportional to the inverse effective radius of the projectile (Table 12.3).

Table 12.3: The values of the 𝜀 parameter for different particle types.
mesons, spin = 0 (𝜋±, 𝐾±) 0.736 GeV
baryons, spin = 1/2 0.843 GeV
ions 0.843 𝐴1/3 GeV

All these terms break scaling relation (7.5) if the projectile particle charge differs from ±1. To take this circumstance
into account in G4ionIonisation process at initialisation time the term 𝐹 is ignored for the computation of the 𝑑𝐸/𝑑𝑥
table. At run time this term is taken into account by adding to the mean energy loss a value

∆𝑇 ′ = 2𝜋𝑟2𝑒𝑚𝑐
2𝑛𝑒𝑙

𝑧2

𝛽2
𝐹∆𝑠,

where ∆𝑠 is the true step length and 𝐹 is the high order correction term (12.7).
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Parameterizations at Low Energies

For scaled energies below 𝑇𝑙𝑖𝑚 = 2 MeV shell correction becomes very large and precision of the Bethe-Bloch for-
mula degrades, so parameterisation of evaluated data for stopping powers at low energies is required. These pa-
rameterisations for all atoms is available from ICRU’49 report [BIA+93]. The proton parametrisation is used in
G4BraggModel, which is included by default in the process G4hIonisation. The alpha particle parameterisation is
used in the G4BraggIonModel, which is included by default in the process G4ionIonisation. To provide a smooth
transition between low-energy and high-energy models the modified energy loss expression is used for high energy

𝑆(𝑇 ) = 𝑆𝐻(𝑇 ) + (𝑆𝐿(𝑇𝑙𝑖𝑚) − 𝑆𝐻(𝑇𝑙𝑖𝑚))
𝑇𝑙𝑖𝑚
𝑇

, 𝑇 > 𝑇𝑙𝑖𝑚,

where 𝑆 is smoothed stopping power, 𝑆𝐻 is stopping power from formula (12.2) and 𝑆𝐿 is the low-energy parameter-
isation.

The precision of Bethe-Bloch formula for 𝑇>10 MeV is within 2%, below the precision degrades and at 1 keV
only 20% may be guaranteed. In the energy interval 1–10 MeV the quality of description of the stopping power
varied from atom to atom. To provide more stable and precise parameterisation the data from the NIST databases are
included inside the standard package. These data are provided for 316 predefined materials (98 elemental and 180
compounds). Note that 278 are “real” NIST materials taken from [NISa][NISb][SBS84] and the remainder are based
on their chemical formulae (16 HEP Materials, 3 Space Science Materials and 19 Biomedical Materials). The data
from the PSTAR database are included into G4BraggModel. The data from the ASTAR database are included into
G4BraggIonModel. So, if GEANT4 material is defined as a NIST material, than NIST data are used for low-energy
parameterisation of stopping power. If material is not from the NIST database, then the ICRU‘49 parameterisation is
used. It is suggested to refer to the class G4NistMaterialBuilder to determine the correct nomenclature and
composition for each material.

12.1.3 Nuclear Stopping

Nuclear stopping due to elastic ion-ion scattering since GEANT4 v9.3 can be simulated with the continuous process
G4NuclearStopping. By default this correction is active and the ICRU’49 parameterisation [BIA+93] is used, which
is implemented in the model class G4ICRU49NuclearStoppingModel.

12.1.4 Total Cross Section per Atom

For 𝑇 ≫ 𝐼 the differential cross section can be written as

𝑑𝜎

𝑑𝑇
= 2𝜋𝑟2𝑒𝑚𝑐

2𝑍
𝑧2𝑝
𝛽2

1

𝑇 2

[︂
1 − 𝛽2 𝑇

𝑇𝑚𝑎𝑥
+ 𝑠

𝑇 2

2𝐸2

]︂
(12.8)

[WMY06], where s = 0 for spinless particles and s = 1 for others. The correction for spin 1/2 is exact and it is not for
other values of spin. In described models there is an internal limit 𝑇𝑐𝑢𝑡 ≥ 𝐼 . Integrating from 𝑇𝑐𝑢𝑡 to 𝑇𝑚𝑎𝑥 gives the
total cross section per atom :

𝜎(𝑍,𝐸, 𝑇𝑐𝑢𝑡) =
2𝜋𝑟2𝑒𝑍𝑧

2
𝑝

𝛽2
𝑚𝑐2 ×

[︂(︂
1

𝑇𝑐𝑢𝑡
− 1

𝑇𝑚𝑎𝑥

)︂
− 𝛽2

𝑇𝑚𝑎𝑥
ln
𝑇𝑚𝑎𝑥

𝑇𝑐𝑢𝑡
+ 𝑠

𝑇𝑚𝑎𝑥 − 𝑇𝑐𝑢𝑡
2𝐸2

]︂
(12.9)

In a given material the mean free path is:

𝜆 = (𝑛𝑎𝑡 · 𝜎)−1 or 𝜆 = (
∑︀

𝑖 𝑛𝑎𝑡𝑖 · 𝜎𝑖)
−1

The mean free path is tabulated during initialization as a function of the material and of the energy for all kinds of
charged particles.
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12.1.5 Simulating Delta-ray Production

A short overview of the sampling method is given in Section 2. Apart from the normalization, the cross section (12.8)
can be factorized:

𝑑𝜎

𝑑𝑇
= 𝐶𝑓(𝑇 )𝑔(𝑇 ) with 𝑇 ∈ [𝑇𝑐𝑢𝑡, 𝑇𝑚𝑎𝑥]

where

𝑓(𝑇 ) =
1

𝑇 2

𝑔(𝑇 ) = 1 − 𝛽2 𝑇

𝑇𝑚𝑎𝑥
+ 𝑠

𝑇 2

2𝐸2
.

The energy 𝑇 is chosen by

1. sampling 𝑇 from 𝑓(𝑇 )

2. calculating the rejection function 𝑔(𝑇 ) and accepting the sampled 𝑇 with a probability of 𝑔(𝑇 ).

After the successful sampling of the energy, the direction of the scattered electron is generated with respect to the
direction of the incident particle. The azimuthal angle 𝜑 is generated isotropically. The polar angle 𝜃 is calculated from
energy-momentum conservation. This information is used to calculate the energy and momentum of both scattered
particles and to transform them into the global coordinate system.

12.1.6 Ion Effective Charge

As ions penetrate matter they exchange electrons with the medium. In the implementation of G4ionIonisation the
effective charge approach is used [ZBL85]. A state of equilibrium between the ion and the medium is assumed, so that
the ion’s effective charge can be calculated as a function of its kinetic energy in a given material. Before and after each
step the dynamic charge of the ion is recalculated and saved in G4DynamicParticle, where it can be used not only for
energy loss calculations but also for the sampling of transportation in an electromagnetic field.

The ion effective charge is expressed via the ion charge 𝑧𝑖 and the fractional effective charge of ion 𝛾𝑖:

𝑧𝑒𝑓𝑓 = 𝛾𝑖𝑧𝑖. (12.10)

For helium ions fractional effective charge is parameterized for all elements

(𝛾𝐻𝑒)
2 =

⎛⎝1 − exp

⎡⎣− 5∑︁
𝑗=0

𝐶𝑗𝑄
𝑗

⎤⎦⎞⎠(︂1 +
7 + 0.05𝑍

1000
exp(−(7.6 −𝑄)2)

)︂2

,

𝑄 = max(0, ln𝑇 ),

(12.11)

where the coefficients 𝐶𝑗 are the same for all elements, and the helium ion kinetic energy 𝑇 is in keV/amu.

The following expression is used for heavy ions [BK82]:

𝛾𝑖 =

(︃
𝑞 +

1 − 𝑞

2

(︂
𝑣0
𝑣𝐹

)︂2

ln
(︀
1 + Λ2

)︀)︃(︂
1 +

(0.18 + 0.0015𝑍) exp(−(7.6 −𝑄)2)

𝑍2
𝑖

)︂
, (12.12)

where 𝑞 is the fractional average charge of the ion, 𝑣0 is the Bohr velocity, 𝑣𝐹 is the Fermi velocity of the electrons in
the target medium, and Λ is the term taking into account the screening effect:

Λ = 10
𝑣𝐹
𝑣0

(1 − 𝑞)2/3

𝑍
1/3
𝑖 (6 + 𝑞)

. (12.13)
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The Fermi velocity of the medium is of the same order as the Bohr velocity, and its exact value depends on the detailed
electronic structure of the medium. The expression for the fractional average charge of the ion is the following:

𝑞 = [1 − exp(0.803𝑦0.3 − 1.3167𝑦0.6 − 0.38157𝑦 − 0.008983𝑦2)], (12.14)

where 𝑦 is a parameter that depends on the ion velocity 𝑣𝑖

𝑦 =
𝑣𝑖

𝑣0𝑍2/3

(︂
1 +

𝑣2𝐹
5𝑣2𝑖

)︂
. (12.15)

The parametrisation of the effective charge of the ion applied if the kinetic energy is below limit value

𝑇 < 10𝑧𝑖
𝑀𝑖

𝑀𝑝
MeV, (12.16)

where 𝑀𝑖 is the ion mass and 𝑀𝑝 is the proton mass.

12.2 Low energy extensions

12.2.1 Energy losses of slow negative particles

At low energies, e.g. below a few MeV for protons/antiprotons, the Bethe-Bloch formula is no longer accurate in
describing the energy loss of charged hadrons and higher 𝑍 terms should be taken in account. Odd terms in 𝑍 lead to
a significant difference between energy loss of positively and negatively charged particles. The energy loss of negative
hadrons is scaled from that of antiprotons. The antiproton energy loss is calculated according to the quantum harmonic
oscillator model is used, as described in [PS05] and references therein. The lower limit of applicability of the model
is chosen for all materials at 10 keV. Below this value stopping power is set to constant equal to the 𝑑𝐸/𝑑𝑥 at 10 keV.

12.2.2 Energy losses of hadrons in compounds

To obtain energy losses in a mixture or compound, the absorber can be thought of as made up of thin layers of pure
elements with weights proportional to the electron density of the element in the absorber (Bragg’s rule):

𝑑𝐸

𝑑𝑥
=
∑︁
𝑖

(︂
𝑑𝐸

𝑑𝑥

)︂
𝑖

, (12.17)

where the sum is taken over all elements of the absorber, 𝑖 is the number of the element, (𝑑𝐸/𝑑𝑥)𝑖 is energy loss in
the pure 𝑖-th element.

Bragg’s rule is very accurate for relativistic particles when the interaction of electrons with a nucleus is negligible.
But at low energies the accuracy of Bragg’s rule is limited because the energy loss to the electrons in any material
depends on the detailed orbital and excitation structure of the material. In the description of GEANT4 materials there
is a special attribute: the chemical formula. It is used in the following way:

• if the data on the stopping power for a compound as a function of the proton kinetic energy is available (Table
12.4), then the direct parametrisation of the data for this material is performed;

• if the data on the stopping power for a compound is available for only one incident energy (Table 12.5), then the
computation is performed based on Bragg’s rule and the chemical factor for the compound is taken into account;

• if there are no data for the compound, the computation is performed based on Bragg’s rule.

In the review [ZM88] the parametrisation stopping power data are presented as

𝑆𝑒(𝑇𝑝) = 𝑆𝐵𝑟𝑎𝑔𝑔(𝑇𝑝)

[︂
1 +

𝑓(𝑇𝑝)

𝑓(125 𝑘𝑒𝑉 )

(︂
𝑆𝑒𝑥𝑝(125 𝑘𝑒𝑉 )

𝑆𝐵𝑟𝑎𝑔𝑔(125 𝑘𝑒𝑉 )
− 1

)︂]︂
, (12.18)
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where 𝑆𝑒𝑥𝑝(125 keV) is the experimental value of the energy loss for the compound for 125 keV protons or the reduced
experimental value for He ions, 𝑆𝐵𝑟𝑎𝑔𝑔(𝑇𝑝) is a value of energy loss calculated according to Bragg’s rule, and 𝑓(𝑇𝑝)
is a universal function, which describes the disappearance of deviations from Bragg’s rule for higher kinetic energies
according to:

𝑓(𝑇𝑝) =
1

1 + exp
[︁
1.48(

𝛽(𝑇𝑝)
𝛽(25 𝑘𝑒𝑉 ) − 7.0)

]︁ , (12.19)

where 𝛽(𝑇𝑝) is the relative velocity of the proton with kinetic energy 𝑇𝑝.

Table 12.4: Stopping Power Compounds Paremeterized vs. Energy
Number Chemical formula
1 AlO
2 C2O
3 CH4

4 (C2H4)N-Polyethylene
5 (C2H4)N-Polypropylene
6 C8H8)N

7 C3H8

8 SiO2

9 H2O
10 H2O-Gas
11 Graphite
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Table 12.5: Stopping Power Compounds Data for Fixed Energy
Number Chemical formula Number Chemical formula
1 H2O 28 C2H6

2 C2H4O 29 C2F6

3 C3H6O 30 C2H6O
4 C2H2 31 C3H6O
5 CH3OH 32 C4H10O
6 C2H5OH 33 C2H4

7 C3H7OH 34 C2H4O
8 C3H4 35 C2H4S
9 NH3 36 SH2

10 C14H10 37 CH4

11 C6H6 38 CCLF3

12 C4H10 39 CCl2F2

13 C4H6 40 CHCl2F
14 C4H8O 41 (CH3)2S
15 CCl4 42 N2O
16 CF4 43 C5H10O
17 C6H8 44 C8H6

18 C6H12 45 (CH2)N

19 C6H10O 46 (C3H6)N

20 C6H10 47 (C8H8)N

21 C8H16 48 C3H8 C_3H_8
22 C5H10 49 C3H6-Propylene
23 C5H8 50 C3H6O
24 C3H6-Cyclopropane 51 C3H6S
25 C2H4F2 52 C4H4S
26 C2H2F2 53 C7H8

27 C4H8O2

12.2.3 Fluctuations of energy losses of hadrons

The total continuous energy loss of charged particles is a stochastic quantity with a distribution described in terms of a
straggling function. The straggling is partially taken into account by the simulation of energy loss by the production of
𝛿-electrons with energy 𝑇 > 𝑇𝑐. However, continuous energy loss also has fluctuations. Hence in the current GEANT4
implementation two different models of fluctuations are applied depending on the value of the parameter 𝜅 which is
the lower limit of the number of interactions of the particle in the step. The default value chosen is 𝜅 = 10. To select
a model for thick absorbers the following boundary conditions are used:

∆𝐸 > 𝑇𝑐𝜅 or 𝑇𝑐 < 𝐼𝜅, (12.20)

where ∆𝐸 is the mean continuous energy loss in a track segment of length 𝑠, 𝑇𝑐 is the kinetic energy cut of 𝛿-electrons,
and 𝐼 is the average ionisation potential of the atom.

For long path lengths the straggling function approaches the Gaussian distribution with Bohr’s variance [BIA+93]:

Ω2 = 𝐾𝑁𝑒𝑙
𝑍2
ℎ

𝛽2
𝑇𝑐𝑠𝑓

(︂
1 − 𝛽2

2

)︂
, (12.21)

where 𝑓 is a screening factor, which is equal to unity for fast particles, whereas for slow positively charged ions with
𝛽2 < 3𝑍(𝑣0/𝑐)

2 𝑓 = 𝑎+ 𝑏/𝑍2
𝑒𝑓𝑓 , where parameters 𝑎 and 𝑏 are parametrised for all atoms [QY91][WKC77].

For short path lengths, when the condition (12.20) is not satisfied, the model described in Energy Loss Fluctuations is
applied.

12.2. Low energy extensions 157



Physics Reference Manual, Release 10.4

12.2.4 ICRU 73-based energy loss model

The ICRU 73 [PS05] report contains stopping power tables for ions with atomic numbers 3–18 and 26, covering a
range of different elemental and compound target materials. The stopping powers derive from calculations with the
PASS code [SS02], which implements the binary stopping theory described in [SS02][SS00]. Tables in ICRU 73
extend over an energy range up to 1 GeV/nucleon. All stopping powers were incorporated into GEANT4 and are
available through a parameterisation model (G4IonParametrisedLossModel). For a few materials revised stopping
powers were included (water, water vapor, nylon type 6 and 6/6 from P. Sigmund et al. [PSP09] and copper from P.
Sigmund [PSigmund09]), which replace the corresponding tables of the original ICRU 73 report.

To account for secondary electron production above 𝑇𝑐, the continuous energy loss per unit path length is calculated
according to

𝑑𝐸

𝑑𝑥

⃒⃒⃒⃒
𝑇<𝑇𝐶

=

(︂
𝑑𝐸

𝑑𝑥

)︂
𝐼𝐶𝑅𝑈73

−
(︂
𝑑𝐸

𝑑𝑥

)︂
𝛿

(12.22)

where (𝑑𝐸/𝑑𝑥)𝐼𝐶𝑅𝑈73 refers to stopping powers obtained by interpolating ICRU 73 tables and (𝑑𝐸/𝑑𝑥)𝛿 is the mean
energy transferred to 𝛿-electrons per path length given by(︂

𝑑𝐸

𝑑𝑥

)︂
𝛿

=
∑︁
𝑖

𝑛𝑎𝑡,𝑖

∫︁ 𝑇𝑚𝑎𝑥

𝑇𝑐

𝑑𝜎𝑖(𝑇 )

𝑑𝑇
𝑇𝑑𝑇 (12.23)

where the index 𝑖 runs over all elements composing the material, 𝑛𝑎𝑡,𝑖 is the number of atoms of the element 𝑖 per
volume, 𝑇𝑚𝑎𝑥 is the maximum energy transferable to an electron according to formula and 𝑑𝜎𝑖/𝑑𝑇 specifies the
differential cross section per atom for producing an 𝛿-electron.

For compound targets not considered in the ICRU 73 report, the first term on the right hand side in Eq.(12.22) is
computed by applying Bragg’s additivity rule [BIA+93] if tables for all elemental components are available in ICRU
73.
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CHAPTER

THIRTEEN

POLARIZED ELECTRON/POSITRON/GAMMA INCIDENT

13.1 Introduction

With the EM polarization extension it is possible to track polarized particles (leptons and photons). Special emphasis
will be put in the proper treatment of polarized matter and its interaction with longitudinal polarized electrons/positrons
or circularly polarized photons, which is for instance essential for the simulation of positron polarimetry. The imple-
mentation is base on Stokes vectors [McM61]. Further details can be found in [Lai08].

In its current state, the following polarization dependent processes are considered:

• Bhabha/Møller scattering,

• Positron Annihilation,

• Compton scattering,

• Pair creation,

• Bremsstrahlung.

Several simulation packages for the realistic description of the development of electromagnetic showers in matter have
been developed. A prominent example of such codes is EGS (Electron Gamma Shower) [NHR85]. For this simulation
framework extensions with the treatment of polarized particles exist [Flo93][NBH93][LKNS]; the most complete has
been developed by K. Flöttmann [Flo93]. It is based on the matrix formalism [McM61], which enables a very general
treatment of polarization. However, the Flöttmann extension concentrates on evaluation of polarization transfer, i.e. the
effects of polarization induced asymmetries are neglected, and interactions with polarized media are not considered.

Another important simulation tool for detector studies is Geant3 [BCM+85]. Here also some effort has been made to
include polarization [aal][Hoo97], but these extensions are not publicly available.

In general the implementation of polarization in this EM polarization library follows very closely the approach by
K. Flöttmann [Flo93]. The basic principle is to associate a Stokes vector to each particle and track the mean polariza-
tion from one interaction to another. The basics for this approach is the matrix formalism as introduced in [McM61].

13.1.1 Stokes vector

The Stokes vector [Sto52][McM61] is a rather simple object (in comparison to e.g. the spin density matrix), three
real numbers are sufficient for the characterization of the polarization state of any single electron, positron or photon.
Using Stokes vectors all possible polarization states can be described, i.e. circular and linear polarized photons can be
handled with the same formalism as longitudinal and transverse polarized electron/positrons.

The Stokes vector can be used also for beams, in the sense that it defines a mean polarization.

In the EM polarization library the Stokes vector is defined as follows:
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Photons Electrons
𝜉1 linear polarization polarization in x direction
𝜉2 linear polarization but 𝜋/4 to right polarization in y direction
𝜉3 circular polarization polarization in z direction

This definition is assumed in the particle reference frame, i.e. with the momentum of the particle pointing to the z
direction, cf. also next section about coordinate transformations. Correspondingly a 100% longitudinally polarized
electron or positron is characterized by

𝜉 =

⎛⎜⎜⎜⎜⎜⎝
0
0
±1

⎞⎟⎟⎟⎟⎟⎠,

where ±1 corresponds to spin parallel (anti parallel) to particle’s momentum. Note that this definition is similar, but
not identical to the definition used in McMaster [McM61].

Many scattering cross sections of polarized processes using Stokes vectors for the characterization of initial and final
states are available in [McM61]. In general a differential cross section has the form

𝑑𝜎(𝜁(1), 𝜁(2), 𝜉(1), 𝜉(2))

𝑑Ω
,

i.e. it is a function of the polarization states of the initial particles 𝜁(1) and 𝜁(2), as well as of the polarization states of
the final state particles 𝜉(1) and 𝜉(2) (in addition to the kinematic variables 𝐸, 𝜃, and 𝜑).

Consequently, in a simulation we have to account for

• Asymmetries:

• Polarization of beam (𝜁(1)) and target (𝜁(2)) can induce azimuthal and polar asymmetries, and may also influence
on the total cross section (GEANT4: GetMeanFreePath()).

• Polarization transfer / depolarization effects

• The dependence on the final state polarizations defines a possible transfer from initial polarization to final state
particles.

13.1.2 Transfer matrix

Using the formalism of McMaster, differential cross section and polarization transfer from the initial state (𝜁(1)) to
one final state particle (𝜉(1)) are combined in an interaction matrix 𝑇 :(︂

𝑂

𝜉(1)

)︂
= 𝑇

(︂
𝐼

𝜁(1)

)︂
,

where 𝐼 and 𝑂 are the incoming and outgoing currents, respectively. In general the 4 × 4 matrix 𝑇 depends on the
target polarization 𝜁(2) (and of course on the kinematic variables 𝐸, 𝜃, 𝜑). Similarly one can define a matrix defining
the polarization transfer to second final state particle like(︂

𝑂

𝜉(2)

)︂
= 𝑇 ′

(︂
𝐼

𝜁(1)

)︂
.

In this framework the transfer matrix 𝑇 is of the form

𝑇 =

⎛⎜⎜⎝
𝑆 𝐴1 𝐴2 𝐴3

𝑃1 𝑀11 𝑀21 𝑀31

𝑃2 𝑀12 𝑀22 𝑀32

𝑃3 𝑀13 𝑀23 𝑀33

⎞⎟⎟⎠ .
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The matrix elements 𝑇𝑖𝑗 can be identified as (unpolarized) differential cross section (𝑆), polarized differential cross
section (𝐴𝑗), polarization transfer (𝑀𝑖𝑗), and (de)polarization (𝑃𝑖). In the Flöttmann extension the elements𝐴𝑗 and 𝑃𝑖

have been neglected, thus concentrating on polarization transfer only. Using the full matrix takes now all polarization
effects into account.

The transformation matrix, i.e. the dependence of the mean polarization of final state particles, can be derived from
the asymmetry of the differential cross section w.r.t. this particular polarization. Where the asymmetry is defined as
usual by

𝐴 =
𝜎(+1) − 𝜎(−1)

𝜎(+1) + 𝜎(−1)
.

The mean final state polarizations can be determined coefficient by coefficient. In general, the differential cross section
is a linear function of the polarizations, i.e.

𝑑𝜎(𝜁(1), 𝜁(2), 𝜉(1), 𝜉(2))

𝑑Ω
= Φ(𝜁(1),𝜁(2)) + 𝐴(𝜁(1),𝜁(2)) · 𝜉(1) + 𝐵(𝜁(1),𝜁(2)) · 𝜉(2) + 𝜉(1)

𝑇
𝑀(𝜁(1),𝜁(2)) 𝜉

(2)

In this form, the mean polarization of the final state can be read off easily, and one obtains

⟨𝜉(1)⟩ =
1

Φ(𝜁(1),𝜁(2))

𝐴(𝜁(1),𝜁(2)) and

⟨𝜉(2)⟩ =
1

Φ(𝜁(1),𝜁(2))

𝐵(𝜁(1),𝜁(2)) .

Note that the mean polarization states do not depend on the correlation matrix 𝑀(𝜁(1),𝜁(2)). In order to account for
correlation one has to generate single particle Stokes vector explicitly, i.e. on an event by event basis. However, this
implementation generates mean polarization states, and neglects correlation effects.

13.1.3 Coordinate transformations

Fig. 13.1: The interaction frame and the particle frames for the example of Compton scattering. The momenta
of all participating particle lie in the 𝑥-𝑧-plane, the scattering plane. The incoming photon gives the 𝑧 direction.
The outgoing photon is defined as particle 1 and gives the 𝑥-direction, perpendicular to the 𝑧-axis. The 𝑦-axis is
then perpendicular to the scattering plane and completes the definition of a right handed coordinate system called
interaction frame. The particle frame is defined by the GEANT4 routine G4ThreeMomemtum::rotateUz().

Three different coordinate systems are used in the evaluation of polarization states:

• World frame The geometry of the target, and the momenta of all particles in GEANT4 are noted in the world
frame 𝑋 , 𝑌 , 𝑍 (the global reference frame, GRF). It is the basis of the calculation of any other coordinate
system.
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• Particle frame Each particle is carrying its own coordinate system. In this system the direction of motion
coincides with the 𝑧-direction. GEANT4 provides a transformation from any particle frame to the World frame
by the method G4ThreeMomemtum::rotateUz(). Thus, the 𝑦-axis of the particle reference frame (PRF)
lies in the 𝑋-𝑌 -plane of the world frame.

The Stokes vector of any moving particle is defined w.r.t. the corresponding particle frame. Particles at rest
(e.g. electrons of a media) use the world frame as particle frame.

• Interaction frame For the evaluation of the polarization transfer another coordinate system is used, defined
by the scattering plane, cf. Fig. 13.1. There the 𝑧-axis is defined by the direction of motion of the incoming
particle. The scattering plane is spanned by the 𝑧-axis and the 𝑥-axis, in a way, that the direction of particle 1
has a positive 𝑥 component. The definition of particle 1 depends on the process, for instance in Compton
scattering, the outgoing photon is referred as particle 11.

All frames are right handed.

13.1.4 Polarized beam and material

Polarization of beam particles is well established. It can be used for simulating low-energy Compton scattering of
linear polarized photons. The interpretation as Stokes vector allows now the usage in a more general framework. The
polarization state of a (initial) beam particle can be fixed using the standard ParticleGunMessenger class. For example,
the class G4ParticleGun provides the method SetParticlePolarization(), which is usually accessible via:

/gun/polarization <Sx> <Sy> <Sz>

in a macro file.

In addition for the simulation of polarized media, a possibility to assign Stokes vectors to physical volumes is provided
by a new class, the so-called G4PolarizationManager. The procedure to assign a polarization vector to a media, is done
during the detector construction. There the logical volumes with certain polarization are made known to polarization
manager. One example DetectorConstruction might look like follows:

G4double Targetthickness = .010*mm;
G4double Targetradius = 2.5*mm;

G4Tubs* solidTarget =
new G4Tubs("solidTarget",

0.0,
Targetradius,
Targetthickness/2,
0.0*deg,
360.0*deg );

G4LogicalVolume * logicalTarget =
new G4LogicalVolume(solidTarget,

iron,
"logicalTarget",
0,0,0);

G4VPhysicalVolume * physicalTarget =
new G4PVPlacement(0,G4ThreeVector(0.*mm, 0.*mm, 0.*mm),

logicalTarget,
"physicalTarget",
worldLogical,
false,

1 Note, for an incoming particle travelling on the 𝑍-axis (of GRF), the 𝑦-axis of the PRF of both outgoing particles is parallel to the 𝑦-axis of
the interaction frame.
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0);

G4PolarizationManager * polMgr = G4PolarizationManager::GetInstance();
polMgr->SetVolumePolarization(logicalTarget,G4ThreeVector(0.,0.,0.08));

Once a logical volume is known to the G4PolarizationManager, its polarization vector can be accessed from a macro
file by its name, e.g. the polarization of the logical volume called “logicalTarget” can be changed via:

/polarization/volume/set logicalTarget 0. 0. -0.08

Note, the polarization of a material is stated in the world frame.

13.2 Ionisation

13.2.1 Method

The class G4ePolarizedIonization provides continuous and discrete energy losses of polarized electrons and positrons
in a material. It evaluates polarization transfer and – if the material is polarized – asymmetries in the explicit delta
rays production. The implementation baseline follows the approach derived for the class G4eIonization described in
Mean Energy Loss and Ionisation. For continuous energy losses the effects of a polarized beam or target are negligible
provided the separation cut 𝑇cut is small, and are therefore not considered separately. On the other hand, in the explicit
production of delta rays by Møller or Bhabha scattering, the effects of polarization on total cross section and mean free
path, on distribution of final state particles and the average polarization of final state particles are taken into account.

13.2.2 Total cross section and mean free path

Kinematics of Bhabha and Møller scattering is fixed by initial energy

𝛾 =
𝐸𝑘1

𝑚𝑐2

and variable

𝜖 =
𝐸𝑝2

−𝑚𝑐2

𝐸𝑘1
−𝑚𝑐2

,

which is the part of kinetic energy of initial particle carried out by scatter. Lower kinematic limit for 𝜖 is 0, but in order
to avoid divergences in both total and differential cross sections one sets

𝜖𝑚𝑖𝑛 = 𝑥 =
𝑇𝑚𝑖𝑛

𝐸𝑘1
−𝑚𝑐2

,

where 𝑇𝑚𝑖𝑛 has meaning of minimal kinetic energy of secondary electron. And, 𝜖max = 1(1/2) for Bhabha(Møller)
scatterings.

Total Møller cross section

The total cross section of the polarized Møller scattering can be expressed as follows

𝜎𝑀
𝑝𝑜𝑙 =

2𝜋𝛾2𝑟2𝑒
(𝛾 − 1)2(𝛾 + 1)

[︁
𝜎𝑀
0 + 𝜁

(1)
3 𝜁

(2)
3 𝜎𝑀

𝐿 +
(︁
𝜁
(1)
1 𝜁

(2)
1 + 𝜁

(1)
2 𝜁

(2)
2

)︁
𝜎𝑀
𝑇

]︁
,
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where the 𝑟𝑒 is classical electron radius, and

𝜎𝑀
0 = − 1

1 − 𝑥
+

1

𝑥
− (𝛾 − 1)

2

𝛾2

(︂
1

2
− 𝑥

)︂
+

2 − 4 𝛾

2 𝛾2
ln

(︂
1 − 𝑥

𝑥

)︂
𝜎𝑀
𝐿 =

(︀
−3 + 2 𝛾 + 𝛾2

)︀
(1 − 2𝑥)

2 𝛾2
+

2 𝛾 (−1 + 2 𝛾)

2 𝛾2
ln

(︂
1 − 𝑥

𝑥

)︂
𝜎𝑀
𝑇 =

2 (𝛾 − 1) (2𝑥− 1)

2 𝛾2
+

(1 − 3 𝛾)

2 𝛾2
ln

(︂
1 − 𝑥

𝑥

)︂

Total Bhabha cross section

The total cross section of the polarized Bhabha scattering can be expressed as follows

𝜎𝐵
𝑝𝑜𝑙 =

2𝜋𝑟2𝑒
𝛾 − 1

[︁
𝜎𝐵
0 + 𝜁

(1)
3 𝜁

(2)
3 𝜎𝐵

𝐿 +
(︁
𝜁
(1)
1 𝜁

(2)
1 + 𝜁

(1)
2 𝜁

(2)
2

)︁
𝜎𝐵
𝑇

]︁
,

where

𝜎𝐵
0 =

1 − 𝑥

2 (𝛾 − 1) 𝑥
+

2
(︀
−1 + 3𝑥− 6𝑥2 + 4𝑥3

)︀
3 (1 + 𝛾)

3

+
−1 − 5𝑥+ 12𝑥2 − 10𝑥3 + 4𝑥4

2 (1 + 𝛾) 𝑥
+

−3 − 𝑥+ 8𝑥2 − 4𝑥3 − ln(𝑥)

(1 + 𝛾)
2

+
3 + 4𝑥− 9𝑥2 + 3𝑥3 − 𝑥4 + 6𝑥 ln(𝑥)

3𝑥

𝜎𝐵
𝐿 =

2
(︀
1 − 3𝑥+ 6𝑥2 − 4𝑥3

)︀
3 (1 + 𝛾)

3 +
−14 + 15𝑥− 3𝑥2 + 2𝑥3 − 9 ln(𝑥)

3 (1 + 𝛾)

+
5 + 3𝑥− 12𝑥2 + 4𝑥3 + 3 ln(𝑥)

3 (1 + 𝛾)
2 +

7 − 9𝑥+ 3𝑥2 − 𝑥3 + 6 ln(𝑥)

3

𝜎𝐵
𝑇 =

2
(︀
−1 + 3𝑥− 6𝑥2 + 4𝑥3

)︀
3 (1 + 𝛾)

3 +
−7 − 3𝑥+ 18𝑥2 − 8𝑥3 − 3 ln(𝑥)

3 (1 + 𝛾)
2

+
5 + 3𝑥− 12𝑥2 + 4𝑥3 + 9 ln(𝑥)

6 (1 + 𝛾)

Mean free path

With the help of the total polarized Møller cross section one can define a longitudinal asymmetry 𝐴𝑀
𝐿 and the trans-

verse asymmetry 𝐴𝑀
𝑇 , by

𝐴𝑀
𝐿 =

𝜎𝑀
𝐿

𝜎𝑀
0

and

𝐴𝑀
𝑇 =

𝜎𝑀
𝑇

𝜎𝑀
0

.

Similarly, using the polarized Bhabha cross section one can introduce a longitudinal asymmetry𝐴𝐵
𝐿 and the transverse

asymmetry 𝐴𝐵
𝑇 via

𝐴𝐵
𝐿 =

𝜎𝐵
𝐿

𝜎𝐵
0
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and

𝐴𝐵
𝑇 =

𝜎𝐵
𝑇

𝜎𝐵
0

These asymmetries are depicted in Fig. 13.2, Fig. 13.3 for Møller and Fig. 13.4, Fig. 13.5 for Bhabha.

If both beam and target are polarized the mean free path as defined in Ionisation has to be modified. In the class
G4ePolarizedIonization the polarized mean free path 𝜆pol is derived from the unpolarized mean free path 𝜆unpol via

𝜆pol =
𝜆unpol

1 + 𝜁
(1)
3 𝜁

(2)
3 𝐴𝐿 +

(︁
𝜁
(1)
1 𝜁

(2)
1 + 𝜁

(1)
2 𝜁

(2)
2

)︁
𝐴𝑇

Fig. 13.2: Møller total cross section asymmetries depending on the total energy of the incoming electron, with a cut-off
𝑇cut = 1 keV. Transverse asymmetry is plotted in blue, longitudinal asymmetry in red. Between 0.5 MeV and 2 MeV.

Fig. 13.3: Møller total cross section asymmetries depending on the total energy of the incoming electron, with a cut-off
𝑇cut = 1keV. Transverse asymmetry is plotted in blue, longitudinal asymmetry in red. Up to 10 MeV.

13.2.3 Sampling the final state

Differential cross section

The polarized differential cross section is rather complicated. The full result can be found in [eal][FM57][Ste58]. In
G4PolarizedMollerCrossSection the complete result is available taking all mass effects into account, with only binding
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Fig. 13.4: Bhabha total cross section asymmetries depending on the total energy of the incoming positron, with a
cut-off 𝑇cut = 1keV. Transverse asymmetry is plotted in blue, longitudinal asymmetry in red. Between 0.5 MeV and
2 MeV.

Fig. 13.5: Bhabha total cross section asymmetries depending on the total energy of the incoming positron, with a
cut-off 𝑇cut = 1keV. Transverse asymmetry is plotted in blue, longitudinal asymmetry in red. Up to 10 MeV.
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effects neglected. Here we state only the ultra-relativistic approximation (URA), to show the general dependencies.

𝑑𝜎𝑀
𝑈𝑅𝐴

𝑑𝜖𝑑𝜙
=

𝑟𝜖
2

𝛾 + 1
×

[︃(︀
1 − 𝜖+ 𝜖2

)︀2
4 (𝜖− 1)

2
𝜖2

+ 𝜁
(1)
3 𝜁

(2)
3

2 − 𝜖+ 𝜖2

−4 𝜖(1 − 𝜖)
+
(︁
𝜁
(1)
2 𝜁

(2)
2 − 𝜁

(1)
1 𝜁

(2)
1

)︁ 1

4

+
(︁
𝜉
(1)
3 𝜁

(1)
3 − 𝜉

(2)
3 𝜁

(2)
3

)︁ 1 − 𝜖+ 2 𝜖2

4 (1 − 𝜖) 𝜖2
+
(︁
𝜉
(2)
3 𝜁

(1)
3 − 𝜉

(1)
3 𝜁

(2)
3

)︁ 2 − 3 𝜖+ 2 𝜖2

4 (1 − 𝜖)
2
𝜖

]︃

The corresponding cross section for Bhabha cross section is implemented in G4PolarizedBhabhaCrossSection. In the
ultra-relativistic approximation it reads

𝑑𝜎𝐵
𝑈𝑅𝐴

𝑑𝜖𝑑𝜙
=

𝑟𝜖
2

𝛾 − 1
×

[︃(︀
1 − 𝜖+ 𝜖2

)︀2
4 𝜖2

+ 𝜁
(1)
3 𝜁

(2)
3

(𝜖− 1)
(︀
2 − 𝜖+ 𝜖2

)︀
4 𝜖

+
(︁
𝜁
(1)
2 𝜁

(2)
2 − 𝜁

(1)
1 𝜁

(2)
1

)︁ (1 − 𝜖)2

4

+
(︁
𝜉
(1)
3 𝜁

(1)
3 − 𝜉

(2)
3 𝜁

(2)
3

)︁ 1 − 2 𝜖+ 3 𝜖2 − 2 𝜖3

4 𝜖2
+
(︁
𝜉
(2)
3 𝜁

(1)
3 − 𝜉

(1)
3 𝜁

(2)
3

)︁ 2 − 3 𝜖+ 2 𝜖2

4𝜖

]︃

where

𝑟𝑒 classical electron radius
𝛾 𝐸𝑘1

/𝑚𝑒𝑐
2

𝜖 (𝐸𝑝1 −𝑚𝑒𝑐
2)/(𝐸𝑘1 −𝑚𝑒𝑐

2)
𝐸𝑘1

energy of the incident electron/positron
𝐸𝑝1

energy of the scattered electron/positron
𝑚𝑒𝑐

2 electron mass
𝜁(1) Stokes vector of the incoming electron/positron
𝜁(2) Stokes vector of the target electron
𝜉(1) Stokes vector of the outgoing electron/positron
𝜉(2) Stokes vector of the outgoing (2nd) electron .

Sampling

The delta ray is sampled according to methods discussed in Section 2. After exploitation of the symmetry in the
Møller cross section under exchanging 𝜖 versus (1− 𝜖), the differential cross section can be approximated by a simple
function 𝑓𝑀 (𝜖):

𝑓𝑀 (𝜖) =
1

𝜖2
𝜖0

1 − 2𝜖0

with the kinematic limits given by

𝜖0 =
𝑇cut

𝐸𝑘1 −𝑚𝑒𝑐2
≤ 𝜖 ≤ 1

2

A similar function 𝑓𝐵(𝜖) can be found for Bhabha scattering:

𝑓𝐵(𝜖) =
1

𝜖2
𝜖0

1 − 𝜖0

with the kinematic limits given by

𝜖0 =
𝑇cut

𝐸𝑘1
−𝑚𝑒𝑐2

≤ 𝜖 ≤ 1

The kinematic of the delta ray production is constructed by the following steps:
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1. 𝜖 is sampled from 𝑓(𝜖)

2. calculate the differential cross section, depending on the initial polarizations 𝜁(1) and 𝜁(2).

3. 𝜖 is accepted with the probability defined by ratio of the differential cross section over the approximation func-
tion.

4. The 𝜙 is diced uniformly.

5. 𝜙 is determined from the differential cross section, depending on the initial polarizations 𝜁(1) and 𝜁(2)

Note, for initial states without transverse polarization components, the 𝜙 distribution is always uniform. In Fig. 13.6
and Fig. 13.7 the asymmetries indicate the influence of polarization. In general the effect is largest around 𝜖 = 1/2.

Fig. 13.6: Differential cross section asymmetries in % for Møller scattering (red - 𝐴𝑍𝑍(𝜖), green - 𝐴𝑋𝑋(𝜖), blue -
𝐴𝑌 𝑌 (𝜖), light blue - 𝐴𝑍𝑋(𝜖))

Fig. 13.7: Differential cross section asymmetries in % for Bhabha scattering (red - 𝐴𝑍𝑍(𝜖), green - 𝐴𝑋𝑋(𝜖), blue -
𝐴𝑌 𝑌 (𝜖), light blue - 𝐴𝑍𝑋(𝜖))

After both 𝜑 and 𝜖 are known, the kinematic can be constructed fully. Using momentum conservation the momenta of
the scattered incident particle and the ejected electron are constructed in global coordinate system.

Polarization transfer

After the kinematics is fixed the polarization properties of the outgoing particles are determined. Using the dependence
of the differential cross section on the final state polarization a mean polarization is calculated according to method
described in Introduction.

The resulting polarization transfer functions 𝜉(1,2)3 (𝜖) are depicted in Fig. 13.8, Fig. 13.9, and Fig. 13.10, Fig. 13.11.
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Fig. 13.8: Polarization transfer functions in Møller scattering. Longitudinal polarization 𝜉(2)3 of electron with energy
𝐸𝑝2

in blue; longitudinal polarization 𝜉(1)3 of second electron in red. Kinetic energy of incoming electron 𝑇𝑘1
=

10MeV

Fig. 13.9: Polarization transfer functions in Møller scattering. Longitudinal polarization 𝜉(2)3 of electron with energy
𝐸𝑝2

in blue; longitudinal polarization 𝜉(1)3 of second electron in red. Kinetic energy of incoming electron 𝑇𝑘1
=

10MeV

Fig. 13.10: Polarization Transfer in Bhabha scattering. Longitudinal polarization 𝜉(2)3 of electron with energy 𝐸𝑝2
in

blue; longitudinal polarization 𝜉(1)3 of scattered positron. Kinetic energy of incoming positron 𝑇𝑘1
= 10MeV
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Fig. 13.11: Polarization Transfer in Bhabha scattering. Longitudinal polarization 𝜉(2)3 of electron with energy 𝐸𝑝2
in

blue; longitudinal polarization 𝜉(1)3 of scattered positron. Kinetic energy of incoming positron 𝑇𝑘1
= 10MeV

13.3 Positron - Electron Annihilation

13.3.1 Method

The class G4eplusPolarizedAnnihilation simulates annihilation of polarized positrons with electrons in a material.
The implementation baseline follows the approach derived for the class G4eplusAnnihilation described in Positron -
Electron Annihilation. It evaluates polarization transfer and – if the material is polarized – asymmetries in the produced
photons. Thus, it takes the effects of polarization on total cross section and mean free path, on distribution of final
state photons into account. And calculates the average polarization of these generated photons. The material electrons
are assumed to be free and at rest.

13.3.2 Total cross section and mean free path

Kinematics of annihilation process is fixed by initial energy

𝛾 =
𝐸𝑘1

𝑚𝑐2

and variable

𝜖 =
𝐸𝑝1

𝐸𝑘1
+𝑚𝑐2

,

which is the part of total energy available in initial state carried out by first photon. This variable has the following
kinematical limits

1

2

(︂
1 −

√︂
𝛾 − 1

𝛾 + 1

)︂
< 𝜖 <

1

2

(︂
1 +

√︂
𝛾 − 1

𝛾 + 1

)︂
.

Total Cross Section

The total cross section of the annihilation of a polarized 𝑒+𝑒− pair into two photons could be expressed as follows

𝜎𝐴
𝑝𝑜𝑙 =

𝜋𝑟2𝑒
𝛾 + 1

[︁
𝜎𝐴
0 + 𝜁

(1)
3 𝜁

(2)
3 𝜎𝐴

𝐿 +
(︁
𝜁
(1)
1 𝜁

(2)
1 + 𝜁

(1)
2 𝜁

(2)
2

)︁
𝜎𝐴
𝑇

]︁
,
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where

𝜎𝐴
0 =

− (3 + 𝛾)
√︀
−1 + 𝛾2 + (1 + 𝛾 (4 + 𝛾)) ln(𝛾 +

√︀
−1 + 𝛾2)

4 (𝛾2 − 1)

𝜎𝐴
𝐿 =

−
√︀
−1 + 𝛾2 (5 + 𝛾 (4 + 3 𝛾)) +

(︀
3 + 𝛾

(︀
7 + 𝛾 + 𝛾2

)︀)︀
ln(𝛾 +

√︀
𝛾2 − 1)

4 (𝛾 − 1)
2

(1 + 𝛾)

𝜎𝐴
𝑇 =

(5 + 𝛾)
√︀
−1 + 𝛾2 − (1 + 5 𝛾) ln(𝛾 +

√︀
−1 + 𝛾2)

4 (−1 + 𝛾)
2

(1 + 𝛾)

Mean free path

With the help of the total polarized annihilation cross section one can define a longitudinal asymmetry 𝐴𝐴
𝐿 and the

transverse asymmetry 𝐴𝐴
𝑇 , by

𝐴𝐴
𝐿 =

𝜎𝐴
𝐿

𝜎𝐴
0

and

𝐴𝐴
𝑇 =

𝜎𝐴
𝑇

𝜎𝐴
0

.

These asymmetries are depicted in Fig. 13.12, Fig. 13.13.

If both incident positron and target electron are polarized the mean free path as defined in section Positron - Electron
Annihilation has to be modified. The polarized mean free path 𝜆pol is derived from the unpolarized mean free path
𝜆unpol via

𝜆pol =
𝜆unpol

1 + 𝜁
(1)
3 𝜁

(2)
3 𝐴𝐿 +

(︁
𝜁
(1)
1 𝜁

(2)
1 + 𝜁

(1)
2 𝜁

(2)
2

)︁
𝐴𝑇

Fig. 13.12: Annihilation total cross section asymmetries depending on the total energy of the incoming positron 𝐸𝑘1
.

The transverse asymmetry is shown in blue, the longitudinal asymmetry in red.

13.3.3 Sampling the final state

Differential Cross Section

The fully polarized differential cross section is implemented in the class G4PolarizedAnnihilationCrossSection, which
takes all mass effects into account, but binding effects are neglected [eal][Pag57]. In the ultra-relativistic approxima-
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Fig. 13.13: Annihilation total cross section asymmetries depending on the total energy of the incoming positron 𝐸𝑘1
.

The transverse asymmetry is shown in blue, the longitudinal asymmetry in red.

tion (URA) and concentrating on longitudinal polarization states only the cross section is rather simple:

𝑑𝜎𝐴
𝑈𝑅𝐴

𝑑𝜖𝑑𝜙
=

𝑟𝑒
2

𝛾 − 1
×

(︃
1 − 2 𝜖+ 2 𝜖2

8 𝜖− 8 𝜖2

(︁
1 + 𝜁

(1)
3 𝜁

(2)
3

)︁
+

(1 − 2 𝜖)
(︁
𝜁
(1)
3 + 𝜁

(2)
3

)︁ (︁
𝜉
(1)
3 − 𝜉

(2)
3

)︁
8 (𝜖− 1) 𝜖

)︃

where

𝑟𝑒 classical electron radius
𝛾 𝐸𝑘1

/𝑚𝑒𝑐
2

𝐸𝑘1 energy of the incident positron
𝑚𝑒𝑐

2 electron mass
𝜁(1) Stokes vector of the incoming positron
𝜁(2) Stokes vector of the target electron
𝜉(1) Stokes vector of the 1st photon
𝜉(2) Stokes vector of the 2nd photon .

Fig. 13.14: Annihilation differential cross section in arbitrary units. Black line corresponds to unpolarized cross
section; red line – to the antiparallel spins of initial particles, and blue line – to the parallel spins. Kinetic energy of
the incoming positron 𝑇𝑘1

= 10MeV.
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Sampling

The photon energy is sampled according to methods discussed in Section 2. After exploitation of the symmetry in the
Annihilation cross section under exchanging 𝜖 versus (1 − 𝜖), the differential cross section can be approximated by a
simple function 𝑓(𝜖):

𝑓(𝜖) =
1

𝜖
ln−1

(︂
𝜖max

𝜖min

)︂
with the kinematic limits given by

𝜖min =
1

2

(︂
1 −

√︂
𝛾 − 1

𝛾 + 1

)︂
,

𝜖max =
1

2

(︂
1 +

√︂
𝛾 − 1

𝛾 + 1

)︂
.

The kinematic of the two photon final state is constructed by the following steps:

1. 𝜖 is sampled from 𝑓(𝜖)

2. calculate the differential cross section, depending on the initial polarizations 𝜁(1) and 𝜁(2).

3. 𝜖 is accepted with the probability defined by the ratio of the differential cross section over the approximation
function 𝑓(𝜖).

4. The 𝜙 is diced uniformly.

5. 𝜙 is determined from the differential cross section, depending on the initial polarizations 𝜁(1) and 𝜁(2).

A short overview over the sampling method is given in Section 2. In Fig. 13.15 the asymmetries indicate the influence
of polarization for an 10MeV incoming positron. The actual behavior is very sensitive to the energy of the incoming
positron.

Fig. 13.15: Annihilation differential cross section asymmetries in %. Red line corrsponds to 𝐴𝑍𝑍(𝜖), green line –
𝐴𝑋𝑋(𝜖), blue line – 𝐴𝑌 𝑌 (𝜖), lightblue line – 𝐴𝑍𝑋(𝜖)). Kinetic energy of the incoming positron 𝑇𝑘1

= 10MeV.

Polarization transfer

After the kinematics is fixed the polarization of the outgoing photon is determined. Using the dependence of the
differential cross section on the final state polarizations a mean polarization is calculated for each photon according to
method described in section Introduction.

The resulting polarization transfer functions 𝜉(1,2)(𝜖) are depicted in Fig. 13.16, Fig. 13.17.
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Fig. 13.16: Polarization Transfer in annihilation process. Blue line corresponds to the circular polarization 𝜉(1)3 of the
photon with energy 𝑚(𝛾+ 1)𝜖; red line – circular polarization 𝜉(2)3 of the photon photon with energy 𝑚(𝛾+ 1)(1− 𝜖).

Fig. 13.17: Polarization Transfer in annihilation process. Blue line corresponds to the circular polarization 𝜉(1)3 of the
photon with energy 𝑚(𝛾+ 1)𝜖; red line – circular polarization 𝜉(2)3 of the photon photon with energy 𝑚(𝛾+ 1)(1− 𝜖).
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13.3.4 Annihilation at Rest

The method AtRestDoIt treats the special case where a positron comes to rest before annihilating. It generates
two photons, each with energy 𝐸𝑝1/2

= 𝑚𝑐2 and an isotropic angular distribution. Starting with the differential cross
section for annihilation with positron and electron spins opposed and parallel, respectively, [Pag57]

𝑑𝜎1 =∼ (1 − 𝛽2) + 𝛽2(1 − 𝛽2)(1 − cos2 𝜃)2

(1 − 𝛽2 cos2 𝜃)2
𝑑 cos 𝜃

𝑑𝜎2 =∼ 𝛽2(1 − cos4 𝜃)

(1 − 𝛽2 cos2 𝜃)2
𝑑 cos 𝜃

In the limit 𝛽 → 0 the cross section 𝑑𝜎1 becomes one, and the cross section 𝑑𝜎2 vanishes. For the opposed spin
state, the total angular momentum is zero and we have a uniform photon distribution. For the parallel case the total
angular momentum is 1. Here the two photon final state is forbidden by angular momentum conservation, and it can
be assumed that higher order processes (e.g. three photon final state) play a dominant role. However, in reality 100%
polarized electron targets do not exist, consequently there are always electrons with opposite spin, where the positron
can annihilate with. Final state polarization does not play a role for the decay products of a spin zero state, and can be
safely neglected (is set to zero).

13.4 Polarized Compton scattering

13.4.1 Method

The class G4PolarizedCompton simulates Compton scattering of polarized photons with (possibly polarized) electrons
in a material. The implementation follows the approach described for the class G4ComptonScattering introduced in
Compton scattering. Here the explicit production of a Compton scattered photon and the ejected electron is considered
taking the effects of polarization on total cross section and mean free path as well as on the distribution of final state
particles into account. Further the average polarizations of the scattered photon and electron are calculated. The
material electrons are assumed to be free and at rest.

13.4.2 Total cross section and mean free path

Kinematics of the Compton process is fixed by the initial energy

𝑋 =
𝐸𝑘1

𝑚𝑐2

and the variable

𝜖 =
𝐸𝑝1

𝐸𝑘1

,

which is the part of total energy available in initial state carried out by scattered photon, and the scattering angle

cos 𝜃 = 1 − 1

𝑋

(︂
1

𝜖
− 1

)︂
The variable 𝜖 has the following limits:

1

1 + 2𝑋
< 𝜖 < 1
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Total Cross Section

The total cross section of Compton scattering reads

𝜎𝐶
𝑝𝑜𝑙 =

𝜋 𝑟𝑒
2

𝑋2 (1 + 2𝑋)
2

[︁
𝜎𝐶
0 + 𝜁

(1)
3 𝜁

(2)
3 𝜎𝐶

𝐿

]︁
where

𝜎𝐶
0 =

2𝑋 (2 +𝑋 (1 +𝑋) (8 +𝑋)) − (1 + 2𝑋)
2

(2 + (2 −𝑋) 𝑋) ln(1 + 2𝑋)

𝑋

and

𝜎𝐶
𝐿 = 2𝑋 (1 +𝑋 (4 + 5𝑋)) − (1 +𝑋) (1 + 2𝑋)

2
ln(1 + 2𝑋)

Fig. 13.18: Compton total cross section asymmetry depending on the energy of incoming photon. Between 0 and ∼ 1
MeV.

Fig. 13.19: Compton total cross section asymmetry depending on the energy of incoming photon. Up to 10MeV.

Mean free path

When simulating the Compton scattering of a photon with an atomic electron, an empirical cross section formula is
used, which reproduces the cross section data down to 10 keV (see Compton scattering). If both beam and target are
polarized this mean free path has to be corrected.
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In the class G4ComptonScattering the polarized mean free path 𝜆pol is defined on the basis of the the unpolarized
mean free path 𝜆unpol via

𝜆pol =
𝜆unpol

1 + 𝜁
(1)
3 𝜁

(2)
3 𝐴𝐶

𝐿

where

𝐴𝐶
𝐿 =

𝜎𝐴
𝐿

𝜎𝐴
0

is the expected asymmetry from the the total polarized Compton cross section given above. This asymmetry is depicted
in Fig. 13.18, Fig. 13.19.

13.4.3 Sampling the final state

Differential Compton Cross Section

In the ultra-relativistic approximation the dependence of the differential cross section on the longitudinal/circular
degree of polarization is very simple. It reads

𝑑𝜎𝐶
𝑈𝑅𝐴

𝑑𝑒𝑑𝜙
=
𝑟𝑒

2

𝑋

(︃
𝜖2 + 1

2 𝜖
+
𝜖2 − 1

2 𝜖

(︁
𝜁
(1)
3 𝜁

(2)
3 + 𝜁

(2)
3 𝜉

(1)
3 − 𝜁

(1)
3 𝜉

(2)
3

)︁
+
𝜖2 + 1

2 𝜖

(︁
𝜁
(1)
3 𝜉

(1)
3 − 𝜁

(2)
3 𝜉

(2)
3

)︁)︃

where

𝑟𝑒 classical electron radius
𝑋 𝐸𝑘1

/𝑚𝑒𝑐
2

𝐸𝑘1 energy of the incident photon
𝑚𝑒𝑐

2 electron mass

The fully polarized differential cross section is available in the class G4PolarizedComptonCrossSection. It takes all
mass effects into account, but binding effects are neglected [eal][LT54a][LT54b]. The cross section dependence on 𝜖
for right handed circularly polarized photons and longitudinally polarized electrons is plotted in Fig. 13.20, Fig. 13.21.

Fig. 13.20: Compton scattering differential cross section in arbitrary units. Black line corresponds to the unpolarized
cross section; red line – to the antiparallel spins of initial particles, and blue line – to the parallel spins. Energy of the
incoming photon 𝐸𝑘1

= 10MeV.
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Fig. 13.21: Compton scattering differential cross section asymmetries in%. Red line corresponds to the asymmetry due
to circular photon and longitudinal electron initial state polarization, green line – due to circular photon and transverse
electron initial state polarization, blue line – due to linear photon and transverse electron initial state polarization.

Sampling

The photon energy is sampled according to methods discussed in Section 2. The differential cross section can be
approximated by a simple function Φ(𝜖):

Φ(𝜖) =
1

𝜖
+ 𝜖

with the kinematic limits given by

𝜖min =
1

1 + 2𝑋

𝜖max = 1

The kinematic of the scattered photon is constructed by the following steps:

1. 𝜖 is sampled from Φ(𝜖)

2. calculate the differential cross section, depending on the initial polarizations 𝜁(1) and 𝜁(2), which the correct
normalization.

3. 𝜖 is accepted with the probability defined by ratio of the differential cross section over the approximation func-
tion.

4. The 𝜙 is diced uniformly.

5. 𝜙 is determined from the differential cross section, depending on the initial polarizations 𝜁(1) and 𝜁(2).

In Fig. 13.20, Fig. 13.21 the asymmetries indicate the influence of polarization for an 10 MeV incoming positron. The
actual behavior is very sensitive to energy of the incoming positron.

Polarization transfer

After the kinematics is fixed the polarization of the outgoing photon is determined. Using the dependence of the
differential cross section on the final state polarizations a mean polarization is calculated for each photon according to
the method described in section Introduction.

The resulting polarization transfer functions 𝜉(1,2)(𝜖) are depicted in Fig. 13.22, Fig. 13.23.
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Fig. 13.22: Polarization Transfer in Compton scattering. Blue line corresponds to the longitudinal polarization 𝜉(2)3 of
the electron, red line – circular polarization 𝜉(1)3 of the photon.

Fig. 13.23: Polarization Transfer in Compton scattering. Blue line corresponds to the longitudinal polarization 𝜉(2)3 of
the electron, red line – circular polarization 𝜉(1)3 of the photon.
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13.5 Polarized Bremsstrahlung for electron and positron

13.5.1 Method

The polarized version of Bremsstrahlung is based on the unpolarized cross section. Energy loss, mean free path, and
distribution of explicitly generated final state particles are treated by the unpolarized version G4eBremsstrahlung. For
details consult Bremsstrahlung.

The remaining task is to attribute polarization vectors to the generated final state particles, which is discussed in the
following.

13.5.2 Polarization in gamma conversion and bremsstrahlung

Gamma conversion and bremsstrahlung are cross-symmetric processes (i.e. the Feynman diagram for electron
bremsstrahlung can be obtained from the gamma conversion diagram by flipping the incoming photon and outgo-
ing positron lines) and their cross sections closely related. For both processes, the interaction occurs in the field of
the nucleus and the total and differential cross section are polarization independent. Therefore, only the polarization
transfer from the polarized incoming particle to the outgoing particles is taken into account.

Fig. 13.24: Feynman diagrams of Gamma conversion and bremsstrahlung processes.

For both processes, the scattering can be formulated by:

𝒦1(𝑘1, 𝜁
(1)) + 𝒩1(𝑘𝒩1

, 𝜁(𝒩1)) −→ 𝒫1(𝑝1, 𝜉
(1)) + 𝒫2(𝑝2, 𝜉

(2)) + 𝒩2(𝑝𝒩2
, 𝜉(𝒩2))

Where 𝒩1(𝑘𝒩1 , 𝜁
(𝒩1)) and 𝒩2(𝑝𝒩2 , 𝜉

(𝒩2)) are the initial and final state of the field of the nucleus respectively as-
sumed to be unchanged, at rest and unpolarized. This leads to 𝑘𝒩1 = 𝑘𝒩2 = 0 and 𝜁(𝒩1) = 𝜉(𝒩2) = 0.

In the case of gamma conversion process: 𝒦1(𝑘1, 𝜁
(1)) is the incoming photon initial state with momentum 𝑘1 and

polarization state 𝜁(1). 𝒫1(𝑝1, 𝜉
(1)) and 𝒫2(𝑝2, 𝜉

(2)) are the two photons final states with momenta 𝑝1 and 𝑝2 and
polarization states 𝜉(1) and 𝜉(2).

In the case of bremsstrahlung process: 𝒦1(𝑘1, 𝜁
(1)) is the incoming lepton 𝑒−(𝑒+) initial state with momentum 𝑘1

and polarization state 𝜁(1). 𝒫1(𝑝1, 𝜉
(1)) is the lepton 𝑒−(𝑒+) final state with momentum 𝑝1 and polarization state 𝜉(1).

𝒫2(𝑝2, 𝜉
(2)) is the bremsstrahlung photon in final state with momentum 𝑝2 and polarization state 𝜉(2).

13.5.3 Polarization transfer from the lepton e+e- to a photon

The polarization transfer from an electron (positron) to a photon in a bremsstrahlung process was first calculated by
Olsen and Maximon [OM59] taking into account both Coulomb and screening effects. In the Stokes vector formalism,
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the 𝑒−(𝑒+) polarization state can be transformed to a photon polarization finale state by means of interaction matrix
𝑇 𝑏
𝛾 . It defined via (︂

𝑂

𝜉(2)

)︂
= 𝑇 𝑏

𝛾

(︂
1

𝜁(1)

)︂
, (13.1)

and

𝑇 𝑏
𝛾 ≈

⎛⎜⎜⎝
1 0 0 0
𝐷 0 0 0
0 0 0 0
0 𝑇 0 𝐿

⎞⎟⎟⎠ , (13.2)

where

𝐼 = (𝜖21 + 𝜖22)(3 + 2Γ) − 2𝜖1𝜖2(1 + 4𝑢2𝜉2Γ)

𝐷 =
{︁

8𝜖1𝜖2𝑢
2𝜉2Γ

}︁
/𝐼

𝑇 =
{︁
−4𝑘𝜖2𝜉(1 − 2𝜉)𝑢Γ

}︁
/𝐼

𝐿 = 𝑘{(𝜖1 + 𝜖2)(3 + 2Γ) − 2𝜖2(1 + 4𝑢2𝜉2Γ)}/𝐼

(13.3)

and

𝜖1 Total energy of the incoming lepton 𝑒+(𝑒−) in units 𝑚𝑐2

𝜖2 Total energy of the outgoing lepton 𝑒+(𝑒−) in units 𝑚𝑐2

𝑘 = (𝜖1 − 𝜖2), the energy of the bremsstrahlung photon in units of 𝑚𝑐2

𝑝 Electron (positron) initial momentum in units 𝑚𝑐
𝑘 Bremsstrahlung photon momentum in units 𝑚𝑐
𝑢 Component of 𝑝 perpendicular to 𝑘 in units 𝑚𝑐 and 𝑢 = |𝑢|
𝜉 = 1/(1 + 𝑢2)

Coulomb and screening effects are contained in Γ, defined as follows

Γ = ln

(︂
1

𝛿

)︂
− 2 − 𝑓(𝑍) + ℱ

(︃
𝜉

𝛿

)︃
for ∆ ≤ 120

Γ = ln

(︂
111

𝜉𝑍
1
3

)︂
− 2 − 𝑓(𝑧) for ∆ ≥ 120

with

∆ =
12𝑍

1
3 𝜖1𝜖2𝜉

121𝑘
with 𝑍 the atomic number and 𝛿 =

𝑘

2𝜖1𝜖2

𝑓(𝑍) is the Coulomb correction term derived by Davies, Bethe and Maximon [HD54]. ℱ(𝜉/𝛿) contains the screening
effects and is zero for ∆ ≤ 0.5 (No screening effects). For 0.5 ≤ ∆ ≤ 120 (intermediate screening) it is a slowly
decreasing function. The ℱ(𝜉/𝛿) values versus ∆ are given in Table 13.1 [KM59] and used with a linear interpolation
in between.

The polarization vector of the incoming 𝑒−(𝑒+) must be rotated into the frame defined by the scattering plane (x-
z-plane) and the direction of the outgoing photon (z-axis). The resulting polarization vector of the bremsstrahlung
photon is also given in this frame.
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Table 13.1: ℱ(𝜉/𝛿) for intermediate values of the screening factor.

∆ −ℱ
(︁
𝜉/𝛿
)︁

∆ −ℱ
(︁
𝜉/𝛿
)︁

0.5 0.0145 40.0 2.00
1.0 0.0490 45.0 2.114
2.0 0.1400 50.0 2.216
4.0 0.3312 60.0 2.393
8.0 0.6758 70.0 2.545
15.0 1.126 80.0 2.676
20.0 1.367 90.0 2.793
25.0 1.564 100.0 2.897
30.0 1.731 120.0 3.078
35.0 1.875

Using Eq.(13.1) and the transfer matrix given by Eq.(13.2) the bremsstrahlung photon polarization state in the Stokes
formalism [McM54][McM61] is given by

𝜉(2) =

⎛⎜⎝ 𝜉
(2)
1

𝜉
(2)
2

𝜉
(2)
3

⎞⎟⎠ ≈

⎛⎝ 𝐷
0

𝜁
(1)
1 𝐿+ 𝜁

(1)
2 𝑇

⎞⎠

13.5.4 Remaining polarization of the lepton after emitting a bremsstrahlung photon

The 𝑒−(𝑒+) polarization final state after emitting a bremsstrahlung photon can be calculated using the interac-
tion matrix 𝑇 𝑏

𝑙 which describes the lepton depolarization. The polarization vector for the outgoing 𝑒−(𝑒+) is
not given by Olsen and Maximon. However, their results can be used to calculate the following transfer matrix
[Flottmann93][Hoo97]. (︂

𝑂

𝜉(1)

)︂
= 𝑇 𝑏

𝑙

(︂
1

𝜁(1)

)︂
(13.4)

𝑇 𝑏
𝑙 ≈

⎛⎜⎜⎝
1 0 0 0
𝐷 𝑀 0 𝐸
0 0 𝑀 0
0 𝐹 0 𝑀 + 𝑃

⎞⎟⎟⎠ (13.5)

where

𝐼 = (𝜖21 + 𝜖22)(3 + 2Γ) − 2𝜖1𝜖2(1 + 4𝑢2𝜉2Γ)

𝐹 = 𝜖2

{︁
4𝑘𝜉𝑢(1 − 2𝜉)Γ

}︁
/𝐼

𝐸 = 𝜖1

{︁
4𝑘𝜉𝑢(2𝜉 − 1)Γ

}︁
/𝐼

𝑀 =
{︁

4𝑘𝜖1𝜖2(1 + Γ − 2𝑢2𝜉2Γ)
}︁
/𝐼

𝑃 =
{︁
𝑘2(1 + 8Γ(𝜉 − 0.5)2

}︁
/𝐼

and
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𝜖1 Total energy of the incoming 𝑒+/𝑒− in units 𝑚𝑐2

𝜖2 Total energy of the outgoing 𝑒+/𝑒− in units 𝑚𝑐2

𝑘 = (𝜖1 − 𝜖2), energy of the photon in units of 𝑚𝑐2

𝑝 Electron (positron) initial momentum in units 𝑚𝑐
𝑘 Photon momentum in units 𝑚𝑐
𝑢 Component of 𝑝 perpendicular to 𝑘 in units 𝑚𝑐 and 𝑢 = |𝑢|

Using Eq.(13.4) and the transfer matrix given by Eq.(13.5) the 𝑒−(𝑒+) polarization state after emitting a
bremsstrahlung photon is given in the Stokes formalism by

𝜉(1) =

⎛⎜⎝ 𝜉
(1)
1

𝜉
(1)
2

𝜉
(1)
3

⎞⎟⎠ ≈

⎛⎜⎝ 𝜁
(1)
1 𝑀 + 𝜁

(1)
3 𝐸

𝜁
(1)
2 𝑀

𝜁
(1)
3 (𝑀 + 𝑃 ) + 𝜁

(1)
1 𝐹

⎞⎟⎠ .

13.6 Polarized Gamma conversion into an electron–positron pair

13.6.1 Method

The polarized version of gamma conversion is based on the EM standard process G4GammaConversion. Mean free
path and the distribution of explicitly generated final state particles are treated by this version. For details consult
Gamma Conversion into e+e- Pair.

The remaining task is to attribute polarization vectors to the generated final state leptons, which is discussed in the
following.

13.6.2 Polarization transfer from the photon to the two leptons

Gamma conversion process is essentially the inverse process of bremsstrahlung and the interaction matrix is ob-
tained by inverting the rows and columns of the bremsstrahlung matrix and changing the sign of 𝜖2, cf. Polarized
Bremsstrahlung for electron and positron. It follows from the work by Olsen and Maximon [OM59] that the polariza-
tion state 𝜉(1) of an electron or positron after pair production is obtained by(︂

𝑂

𝜉(1)

)︂
= 𝑇 𝑝

𝑙

(︂
1

𝜁(1)

)︂
(13.6)

and

𝑇 𝑝
𝑙 ≈

⎛⎜⎜⎝
1 𝐷 0 0
0 0 0 𝑇
0 0 0 0
0 0 0 𝐿

⎞⎟⎟⎠ , (13.7)

where

𝐼 = (𝜖21 + 𝜖22)(3 + 2Γ) + 2𝜖1𝜖2(1 + 4𝑢2𝜉2Γ)

𝐷 =
{︁
−8𝜖1𝜖2𝑢

2𝜉2Γ
}︁
/𝐼

𝑇 =
{︁
−4𝑘𝜖2𝜉(1 − 2𝜉)𝑢Γ

}︁
/𝐼

𝐿 = 𝑘{(𝜖1 − 𝜖2)(3 + 2Γ) + 2𝜖2(1 + 4𝑢2𝜉2Γ)}/𝐼

(13.8)

and
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𝜖1 total energy of the first lepton 𝑒+(𝑒−) in units 𝑚𝑐2

𝜖2 total energy of the second lepton 𝑒−(𝑒+) in units 𝑚𝑐2

𝑘 = (𝜖1 + 𝜖2) energy of the incoming photon in units of 𝑚𝑐2

𝑝 electron=positron initial momentum in units 𝑚𝑐
𝑘 photon momentum in units 𝑚𝑐
𝑢 electron/positron initial momentum in units 𝑚𝑐
𝑢 = |𝑢|

Coulomb and screening effects are contained in Γ, defined in section Polarized Bremsstrahlung for electron and
positron.

Using Eq.(13.6) and the transfer matrix given by Eq.(13.7) the polarization state of the produced 𝑒−(𝑒+) is given in
the Stokes formalism by:

𝜉(1) =

⎛⎜⎝ 𝜉
(1)
1

𝜉
(1)
2

𝜉
(1)
3

⎞⎟⎠ ≈

⎛⎜⎝ 𝜁
(1)
3 𝑇
0

𝜁
(1)
3 𝐿

⎞⎟⎠

13.7 Polarized Photoelectric Effect

13.7.1 Method

This section describes the basic formulas of polarization transfer in the photoelectric effect class
(G4PolarizedPhotoElectricEffect). The photoelectric effect is the emission of electrons from matter upon the
absorption of electromagnetic radiation, such as ultraviolet radiation or x-rays. The energy of the photon is completely
absorbed by the electron and, if sufficient, the electron can escape from the material with a finite kinetic energy. A
single photon can only eject a single electron, as the energy of one photon is only absorbed by one electron. The
electrons that are emitted are often called photoelectrons. If the photon energy is higher than the binding energy the
remaining energy is transferred to the electron as a kinetic energy

𝐸𝑒−

𝑘𝑖𝑛 = 𝑘 −𝐵𝑠ℎ𝑒𝑙𝑙

In GEANT4 the photoelectric effect process is taken into account if:

𝑘 > 𝐵𝑠ℎ𝑒𝑙𝑙

Where 𝑘 is the incoming photon energy and 𝐵𝑠ℎ𝑒𝑙𝑙 the electron binding energy provided by the class G4AtomicShells.

The polarized version of the photoelectric effect is based on the EM standard process G4PhotoElectricEffect. Mean
free path and the distribution of explicitly generated final state particles are treated by this version. For details consult
section PhotoElectric Effect.

The remaining task is to attribute polarization vectors to the generated final state electron, which is discussed in the
following.

13.7.2 Polarization transfer

The polarization state of an incoming polarized photon is described by the Stokes vector 𝜁(1). The polarization transfer
to the photoelectron can be described in the Stokes formalism using the same approach as for the bremsstrahlung and
gamma conversion processes, cf. Polarized Bremsstrahlung for electron and positron and Polarized Gamma conversion
into an electron–positron pair. The relation between the photoelectron’s Stokes parameters and the incoming photon’s
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Stokes parameters is described by the interaction matrix 𝑇 𝑝
𝑙 derived from H. Olsen [OV58] and reviewed by H.W

McMaster [McM61]: (︂
𝐼 ′

𝜉(1)

)︂
= 𝑇 𝑝

𝑙

(︂
𝐼0
𝜁(1)

)︂
(13.9)

In general, for the photoelectric effect as a two-body scattering, the cross section should be correlated with the spin
states of the incoming photon and the target electron. In our implementation the target electron is not polarized and
only the polarization transfer from the photon to the photoelectron is taken into account. In this case the cross section
of the process remains polarization independent. To compute the matrix elements we take advantage of the available
kinematic variables provided by the generic G4PhotoelectricEffect class. To compute the photoelectron spin state
(Stokes parameters), four main parameters are needed:

• The incoming photon Stokes vector 𝜁(1)

• The incoming photon’s energy 𝑘.

• the photoelectron’s kinetic energy 𝐸𝑒−

𝑘𝑖𝑛 or the Lorentz factors 𝛽 and 𝛾.

• The photoelectron’s polar angle 𝜃 or cos 𝜃.

The interaction matrix derived by H. Olsen [OV58] is given by:

𝑇𝑃
𝑙 =

⎛⎜⎜⎝
1 +𝐷 −𝐷 0 0

0 0 0 𝐵
0 0 0 0
0 0 0 𝐴

⎞⎟⎟⎠ (13.10)

where

𝐷 =
1

𝑘

[︂
2

𝑘𝜖(1 − 𝛽 cos 𝜃)
− 1

]︂
𝐴 =

𝜖

𝜖+ 1

[︂
2

𝑘𝜖
+ 𝛽 cos 𝜃 +

2

𝑘𝜖2(1 − 𝛽 cos 𝜃)

]︂
𝐵 =

𝜖

𝜖+ 1
𝛽 sin 𝜃

[︂
2

𝑘𝜖(1 − 𝛽 cos 𝜃)
− 1

]︂
Using Eq.(13.9) and the transfer matrix given by Eq.(13.10) the polarization state of the produced 𝑒− is given in the
Stokes formalism by:

𝜉(1) =

⎛⎜⎝ 𝜉
(1)
1

𝜉
(1)
2

𝜉
(1)
3

⎞⎟⎠ =

⎛⎜⎝ 𝜁
(1)
3 𝐵
0

𝜁
(1)
3 𝐴

⎞⎟⎠ (13.11)

From equation (13.11) one can see that a longitudinally (transversally) polarized photoelectron can only be produced
if the incoming photon is circularly polarized.

13.8 Compton Scattering by Linearly Polarized Gamma Rays - Liver-
more Model

13.8.1 The Cross Section

The quantum mechanical Klein-Nishina differential cross section for polarized photons is [Hei54]:

𝑑𝜎

𝑑Ω
=

1

2
𝑟20
ℎ𝜈2

ℎ𝜈2𝑜

[︂
ℎ𝜈𝑜
ℎ𝜈

+
ℎ𝜈

ℎ𝜈𝑜
− sin2 Θ

]︂
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where Θ is the angle between the two polarization vectors. In terms of the polar and azimuthal angles (𝜃, 𝜑) this cross
section can be written as

𝑑𝜎

𝑑Ω
=

1

2
𝑟20
ℎ𝜈2

ℎ𝜈2𝑜

[︂
ℎ𝜈𝑜
ℎ𝜈

+
ℎ𝜈

ℎ𝜈𝑜
− 2 cos2 𝜑 sin2 𝜃

]︂
.

13.8.2 Angular Distribution

The integration of this cross section over the azimuthal angle produces the standard cross section. The angular and
energy distribution are then obtained in the same way as for the standard process. Using these values for the polar
angle and the energy, the azimuthal angle is sampled from the following distribution [Dep03]:

𝑃 (𝜑) = 1 − 2
𝑎

𝑏
cos2 𝜑

where 𝑎 = sin2 𝜃 and 𝑏 = 𝜖+ 1/𝜖. 𝜖 is the ratio between the scattered photon energy and the incident photon energy.

13.8.3 Polarization Vector

The components of the vector polarization of the scattered photon are calculated from [Dep03]:

𝜖′⊥ =
1

𝑁

(︁
�̂� cos 𝜃 − 𝑘 sin 𝜃 sin𝜑

)︁
sin𝛽

𝜖′‖ =

[︂
𝑁�̂�− 1

𝑁
�̂� sin2 𝜃 sin𝜑 cos𝜑− 1

𝑁
𝑘 sin 𝜃 cos 𝜃 cos𝜑

]︂
cos𝛽

where

𝑁 =

√︁
1 − sin2 𝜃 cos2 𝜑.

cos𝛽 is calculated from cos 𝜃 = 𝑁 cos𝛽, while cos 𝜃 is sampled from the Klein-Nishina distribution.

The binding effects and the Compton profile are neglected. The kinetic energy and momentum of the recoil electron
are then

𝑇𝑒𝑙 = 𝐸 − 𝐸′

𝑃𝑒𝑙 = 𝑃𝛾 − 𝑃 ′
𝛾 .

The momentum vector of the scattered photon 𝑃𝛾 and its polarization vector are transformed into the World coordinate
system. The polarization and the direction of the scattered gamma in the final state are calculated in the reference frame
in which the incoming photon is along the 𝑧-axis and has its polarization vector along the 𝑥-axis. The transformation
to the World coordinate system performs a linear combination of the initial direction, the initial polarization and the
cross product between them, using the projections of the calculated quantities along these axes.

13.8.4 Unpolarized Photons

A special treatment is devoted to unpolarized photons. In this case a random polarization in the plane perpendicular to
the incident photon is selected.
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13.9 Pair production by Linearly Polarized Gamma Rays - Livermore
Model

A method to study the pair production interaction of linearly polarized gamma rays at energies 50 MeV was discussed
in [GODepaolaMHTiglio99]. The study of the differential cross section for pair production shows that the polarization
information is coded in the azimuthal distribution of the electron - positron pair created by polarized photons (Fig.
13.25).

Fig. 13.25: Angles occurring in the pair creation

13.9.1 Relativistic cross section for linearly polarized gamma ray

The cross section for pair production by linearly polarized gamma rays in the high energy limit using natural units
with ℎ/2𝜋 = 𝑐 = 1 is

𝑑𝜎 =
−2𝛼𝑍2𝑟0𝑚

2

(2𝜋)2𝜔3
𝑑𝐸𝑑Ω+𝑑Ω−

𝐸(𝜔 − 𝐸)

|�⃗�|4

{︃
4

[︂
𝐸

sin 𝜃− cos Ψ

1 − cos 𝜃−
+ (𝜔 − 𝐸)

sin 𝜃+ cos (Ψ + 𝜑)

1 − cos 𝜃+

]︂2
− |�⃗�|2

[︂
sin 𝜃− cos Ψ

1 − cos 𝜃−
− sin 𝜃+ cos (Ψ + 𝜑)

1 − cos 𝜃+

]︂2
− 𝜔2 sin 𝜃− sin 𝜃+

(1 − cos 𝜃−)(1 − cos 𝜃+)

[︂
𝐸 sin 𝜃+

(𝜔𝐸) sin 𝜃−
+

(𝜔 − 𝐸) sin 𝜃−
𝐸 sin 𝜃+

+ 2 cos𝜑

]︂}︂
,

with

|�⃗�|2 = −2 [𝐸(𝜔 − 𝐸)(1 − sin 𝜃+ sin 𝜃− cos𝜑− cos 𝜃+ cos 𝜃−)

+𝜔𝐸(cos 𝜃+ − 1) + 𝜔(𝜔 − 𝐸)(𝑐𝑜𝑠𝜃− − 1) +𝑚2
]︀
.

𝐸 is the positron energy and we have assumed that the polarization direction is along the 𝑥 axis (see Fig. 13.25).
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13.9.2 Spatial azimuthal distribution

Integrating this cross section over energy and polar angles yields the spatial azimuthal distribution, that was calculated
in [GODepaolaMHTiglio99] using a Monte Carlo procedure.

Fig. 13.26 shows an example of this distribution for 100 MeV gamma-ray. In this figure the range of the 𝜑 axis is
restricted between 3.0 and 𝜋 since it gives the most interesting part of the distribution. For angles smaller than 3.0 this
distribution monotonically decreases to zero.

Fig. 13.26: Spatial azimuthal distribution of a pair created by 100 MeV photon

In GEANT4 the azimuthal distribution surface is parametrized in terms of smooth functions of (𝜑, 𝜓) .

𝑓(𝜑, 𝜓) = 𝑓𝜋/2(𝜑) sin2 𝜓 + 𝑓0(𝜑) cos2 𝜓 .

Since both 𝑓0(𝜑) and 𝑓𝜋/2(𝜑) are functions that rapidly vary when 𝜑 approaches 𝜋, it was necessary to adjust the
functions in two ranges of 𝜑:

1. 0 ≤ 𝜑 ≤ 3.05 rad.

2. 3.06 rad ≤ 𝜑 ≤ 𝜋 ,

whereas in the small range 3.05 ≤ 𝜑 ≤ 3.06 we extrapolate the two fitting functions until the intersection point is
reached.

In region 2 we used Lorentzian functions of the form

𝑓(𝜑) = 𝑦0 +
2𝐴𝜔

𝜋[𝜔2 + 4(𝜑− 𝑥𝑐)2]
,

whereas for region 1 the best fitting function was found to adopt the form:

𝑓(𝜑) = 𝑎+ 𝑑 tan (𝑏𝜑+ 𝑐) .

The paper [GODepaolaMHTiglio99] reports the coefficients obtained in different energy regions to fit the angular
distribution and their function form as function of gamma-ray as energy reported in the Table 13.2 and Table 13.3
below.
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Table 13.2: Fit for the parameter of 𝑓0(𝜑) function.
Parameter Function a b c
𝑦0 𝑎 ln𝐸 − 𝑏 2.98 ± 0.06 7.7 ± 0.4 –
𝐴 𝑎 ln𝐸 − 𝑏 1.41 ± 0.08 5.6 ± 0.5 –
𝜔 𝑎+ 𝑏/𝐸 + 𝑐/𝐸3 0.015 ± 0.001 9.5 ± 0.6 (−2.2 ± 0.1)104

𝑥𝑐 𝑎+ 𝑏/𝐸 + 𝑐/𝐸3 3.143 ± 0.001 −2.7 ± 0.2 (2 ± 1)103

Table 13.3: Fit for the parameter of 𝑓𝜋/2(𝜑) function.
Parameter Function a b c
𝑦0 𝑎 ln𝐸 − 𝑏 1.85 ± 0.07 5.1 ± 0.4 –
𝐴 𝑎 ln𝐸 − 𝑏 1.3 ± 0.1 (6.6 ± 0.2)10−3 –
𝜔 𝑎+ 𝑏/𝐸 + 𝑐/𝐸3 0.008 ± 0.002 12.1 ± 0.9 (−2.8 ± 0.8)104

𝑥𝑐 3.149 – – –

13.9.3 Unpolarized Photons

A special treatment is devoted to unpolarized photons. In this case a random polarization in the plane perpendicular to
the incident photon is selected.
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CHAPTER

FOURTEEN

X-RAY PRODUCTION

14.1 Transition radiation

14.1.1 The Relationship of Transition Radiation to X-ray Čerenkov Radiation

X-ray transition radiation (XTR) occurs when a relativistic charged particle passes from one medium to another of
a different dielectric permittivity. In order to describe this process it is useful to begin with an explanation of X-ray
Čerenkov radiation, which is closely related.

The mean number of X-ray Čerenkov radiation (XCR) photons of frequency 𝜔 emitted into an angle 𝜃 per unit distance
along a particle trajectory is [Gri02b]:

𝑑3�̄�𝑥𝑐𝑟

~𝑑𝜔 𝑑𝑥 𝑑𝜃2
=

𝛼

𝜋~𝑐
𝜔

𝑐
𝜃2Im {𝑍} . (14.1)

Here the quantity 𝑍 is introduced as the complex formation zone of XCR in the medium:

𝑍 =
𝐿

1 − 𝑖
𝐿

𝑙

, 𝐿 =
𝑐

𝜔

[︃
𝛾−2 +

𝜔2
𝑝

𝜔2
+ 𝜃2

]︃−1

, 𝛾−2 = 1 − 𝛽2. (14.2)

with 𝑙 and 𝜔𝑝 the photon absorption length and the plasma frequency, respectively, in the medium. For the case of
a transparent medium, 𝑙 → ∞ and the complex formation zone reduces to the coherence length 𝐿 of XCR. The
coherence length roughly corresponds to that part of the trajectory in which an XCR photon can be created.

Introducing a complex quantity 𝑍 with its imaginary part proportional to the absorption cross-section (∼ 𝑙−1) is
required in order to account for absorption in the medium. Usually, 𝜔2

𝑝/𝜔
2 ≫ 𝑐/𝜔𝑙. Then it can be seen from Eqs.

(14.1) and (14.2) that the number of emitted XCR photons is considerably suppressed and disappears in the limit of a
transparent medium. This is caused by the destructive interference between the photons emitted from different parts
of the particle trajectory.

The destructive interference of X-ray Čerenkov radiation is removed if the particle crosses a boundary between two
media with different dielectric permittivities, 𝜖, where

𝜖 = 1 −
𝜔2
𝑝

𝜔2
+ 𝑖

𝑐

𝜔𝑙
.

Here the standard high-frequency approximation for the dielectric permittivity has been used. This is valid for energy
transfers larger than the 𝐾-shell excitation potential.

If layers of media are alternated with spacings of order 𝐿, the X-ray radiation yield from a trajectory of unit length can
be increased by roughly 𝑙/𝐿 times. The radiation produced in this case is called X-ray transition radiation (XTR).
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14.1.2 Calculating the X-ray Transition Radiation Yield

Using the methods developed in Ref.[Gri02b] one can derive the relation describing the mean number of XTR photons
generated per unit photon frequency and 𝜃2 inside the radiator for a general XTR radiator consisting of 𝑛 different
absorbing media with fluctuating thicknesses:

𝑑2�̄�𝑖𝑛

~𝑑𝜔 𝑑𝜃2
=

𝛼

𝜋~𝑐2
𝜔𝜃2Re

⎧⎨⎩
𝑛−1∑︁
𝑖=1

(𝑍𝑖 − 𝑍𝑖+1)2 + 2

𝑛−1∑︁
𝑘=1

𝑘−1∑︁
𝑖=1

(𝑍𝑖 − 𝑍𝑖+1)

⎡⎣ 𝑘∏︁
𝑗=𝑖+1

𝐹𝑗

⎤⎦ (𝑍𝑘 − 𝑍𝑘+1)

⎫⎬⎭ ,

𝐹𝑗 = exp

[︂
− 𝑡𝑗

2𝑍𝑗

]︂
.

In the case of gamma distributed gap thicknesses (foam or fiber radiators) the values 𝐹𝑗 , (𝑗 = 1, 2) can be estimated
as:

𝐹𝑗 =

∫︁ ∞

0

𝑑𝑡𝑗

(︂
𝜈𝑗
𝑡𝑗

)︂𝜈𝑗 𝑡
𝜈𝑗−1
𝑗

Γ(𝜈𝑗)
exp

[︂
−𝜈𝑗𝑡𝑗

𝑡𝑗
− 𝑖

𝑡𝑗
2𝑍𝑗

]︂
=

[︂
1 + 𝑖

𝑡𝑗
2𝑍𝑗𝜈𝑗

]︂−𝜈𝑗

,

where 𝑍𝑗 is the complex formation zone of XTR (similar to relation (14.2) for XCR) in the 𝑗-th medium
[Gri02a][JA00]. Γ is the Euler gamma function, 𝑡𝑗 is the mean thickness of the 𝑗-th medium in the radiator and 𝜈𝑗 > 0
is the parameter roughly describing the relative fluctuations of 𝑡𝑗 . In fact, the relative fluctuation is 𝛿𝑡𝑗/𝑡𝑗 ∼ 1/

√
𝜈𝑗 .

In the particular case of 𝑛 foils of the first medium (𝑍1, 𝐹1) interspersed with gas gaps of the second medium (𝑍2, 𝐹2),
one obtains:

𝑑2�̄�𝑖𝑛

~𝑑𝜔 𝑑𝜃2
=

2𝛼

𝜋~𝑐2
𝜔𝜃2Re

{︁
⟨𝑅(𝑛)⟩

}︁
, 𝐹 = 𝐹1𝐹2, (14.3)

⟨𝑅(𝑛)⟩ = (𝑍1 − 𝑍2)2
{︂
𝑛

(1 − 𝐹1)(1 − 𝐹2)

1 − 𝐹
+

(1 − 𝐹1)2𝐹2[1 − 𝐹𝑛]

(1 − 𝐹 )2

}︂
. (14.4)

Here ⟨𝑅(𝑛)⟩ is the stack factor reflecting the radiator geometry. The integration of ((14.3)) with respect to 𝜃2 can
be simplified for the case of a regular radiator (𝜈1,2 → ∞), transparent in terms of XTR generation media, and
𝑛≫ 1 [Gar71]. The frequency spectrum of emitted XTR photons is given by:

𝑑�̄�𝑖𝑛

~𝑑𝜔
=

∫︁ ∼10𝛾−2

0

𝑑𝜃2
𝑑2�̄�𝑖𝑛

~𝑑𝜔 𝑑𝜃2
=

4𝛼𝑛

𝜋~𝜔
(𝐶1 + 𝐶2)2 ·

𝑘𝑚𝑎𝑥∑︁
𝑘=𝑘𝑚𝑖𝑛

(𝑘 − 𝐶𝑚𝑖𝑛)

(𝑘 − 𝐶1)2(𝑘 + 𝐶2)2
sin2

[︂
𝜋𝑡1

𝑡1 + 𝑡2
(𝑘 + 𝐶2)

]︂
,

(14.5)

𝐶1,2 =
𝑡1,2(𝜔2

1 − 𝜔2
2)

4𝜋𝑐𝜔
, 𝐶𝑚𝑖𝑛 =

1

4𝜋𝑐

[︂
𝜔(𝑡1 + 𝑡2)

𝛾2
+
𝑡1𝜔

2
1 + 𝑡2𝜔

2
2

𝜔

]︂
.

The sum in (14.5) is defined by terms with 𝑘 ≥ 𝑘𝑚𝑖𝑛 corresponding to the region of 𝜃 ≥ 0. Therefore 𝑘𝑚𝑖𝑛 should
be the nearest to 𝐶𝑚𝑖𝑛 integer 𝑘𝑚𝑖𝑛 ≥ 𝐶𝑚𝑖𝑛. The value of 𝑘𝑚𝑎𝑥 is defined by the maximum emission angle 𝜃2𝑚𝑎𝑥 ∼
10𝛾−2. It can be evaluated as the integer part of

𝐶𝑚𝑎𝑥 = 𝐶𝑚𝑖𝑛 +
𝜔(𝑡1 + 𝑡2)

4𝜋𝑐

10

𝛾2
, 𝑘𝑚𝑎𝑥 − 𝑘𝑚𝑖𝑛 ∼ 102 − 103 ≫ 1.

Numerically, however, only a few tens of terms contribute substantially to the sum, that is, one can choose 𝑘𝑚𝑎𝑥 ∼
𝑘𝑚𝑖𝑛 + 20. Eq.(14.5) corresponds to the spectrum of the total number of photons emitted inside a regular transparent
radiator. Therefore the mean interaction length, 𝜆𝑋𝑇𝑅, of the XTR process in this kind of radiator can be introduced
as:

𝜆𝑋𝑇𝑅 = 𝑛(𝑡1 + 𝑡2)

[︃∫︁ ~𝜔𝑚𝑎𝑥

~𝜔𝑚𝑖𝑛

~𝑑𝜔
𝑑�̄�𝑖𝑛

~𝑑𝜔

]︃−1

,

192 Chapter 14. X-Ray production



Physics Reference Manual, Release 10.4

where ~𝜔𝑚𝑖𝑛 ∼ 1 keV, and ~𝜔𝑚𝑎𝑥 ∼ 100 keV for the majority of high energy physics experiments. Its value is
constant along the particle trajectory in the approximation of a transparent regular radiator. The spectrum of the total
number of XTR photons after regular transparent radiator is defined by (14.5) with:

𝑛→ 𝑛𝑒𝑓𝑓 =

𝑛−1∑︁
𝑘=0

exp[−𝑘(𝜎1𝑡1 + 𝜎2𝑡2)] =
1 − exp[−𝑛(𝜎1𝑡1 + 𝜎2𝑡2)]

1 − exp[−(𝜎1𝑡1 + 𝜎2𝑡2)]
,

where 𝜎1 and 𝜎2 are the photo-absorption cross-sections corresponding to the photon frequency 𝜔 in the first and
the second medium, respectively. With this correction taken into account the XTR absorption in the radiator ((14.5))
corresponds to the results of [FS75]. In the more general case of the flux of XTR photons after a radiator, the XTR
absorption can be taken into account with a calculation based on the stack factor derived in [GMGY75]:

⟨𝑅(𝑛)
𝑓𝑙𝑢𝑥⟩ = (𝐿1 − 𝐿2)2

{︂
1 −𝑄𝑛

1 −𝑄

(1 +𝑄1)(1 + 𝐹 ) − 2𝐹1 − 2𝑄1𝐹2

2(1 − 𝐹 )

(1 − 𝐹1)(𝑄1 − 𝐹1)𝐹2(𝑄𝑛 − 𝐹𝑛)

(1 − 𝐹 )(𝑄− 𝐹 )

}︂
, (14.6)

𝑄 = 𝑄1 ·𝑄2, 𝑄𝑗 = exp [−𝑡𝑗/𝑙𝑗 ] = exp [−𝜎𝑗𝑡𝑗 ] , 𝑗 = 1, 2.

Both XTR energy loss (14.4) and flux (14.6) models can be implemented as a discrete electromagnetic process (see
below).

14.1.3 Simulating X-ray Transition Radiation Production

A typical XTR radiator consists of many (∼ 100) boundaries between different materials. To improve the tracking
performance in such a volume one can introduce an artificial material [JA00], which is the geometrical mixture of foil
and gas contents. Here is an example:

// In DetectorConstruction of an application
// Preparation of mixed radiator material
foilGasRatio = fRadThickness/(fRadThickness+fGasGap);
foilDensity = 1.39*g/cm3; // Mylar
gasDensity = 1.2928*mg/cm3 ; // Air
totDensity = foilDensity*foilGasRatio +

gasDensity*(1.0-foilGasRatio);
fractionFoil = foilDensity*foilGasRatio/totDensity;
fractionGas = gasDensity*(1.0-foilGasRatio)/totDensity;
G4Material* radiatorMat = new G4Material("radiatorMat",

totDensity,
ncomponents = 2 );

radiatorMat->AddMaterial( Mylar, fractionFoil );
radiatorMat->AddMaterial( Air, fractionGas );
G4cout << *(G4Material::GetMaterialTable()) << G4endl;
// materials of the TR radiator
fRadiatorMat = radiatorMat; // artificial for geometry
fFoilMat = Mylar;
fGasMat = Air;

This artificial material will be assigned to the logical volume in which XTR will be generated:

solidRadiator = new G4Box("Radiator",
1.1*AbsorberRadius ,
1.1*AbsorberRadius,
0.5*radThick );

logicRadiator = new G4LogicalVolume( solidRadiator,
fRadiatorMat, // !!!

"Radiator");
physiRadiator = new G4PVPlacement(0,

14.1. Transition radiation 193



Physics Reference Manual, Release 10.4

G4ThreeVector(0,0,zRad),
"Radiator", logicRadiator,
physiWorld, false, 0 );

XTR photons generated by a relativistic charged particle intersecting a radiator with 2𝑛 interfaces between different
media can be simulated by using the following algorithm. First the total number of XTR photons is estimated using a
Poisson distribution about the mean number of photons given by the following expression:

�̄� (𝑛) =

∫︁ 𝜔2

𝜔1

𝑑𝜔

∫︁ 𝜃2
𝑚𝑎𝑥

0

𝑑𝜃2
𝑑2�̄� (𝑛)

𝑑𝜔 𝑑𝜃2
=

2𝛼

𝜋𝑐2

∫︁ 𝜔2

𝜔1

𝜔𝑑𝜔

∫︁ 𝜃2
𝑚𝑎𝑥

0

𝜃2𝑑𝜃2Re
{︁
⟨𝑅(𝑛)⟩

}︁
.

Here 𝜃2𝑚𝑎𝑥 ∼ 10𝛾−2, ~𝜔1 ∼ 1 keV, ~𝜔2 ∼ 100 keV, and ⟨𝑅(𝑛)⟩ correspond to the geometry of the experiment.
For events in which the number of XTR photons is not equal to zero, the energy and angle of each XTR quantum is
sampled from the integral distributions obtained by the numerical integration of expression (14.3). For example, the
integral energy spectrum of emitted XTR photons, �̄� (𝑛)

>𝜔 , is defined from the following integral distribution:

�̄�
(𝑛)
>𝜔 =

2𝛼

𝜋𝑐2

∫︁ 𝜔2

𝜔

𝜔𝑑𝜔

∫︁ 𝜃2
𝑚𝑎𝑥

0

𝜃2𝑑𝜃2Re
{︁
⟨𝑅(𝑛)⟩

}︁
.

In GEANT4 XTR generation inside or after radiators is described as a discrete electromagnetic process. It is convenient
for the description of tracks in magnetic fields and can be used for the cases when the radiating charge experiences
a scattering inside the radiator. The base class G4VXTRenergyLoss is responsible for the creation of tables with
integral energy and angular distributions of XTR photons. It also contains the PostDoIt function providing XTR
photon generation and motion (if fExitFlux=true) through a XTR radiator to its boundary. Particular models like
G4RegularXTRadiator implement the pure virtual function GetStackFactor, which calculates the response of the XTR
radiator reflecting its geometry. Included below are some comments for the declaration of XTR in a user application.

In the physics list one should pass to the XTR process additional details of the XTR radiator involved:

// In PhysicsList of an application
else if (particleName == "e-") // Construct processes for electron with XTR
{

pmanager->AddProcess(new G4MultipleScattering, -1, 1,1 );
pmanager->AddProcess(new G4eBremsstrahlung(), -1,-1,1 );
pmanager->AddProcess(new Em10StepCut(), -1,-1,1 );

// in regular radiators:
pmanager->AddDiscreteProcess(
new G4RegularXTRadiator // XTR dEdx in general regular radiator

// new G4XTRRegularRadModel - XTR flux after general regular radiator
// new G4TransparentRegXTRadiator - XTR dEdx in transparent
// regular radiator
// new G4XTRTransparentRegRadModel - XTR flux after transparent
// regular radiator

(pDet->GetLogicalRadiator(), // XTR radiator

pDet->GetFoilMaterial(), // real foil
pDet->GetGasMaterial(), // real gas
pDet->GetFoilThick(), // real geometry
pDet->GetGasThick(),
pDet->GetFoilNumber(),
"RegularXTRadiator"));

// or for foam/fiber radiators:
pmanager->AddDiscreteProcess(
new G4GammaXTRadiator // - XTR dEdx in general foam/fiber radiator

// new G4XTRGammaRadModel - XTR flux after general foam/fiber radiator
( pDet->GetLogicalRadiator(),
1000.,
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100.,
pDet->GetFoilMaterial(),
pDet->GetGasMaterial(),
pDet->GetFoilThick(),
pDet->GetGasThick(),
pDet->GetFoilNumber(),
"GammaXTRadiator"));

}

Here for the foam/fiber radiators the values 1000 and 100 are the 𝜈 parameters (which can be varied) of
the Gamma distribution for the foil and gas gaps, respectively. Classes G4TransparentRegXTRadiator and
G4XTRTransparentRegRadModel correspond (14.5) to 𝑛 and 𝑛𝑒𝑓𝑓 , respectively.

14.2 Scintillation

Every scintillating material has a characteristic light yield, 𝑌 , [photons/MeV], and an intrinsic resolution which gener-
ally broadens the statistical distribution, 𝜎𝑖/𝜎𝑠 > 1, due to impurities which are typical for doped crystals like NaI(Tl)
and CsI(Tl). The average yield can have a non-linear dependence on the local energy deposition. Scintillators also
have a time distribution spectrum with one or more exponential decay time constants, 𝜏𝑖, with each decay component
having its intrinsic photon emission spectrum. These are empirical parameters typical for each material.

The generation of scintillation light can be simulated by sampling the number of photons from a Poisson distribution.
This distribution is based on the energy lost during a step in a material and on the scintillation properties of that
material. The frequency of each photon is sampled from the empirical spectra. The photons are generated evenly
along the track segment and are emitted uniformly into 4𝜋 with a random linear polarization.

14.3 Čerenkov Effect

The radiation of Čerenkov light occurs when a charged particle moves through a dispersive medium faster than the
speed of light in that medium. A dispersive medium is one whose index of refraction is an increasing function of
photon energy. Two things happen when such a particle slows down:

1. a cone of Čerenkov photons is emitted, with the cone angle (measured with respect to the particle momentum)
decreasing as the particle loses energy;

2. the momentum of the photons produced increases, while the number of photons produced decreases.

When the particle velocity drops below the local speed of light, photons are no longer emitted. At that point, the
Čerenkov cone collapses to zero. In order to simulate Čerenkov radiation the number of photons per track length must
be calculated. The formulae used for this calculation can be found below and in [JDJackson98][eal00]. Let 𝑛 be the
refractive index of the dielectric material acting as a radiator. Here 𝑛 = 𝑐/𝑐′ where 𝑐′ is the group velocity of light in
the material, hence 1 ≤ 𝑛. In a dispersive material 𝑛 is an increasing function of the photon energy 𝜖 (𝑑𝑛/𝑑𝜖 ≥ 0). A
particle traveling with speed 𝛽 = 𝑣/𝑐 will emit photons at an angle 𝜃 with respect to its direction, where 𝜃 is given by

cos 𝜃 =
1

𝛽𝑛
.

From this follows the limitation for the momentum of the emitted photons:

𝑛(𝜖𝑚𝑖𝑛) =
1

𝛽
.

Photons emitted with an energy beyond a certain value are immediately re-absorbed by the material; this is the window
of transparency of the radiator. As a consequence, all photons are contained in a cone of opening angle cos 𝜃𝑚𝑎𝑥 =
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1/(𝛽𝑛(𝜖𝑚𝑎𝑥)). The average number of photons produced is given by the relations:

𝑑𝑁 =
𝛼𝑧2

~𝑐
sin2 𝜃𝑑𝜖𝑑𝑥 =

𝛼𝑧2

~𝑐
(1 − 1

𝑛2𝛽2
)𝑑𝜖𝑑𝑥

≈ 370𝑧2
photons

eV cm
(1 − 1

𝑛2𝛽2
)𝑑𝜖𝑑𝑥

and the number of photons generated per track length is

𝑑𝑁

𝑑𝑥
≈ 370𝑧2

∫︁ 𝜖𝑚𝑎𝑥

𝜖𝑚𝑖𝑛

𝑑𝜖

(︂
1 − 1

𝑛2𝛽2

)︂
= 370𝑧2

[︂
𝜖𝑚𝑎𝑥 − 𝜖𝑚𝑖𝑛 − 1

𝛽2

∫︁ 𝜖𝑚𝑎𝑥

𝜖𝑚𝑖𝑛

𝑑𝜖

𝑛2(𝜖)

]︂
.

The number of photons produced is calculated from a Poisson distribution with a mean of ⟨𝑛⟩ = StepLength 𝑑𝑁/𝑑𝑥.
The energy distribution of the photon is then sampled from the density function

𝑓(𝜖) =

[︂
1 − 1

𝑛2(𝜖)𝛽2

]︂
.

14.4 Synchrotron Radiation

14.4.1 Photon spectrum

Synchrotron radiation photons are emitted by relativistic charged particles traveling in magnetic
fields. The properties of synchrotron radiation are well understood and described in textbooks
[AASokolovIMTernov86][JDJackson98][Hof04].

In the simplest case, we have an electron of momentum 𝑝 moving perpendicular to a homogeneous magnetic field 𝐵.
The magnetic field will keep the particle on a circular path, with radius

𝜌 =
𝑝

𝑒𝐵
=
𝑚𝛾𝛽𝑐

𝑒𝐵
. Numerically we have 𝜌[m] = 𝑝[GeV/c]

3.336 m

𝐵[T]
. (14.7)

In general, there will be an arbitrary angle 𝜃 between the local magnetic field B and momentum vector p of the particle.
The motion has a circular component in the plane perpendicular to the magnetic field, and in addition a constant
momentum component parallel to the magnetic field. For a constant homogeneous field, the resulting trajectory is a
helix.

The critical energy of the synchrotron radiation can be calculated using the radius 𝜌 of Eq.(14.7) and angle 𝜃 or the
magnetic field perpendicular to the particle direction 𝐵⊥ = 𝐵 sin 𝜃 according to

𝐸𝑐 =
3

2
~𝑐
𝛾3 sin 𝜃

𝜌
=

3 ~
2𝑚

𝛾2 𝑒𝐵⊥ . (14.8)

Half of the synchrotron radiation power is radiated by photons above the critical energy.

With 𝑥 we denote the photon energy 𝐸𝛾 , expressed in units of the critical energy 𝐸𝑐

𝑥 =
𝐸𝛾

𝐸𝑐
. (14.9)

The photon spectrum (number of photons emitted per path length 𝑠 and relative energy 𝑥) can be written as

𝑑2𝑁

𝑑𝑠 𝑑𝑥
=

√
3𝛼

2𝜋

𝑒𝐵⊥

𝑚𝑐

∫︁ ∞

𝑥

𝐾5/3(𝜉) 𝑑𝜉 (14.10)

where 𝛼 = 𝑒2/ 4𝜋𝜖0~𝑐 is the dimensionless electromagnetic coupling (or fine structure) constant and 𝐾5/3 is the
modified Bessel function of the third kind.
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The number of photons emitted per unit length and the mean free path 𝜆 between two photon emissions is obtained by
integration over all photon energies. Using∫︁ ∞

0

𝑑𝑥

∫︁ ∞

𝑥

𝐾5/3(𝜉) 𝑑𝜉 =
5𝜋

3

we find that

𝑑𝑁

𝑑𝑠
=

5𝛼

2
√

3

𝑒𝐵⊥

𝑚𝛽𝑐
=

1

𝜆
.

Here we are only interested in ultra-relativistic (𝛽 ≈ 1) particles, for which 𝜆 only depends on the field 𝐵 and not on
the particle energy. We define a constant 𝜆𝐵 such that

𝜆 =
𝜆𝐵
𝐵⊥

where 𝜆𝐵 =
2
√

3

5

𝑚𝑐

𝛼 𝑒
= 0.16183 Tm .

As an example, consider a 10GeV electron, travelling perpendicular to a 1T field. It moves along a circular path of
radius 𝜌 = 33.356 m. For the Lorentz factor we have 𝛾 = 19569.5 and 𝛽 = 1 − 1.4 × 10−9. The critical energy is
𝐸𝑐 = 66.5 keV and the mean free path between two photon emissions is 𝜆 = 0.16183 m.

14.4.2 Validity

The spectrum given in Eq.(14.10) can generally be expected to provide a very accurate description for the synchrotron
radiation spectrum generated by GeV electrons in magnetic fields.

Here we discuss some known limitations and possible extensions.

For particles traveling on a circular path, the spectrum observed in one location will in fact not be a continuous
spectrum, but a discrete spectrum, consisting only of harmonics or modes 𝑛 of the revolution frequency. In practice,
the mode numbers will generally be too high to make this a visible effect. The critical mode number corresponding to
the critical energy is 𝑛𝑐 = 3/2 𝛾3. 10GeV electrons for example have 𝑛𝑐 ≈ 1013.

Synchrotron radiation can be neglected for slower particles and only becomes relevant for ultra-relativistic particles
with 𝛾 > 103. Using 𝛽 = 1 introduces an uncertainty of about 1/2𝛾2 or less than 5 × 10−7.

It is rather straightforward to extend the formulas presented here to particles other than electrons, with arbitrary charge
𝑞 and mass 𝑚, see [Bur98]. The number of photons and the power scales with the square of the charge.

The standard synchrotron spectrum of Eq.(14.10) is only valid as long as the photon energy remains small compared
to the particle energy [FHMG71][TEL82]. This is a very safe assumption for GeV electrons and standard magnets
with fields of order of Tesla.

An extension of synchrotron radiation to fields exceeding several hundred Tesla, such as those present in the beam-
beam interaction in linear-colliders, is also known as beamstrahlung. For an introduction see [Che86].

The standard photon spectrum applies to homogeneous fields and remains a good approximation for magnetic fields
which remain approximately constant over a the length 𝜌/𝛾, also known as the formation length for synchrotron
radiation. Short magnets and edge fields will result instead in more energetic photons than predicted by the standard
spectrum.

We also note that short bunches of many particles will start to radiate coherently like a single particle of the equivalent
charge at wavelengths which are longer than the bunch dimensions.

Low energy, long-wavelength synchrotron radiation may destructively interfere with conducting surfaces [JBMG97].

The soft part of the synchrotron radiation spectrum emitted by charged particles travelling through a medium will be
modified for frequencies close to and lower than the plasma frequency [Gri02].
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14.4.3 Direct inversion and generation of the photon energy spectrum

The task is to find an algorithm that effectively transforms the flat distribution given by standard pseudo-random gen-
erators into the desired distribution proportional to the expressions given in Eqs.(14.10),(14.11). The transformation
is obtained from the inverse 𝐹−1 of the cumulative distribution function 𝐹 (𝑥) =

∫︀ 𝑥

0
𝑓(𝑡)𝑑𝑡.

Leaving aside constant factors, the probability density function relevant for the photon energy spectrum is

SynRad(𝑥) =

∫︁ ∞

𝑥

𝐾5/3(𝑡)𝑑𝑡 . (14.11)

Numerical methods to evaluate 𝐾5/3 are discussed in [Luk75]. An efficient algorithm to evaluate the integral SynRad
using Chebyshev polynomials is described in [HHUmstatter81]. This has been used in an earlier version of the Monte
Carlo generator for synchrotron radiation using approximate transformations and the rejection method [Bur90].

The cumulative distribution function is the integral of the probability density function. Here we have

SynRadInt(𝑧) =

∫︁ ∞

𝑧

SynRad(𝑥) 𝑑𝑥 , (14.12)

with normalization

SynRadInt(0) =

∫︁ ∞

0

SynRad(𝑥) 𝑑𝑥 =
5𝜋

3
,

such that 3
5𝜋SynRadInt(𝑥) gives the fraction of photons above 𝑥.

It is possible to directly obtain the desired distribution with a fast and accurate algorithm using an analytical description
based on simple transformations and Chebyshev polynomials. This approach is used here.

We now describe in some detail how the analytical description was obtained. For more details see [Bur].

It turned out to be convenient to start from the normalized complement rather then Eq.(14.12) directly, that is

SynFracInt(𝑥) =
3

5𝜋

∫︁ 𝑥

0

∫︁ ∞

𝑥

𝐾5/3(𝑡)𝑑𝑡 𝑑𝑥 = 1 − 3

5𝜋
SynRadInt(𝑥) ,

which gives the fraction of photons below 𝑥.

Fig. 14.1 shows 𝑦 = SynFracInt(x) and Fig. 14.2 the inverse 𝑥 = InvSynFracInt(𝑦) together with simple approx-
imate functions. We can see, that SynFracInt can be approximated by 𝑥1/3 for small arguments, and by 1 − 𝑒−𝑥 for
large 𝑥. Consequently, we have for the inverse, InvSynFracInt(𝑦), which can be approximated for small 𝑦 by 𝑦3 and
for large 𝑦 by − log(1 − 𝑦).

Good convergence for InvSynFracInt(𝑦) was obtained using Chebyshev polynomials combined with the approximate
expressions for small and large arguments. For intermediate values, a Chebyshev polynomial can be used directly.
Table 14.1 summarizes the expressions used in the different intervals.

Table 14.1: Expressions used in calculation of InvSynFractInt for differ-
ent intervals.

𝑦 𝑥 = InvSynFracInt(𝑦)
𝑦 < 0.7 𝑦3 PCh(𝑦)
0.7 ≤ 𝑦 ≤ 0.9999 PCh(𝑦)
𝑦 > 0.9999 − log(1 − 𝑦)PCh(− log(1 − 𝑦))

The procedure for Monte Carlo simulation is to generate 𝑦 at random uniformly distributed between 0 at 1, as provided
by standard random generators, and then to calculate the energy 𝑥 in units of the critical energy according to 𝑥 =
InvSynFracInt(𝑦).

The numerical accuracy of the energy spectrum presented here is about 14 decimal places, close to the machine
precision. Fig. 14.3 shows a comparison of generated and expected spectra.

A GEANT4 display of an electron moving in a magnetic field radiating synchrotron photons is presented in Fig. 14.4.
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Fig. 14.1: SynFracInt on a log 𝑥 scale. The functions 𝑥1/3, 𝑦3 and 1 − 𝑒−𝑥, − log(1 − 𝑦) are shown as dashed lines.

Fig. 14.2: InvSynFracInt on a log 𝑥 scale. The functions 𝑥1/3, 𝑦3 and 1 − 𝑒−𝑥, − log(1 − 𝑦) are shown as dashed
lines.
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Fig. 14.3: Comparison of the exact (smooth curve) and generated (histogram) spectra for 2 × 107 events. The photon
spectrum is shown on the left and the power spectrum on the right side.

Fig. 14.4: GEANT4 display. 10 GeV e+ moving initially in x-direction, bends downwards on a circular path by a 0.1T
magnetic field in z-direction.
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14.4.4 Properties of the Power Spectra

The normalised probability function describing the photon energy spectrum is

𝑛𝛾(𝑥) =
3

5𝜋

∫︁ ∞

𝑥

𝐾5/3(𝑡)𝑑𝑡 . (14.13)

𝑛𝛾(𝑥) gives the fraction of photons in the interval 𝑥 to 𝑥 + 𝑑𝑥, where 𝑥 is the photon energy in units of the critical
energy. The first moment or mean value is

𝜇 =

∫︁ ∞

0

𝑥𝑛𝛾(𝑥) 𝑑𝑥 =
8

15
√

3
.

implying that the mean photon energy is 8
15

√
3

= 0.30792 of the critical energy. The second moment about the mean,
or variance, is

𝜎2 =

∫︁ ∞

0

(𝑥− 𝜇)2 𝑛𝛾(𝑥) 𝑑𝑥 =
211

675
,

and the r.m.s. value of the photon energy spectrum is 𝜎 =
√︁

211
675 = 0.5591.

The normalised power spectrum is

𝑃𝛾(𝑥) =
9
√

3

8𝜋
𝑥

∫︁ ∞

𝑥

𝐾5/3(𝑡)𝑑𝑡 .

𝑃𝛾(𝑥) gives the fraction of the power which is radiated in the interval 𝑥 to 𝑥+ 𝑑𝑥.

Half of the power is radiated below the critical energy∫︁ 1

0

𝑃𝛾(𝑥) 𝑑𝑥 = 0.5000

The mean value of the power spectrum is

𝜇 =

∫︁ ∞

0

𝑥𝑃𝛾(𝑥) 𝑑𝑥 =
55

24
√

3
= 1.32309 .

The variance is

𝜎2 =

∫︁ ∞

0

(𝑥− 𝜇)2 𝑃𝛾(𝑥) 𝑑𝑥 =
2351

1728
,

and the r.m.s. width is 𝜎 =
√︁

2351
1728 = 1.16642.
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CHAPTER

FIFTEEN

OPTICAL PHOTONS

15.1 Interactions of optical photons

Optical photons are produced when a charged particle traverses:

1. a dielectric material with velocity above the Čerenkov threshold;

2. a scintillating material.

15.1.1 Physics processes for optical photons

A photon is called optical when its wavelength is much greater than the typical atomic spacing, for instance when
𝜆 ≥ 10 nm which corresponds to an energy 𝐸 ≤ 100 eV. Production of an optical photon in a HEP detector is
primarily due to:

1. Čerenkov effect;

2. Scintillation.

Optical photons undergo three kinds of interactions:

1. Elastic (Rayleigh) scattering;

2. Absorption;

3. Medium boundary interactions.

Rayleigh scattering

For optical photons Rayleigh scattering is usually unimportant. For 𝜆 = .2 𝜇m we have 𝜎𝑅𝑎𝑦𝑙𝑒𝑖𝑔ℎ ≈ .2𝑏 for 𝑁2 or 𝑂2

which gives a mean free path of ≈ 1.7 km in air and ≈ 1 m in quartz. Two important exceptions are aerogel, which is
used as a Čerenkov radiator for some special applications and large water Čerenkov detectors for neutrino detection.

The differential cross section in Rayleigh scattering, 𝑑𝜎/𝑑Ω, is proportional to 1 + cos2 𝜃, where 𝜃 is the polar angle
of the new polarization with respect to the old polarization.

Absorption

Absorption is important for optical photons because it determines the lower 𝜆 limit in the window of transparency of
the radiator. Absorption competes with photo-ionisation in producing the signal in the detector, so it must be treated
properly in the tracking of optical photons.
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Medium boundary effects

When a photon arrives at the boundary of a dielectric medium, its behaviour depends on the nature of the two materials
which join at that boundary:

Case dielectric → dielectric. The photon can be transmitted (refracted ray) or reflected (reflected ray). In case where
the photon can only be reflected, total internal reflection takes place.

Case dielectric → metal. The photon can be absorbed by the metal or reflected back into the dielectric. If the photon
is absorbed it can be detected according to the photoelectron efficiency of the metal.

Case dielectric → black material. A black material is a tracking medium for which the user has not defined any
optical property. In this case the photon is immediately absorbed undetected.

15.1.2 Photon polarization

The photon polarization is defined as a two component vector normal to the direction of the photon:(︂
𝑎1𝑒

𝑖Φ1

𝑎2𝑒𝑖Φ2

)︂
= 𝑒Φ𝑜

(︂
𝑎1𝑒

𝑖Φ𝑐

𝑎2𝑒−𝑖Φ𝑐

)︂
where Φ𝑐 = (Φ1 − Φ2)/2 is called circularity and Φ𝑜 = (Φ1 + Φ2)/2 is called overall phase. Circularity gives the
left- or right-polarization characteristic of the photon. RICH materials usually do not distinguish between the two
polarizations and photons produced by the Čerenkov effect and scintillation are linearly polarized, that is Φ𝑐 = 0.

The overall phase is important in determining interference effects between coherent waves. These are important only
in layers of thickness comparable with the wavelength, such as interference filters on mirrors. The effects of such
coatings can be accounted for by the empirical reflectivity factor for the surface, and do not require a microscopic
simulation. GEANT4 does not keep track of the overall phase.

Vector polarization is described by the polarization angle tan Ψ = 𝑎2/𝑎1. Reflection/transmission probabilities are
sensitive to the state of linear polarization, so this has to be taken into account. One parameter is sufficient to describe
vector polarization, but to avoid too many trigonometrical transformations, a unit vector perpendicular to the direction
of the photon is used in GEANT4. The polarization vector is a data member of G4DynamicParticle.

15.1.3 Tracking of the photons

Optical photons are subject to in flight absorption, Rayleigh scattering and boundary action. As explained above,
the status of the photon is defined by two vectors, the photon momentum (𝑝 = ~�⃗�) and photon polarization (�⃗�). By
convention the direction of the polarization vector is that of the electric field. Let also �⃗� be the normal to the material
boundary at the point of intersection, pointing out of the material which the photon is leaving and toward the one
which the photon is entering. The behaviour of a photon at the surface boundary is determined by three quantities:

1. refraction or reflection angle, this represents the kinematics of the effect;

2. amplitude of the reflected and refracted waves, this is the dynamics of the effect;

3. probability of the photon to be refracted or reflected, this is the quantum mechanical effect which we have to
take into account if we want to describe the photon as a particle and not as a wave.

As said above, we distinguish three kinds of boundary action, dielectric → black material, dielectric → metal, dielectric
→ dielectric. The first case is trivial, in the sense that the photon is immediately absorbed and it goes undetected.

To determine the behaviour of the photon at the boundary, we will at first treat it as an homogeneous monochromatic
plane wave:

�⃗� = �⃗�0𝑒
𝑖�⃗�·�⃗�−𝑖𝜔𝑡

�⃗� =
√
𝜇𝜖
�⃗� × �⃗�

𝑘
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Case dielectric → dielectric

In the classical description the incoming wave splits into a reflected wave (quantities with a double prime) and a
refracted wave (quantities with a single prime). Our problem is solved if we find the following quantities:

�⃗�′ = �⃗�′
0𝑒

𝑖�⃗�′·�⃗�−𝑖𝜔𝑡

�⃗�′′ = �⃗�′′
0 𝑒

𝑖�⃗�′′·�⃗�−𝑖𝜔𝑡

For the wave numbers the following relations hold:

|⃗𝑘| = |⃗𝑘′′| = 𝑘 =
𝜔

𝑐

√
𝜇𝜖

|⃗𝑘′| = 𝑘′ =
𝜔

𝑐

√︀
𝜇′𝜖′

Where the speed of the wave in the medium is 𝑣 = 𝑐/
√
𝜇𝜖 and the quantity 𝑛 = 𝑐/𝑣 =

√
𝜇𝜖 is called refractive index

of the medium. The condition that the three waves, refracted, reflected and incident have the same phase at the surface
of the medium, gives us the well known Fresnel law:

(�⃗� · �⃗�)𝑠𝑢𝑟𝑓 = (�⃗�′ · �⃗�)𝑠𝑢𝑟𝑓 = (�⃗�′′ · �⃗�)𝑠𝑢𝑟𝑓

𝑘 sin 𝑖 = 𝑘′ sin 𝑟 = 𝑘′′ sin 𝑟′

where 𝑖, 𝑟, 𝑟′ are, respectively, the angle of the incident, refracted and reflected ray with the normal to the surface.
From this formula the well known condition emerges:

𝑖 = 𝑟′

sin 𝑖

sin 𝑟
=

√︃
𝜇′𝜖′

𝜇𝜖
=
𝑛′

𝑛

The dynamic properties of the wave at the boundary are derived from Maxwell’s equations which impose the continuity
of the normal components of �⃗� and �⃗� and of the tangential components of �⃗� and �⃗� at the surface boundary. The
resulting ratios between the amplitudes of the the generated waves with respect to the incoming one are expressed in
the two following cases:

1. a plane wave with the electric field (polarization vector) perpendicular to the plane defined by the photon direc-
tion and the normal to the boundary:

𝐸′
0

𝐸0
=

2𝑛 cos 𝑖

𝑛 cos 𝑖 = 𝜇
𝜇′𝑛′ cos 𝑟

=
2𝑛 cos 𝑖

𝑛 cos 𝑖+ 𝑛′ cos 𝑟

𝐸′′
0

𝐸0
=
𝑛 cos 𝑖− 𝜇

𝜇′𝑛
′ cos 𝑟

𝑛 cos 𝑖+ 𝜇
𝜇′𝑛′ cos 𝑟

=
𝑛 cos 𝑖− 𝑛′ cos 𝑟

𝑛 cos 𝑖+ 𝑛′ cos 𝑟

where we suppose, as it is legitimate for visible or near-visible light, that 𝜇/𝜇′ ≈ 1;

2. a plane wave with the electric field parallel to the above surface:

𝐸′
0

𝐸0
=

2𝑛 cos 𝑖
𝜇
𝜇′𝑛′ cos 𝑖+ 𝑛 cos 𝑟

=
2𝑛 cos 𝑖

𝑛′ cos 𝑖+ 𝑛 cos 𝑟

𝐸′′
0

𝐸0
=

𝜇
𝜇′𝑛

′ cos 𝑖− 𝑛 cos 𝑟
𝜇
𝜇′𝑛′ cos 𝑖+ 𝑛 cos 𝑟

=
𝑛′ cos 𝑖− 𝑛 cos 𝑟

𝑛′ cos 𝑖+ 𝑛 cos 𝑟

with the same approximation as above.
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We note that in case of photon perpendicular to the surface, the following relations hold:

𝐸′
0

𝐸0
=

2𝑛

𝑛′ + 𝑛
,

𝐸′′
0

𝐸0
=
𝑛′ − 𝑛

𝑛′ + 𝑛

where the sign convention for the parallel field has been adopted. This means that if 𝑛′ > 𝑛 there is a phase inversion
for the reflected wave.

Any incoming wave can be separated into one piece polarized parallel to the plane and one polarized perpendicular,
and the two components treated accordingly.

To maintain the particle description of the photon, the probability to have a refracted or reflected photon must be
calculated. The constraint is that the number of photons be conserved, and this can be imposed via the conservation
of the energy flux at the boundary, as the number of photons is proportional to the energy. The energy current is given
by the expression:

�⃗� =
1

2

𝑐

4𝜋

√
𝜇𝜖�⃗� × �⃗� =

𝑐

8𝜋

√︂
𝜖

𝜇
𝐸2

0𝑘

and the energy balance on a unit area of the boundary requires that:

�⃗� · �⃗� = �⃗�′ · �⃗�− �⃗�′′ · �⃗�

𝑆 cos 𝑖 = 𝑆′ cos 𝑟 + 𝑆′′ cos 𝑖

𝑐

8𝜋

1

𝜇
𝑛𝐸2

0 cos 𝑖 =
𝑐

8𝜋

1

𝜇′𝑛
′𝐸′2

0 cos 𝑟 +
𝑐

8𝜋

1

𝜇
𝑛𝐸′′2

0 cos 𝑖

If we set again 𝜇/𝜇′ ≈ 1, then the transmission probability for the photon will be:

𝑇 =

(︂
𝐸′

0

𝐸0

)︂2
𝑛′ cos 𝑟

𝑛 cos 𝑖

and the corresponding probability to be reflected will be 𝑅 = 1 − 𝑇 .

In case of reflection, the relation between the incoming photon (⃗𝑘, �⃗�), the refracted one (⃗𝑘′, �⃗�′) and the reflected one
(⃗𝑘′′, �⃗�′′) is given by the following relations:

�⃗� = �⃗� × �⃗�

�⃗�⊥ = (
�⃗� · �⃗�
|�⃗�|

)
�⃗�

|�⃗�|
�⃗�‖ = �⃗�− �⃗�⊥

𝑒′‖ = 𝑒‖
2𝑛 cos 𝑖

𝑛′ cos 𝑖+ 𝑛 cos 𝑟

𝑒′⊥| = 𝑒⊥
2𝑛 cos 𝑖

𝑛 cos 𝑖+ 𝑛′ cos 𝑟

𝑒′′‖ =
𝑛′

𝑛
𝑒′‖ − 𝑒‖

𝑒′′⊥ = 𝑒′⊥ − 𝑒⊥

After transmission or reflection of the photon, the polarization vector is re-normalized to 1. In the case where sin 𝑟 =
𝑛 sin 𝑖/𝑛′ > 1 then there cannot be a refracted wave, and in this case we have a total internal reflection according to
the following formulas:

�⃗�′′ = �⃗� − 2(�⃗� · �⃗�)�⃗�

�⃗�′′ = −�⃗�+ 2(�⃗� · �⃗�)�⃗�
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Case dielectric → metal

In this case the photon cannot be transmitted. So the probability for the photon to be absorbed by the metal is estimated
according to the table provided by the user. If the photon is not absorbed, it is reflected.

15.1.4 Mie Scattering in Henyey-Greenstein Approximation

(Author: X. Qian, 2010-07-04)

Mie Scattering (or Mie solution) is an analytical solution of Maxwell’s equations for the scattering of optical photon
by spherical particles. The general introduction of Mie scattering can be found in Ref. [wik17]. The analytical express
of Mie Scattering are very complicated since they are a series sum of Bessel functions [Fit14]. Therefore, the exact
expression of Mie scattering is not suitable to be included in the Monte Carlo simulation.

One common approximation made is called “Henyey-Greenstein” [ZS10]. It has been used by Vlasios Vasileiou in
GEANT4 simulation of Milagro experiment [Col07]. In the HG approximation,

𝑑𝜎

𝑑Ω
∼ 1 − 𝑔2

(1 + 𝑔2 − 2𝑔 cos(𝜃))3/2

where

𝑑Ω = 𝑑 cos(𝜃)𝑑𝜑

and 𝑔 = ⟨cos(𝜃)⟩ can be viewed as a free constant labeling the angular distribution.

Therefore, the normalized density function of HG approximation can be expressed as:

𝑃 (cos(𝜃0)) =

∫︀ cos(𝜃0)

−1
𝑑𝜎
𝑑Ω𝑑 cos(𝜃)∫︀ 1

−1
𝑑𝜎
𝑑Ω𝑑 cos(𝜃)

=
1 − 𝑔2

2𝑔

(︂
1

(1 + 𝑔2 − 2𝑔 cos(𝜃0))
− 1

1 + 𝑔

)︂
Therefore,

cos(𝜃) =
1

2𝑔
·
(︂

1 + 𝑔2 − (
1 − 𝑔2

1 − 𝑔 + 2𝑔 · 𝑝
)2
)︂

= 2𝑝
(1 + 𝑔)2(1 − 𝑔 + 𝑔𝑝)

(1 − 𝑔 + 2𝑔𝑝)2
− 1

where 𝑝 is a uniform random number between 0 and 1.

Similarly, the backward angle where 𝜃𝑏 = 𝜋 − 𝜃𝑓 can also be simulated by replacing 𝜃𝑓 to 𝜃𝑏. Therefore the final
differential cross section can be viewed as:

𝑑𝜎

𝑑Ω
= 𝑟

𝑑𝜎

𝑑Ω
(𝜃𝑓 , 𝑔𝑓 ) + (1 − 𝑟)

𝑑𝜎

𝑑Ω
(𝜃𝑏, 𝑔𝑏)

This is the exact approach used in Ref. [Vas]. Here 𝑟 is the ratio factor between the forward angle and backward angle.

In implementing the above MC method into GEANT4, the treatment of polarization and momentum are similar to that
of Rayleigh scattering. We require the final polarization direction to be perpendicular to the momentum direction. We
also require the final momentum, initial polarization and final polarization to be in the same plane.
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CHAPTER

SIXTEEN

GEANT4-DNA

16.1 GEANT4-DNA physical processes and models

The GEANT4-DNA physical processes and models (theoretical, semi-empirical) are adapted for track structure sim-
ulations in liquid water and DNA material down to the eV scale. They are described on a dedicated web site:
http://geant4-dna.org, which includes a full list of publications.

Any report or published results obtained using the GEANT4-DNA software shall cite the following publications:

• Comparison of |Geant4| very low energy cross section models with experimental data in water, S. Incerti et al.,
Med. Phys. 37 (2010) 4692-4708 http://dx.doi.org/10.1118/1.3476457

• Track structure modeling in liquid water: A review of the Geant4-DNA very low energy extension of the Geant4
Monte Carlo simulation toolkit, M. A. Bernal et al., Phys. Med. 31 (2015) 861-874 http://dx.doi.org/10.1016/j.
ejmp.2015.10.087
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CHAPTER

SEVENTEEN

MICROELECTRONICS

17.1 The MicroElec extension for microelectronics applications

The GEANT4-MicroElec1 extension [Inc], developed by CEA, aims at modeling the effect of ionizing radiation in
highly integrated microelectronic components. It describes the transport and generation of very low energy electrons
by incident electrons, protons and heavy ions in silicon.

All GEANT4-MicroElec physics processes and models simulate step-by-step interactions of particles in silicon down to
the eV scale; they are pure discrete processes. Table 17.1 summarizes the list of physical interactions per particle type
that can be modeled using the GEANT4-MicroElec extension, along with the corresponding process classes, model
classes, low energy limit applicability of models, high energy applicability of models and energy threshold below
which the incident particle is killed (stopped and the kinetic energy is locally deposited, because of the low energy
limit applicability of the inelastic model). All models are interpolated. For now, they are valid for silicon only (use the
G4_Si GEANT4-NIST material).

Table 17.1: List of G4MicroElec physical interactions
Particle Interaction Process Model Range Kill
Electron Elastic scatter-

ing
G4MicroElastic G4MicroElecElasticModel 5 eV–100 MeV 16.7 eV

Electron Ionisation G4MicroElecInelastic G4MicroElecInelasticModel16.7 eV–100 MeV –
Protons,
ions

Ionisation G4MicroElecInelastic G4MicroElecInelasticModel50 keV/u–23 MeV/u –

All details regarding the physics and formula used for these processes and models and available in [AV12] for incident
electrons and in [AVP12] for incident protons and heavy ions.

1 Previously called MuElec.
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CHAPTER

EIGHTEEN

SHOWER PARAMETERIZATIONS

18.1 Gflash Shower Parameterizations

The computing time needed for the simulation of high energy electromagnetic showers can become very large, since it
increases approximately linearly with the energy absorbed in the detector. Using parameterizations instead of individ-
ual particle tracking for electromagnetic (sub)showers can speed up the simulations considerably without sacrificing
much precision. The Gflash package allows the parameterization of electron and positron showers in homogeneous
(for the time being) calorimeters and is based on the parameterization described in Ref. [GP93] .

18.1.1 Parameterization Ansatz

The spatial energy distribution of electromagnetic showers is given by three probability density functions (pdf),

𝑑𝐸(�⃗�) = 𝐸 𝑓(𝑡)𝑑𝑡 𝑓(𝑟)𝑑𝑟 𝑓(𝜑)𝑑𝜑,

describing the longitudinal, radial, and azimuthal energy distributions. Here 𝑡 denotes the longitudinal shower depth in
units of radiation length, 𝑟 measures the radial distance from the shower axis in Molière units, and 𝜑 is the azimuthal
angle. The start of the shower is defined by the space point where the electron or positron enters the calorimeter, which
is different from the original Gflash. A gamma distribution is used for the parameterization of the longitudinal shower
profile, 𝑓(𝑡). The radial distribution 𝑓(𝑟), is described by a two-component ansatz. In 𝜑, it is assumed that the energy
is distributed uniformly: 𝑓(𝜑) = 1/2𝜋.

18.1.2 Longitudinal Shower Profiles

The average longitudinal shower profiles can be described by a gamma distribution [LS75]:⟨
1

𝐸

𝑑𝐸(𝑡)

𝑑𝑡

⟩
= 𝑓(𝑡) =

(𝛽𝑡)𝛼−1𝛽 exp(−𝛽𝑡)
Γ(𝛼)

.

The center of gravity, ⟨𝑡⟩, and the depth of the maximum, 𝑇 , are calculated from the shape parameter 𝛼 and the scaling
parameter 𝛽 according to:

⟨𝑡⟩ =
𝛼

𝛽

𝑇 =
𝛼− 1

𝛽
.

(18.1)

In the parameterization all lengths are measured in units of radiation length (𝑋0), and energies in units of the critical
energy (𝐸𝑐 = 2.66

(︀
𝑋0

𝑍
𝐴

)︀1.1
). This allows material independence, since the longitudinal shower moments are equal
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in different materials, according to Ref. [Ros52]. The following equations are used for the energy dependence of
𝑇ℎ𝑜𝑚 and (𝛼ℎ𝑜𝑚), with 𝑦 = 𝐸/𝐸𝑐 and 𝑡 = 𝑥/𝑋0, 𝑥 being the longitudinal shower depth:

𝑇ℎ𝑜𝑚 = ln 𝑦 + 𝑡1

𝛼ℎ𝑜𝑚 = 𝑎1 + (𝑎2 + 𝑎3/𝑍) ln 𝑦.

The 𝑦-dependence of the fluctuations can be described by:

𝜎 = (𝑠1 + 𝑠2 ln 𝑦)−1. (18.2)

The correlation between ln𝑇ℎ𝑜𝑚 and ln𝛼ℎ𝑜𝑚 is given by:

𝜌(ln𝑇ℎ𝑜𝑚, ln𝛼ℎ𝑜𝑚) ≡ 𝜌 = 𝑟1 + 𝑟2 ln 𝑦. (18.3)

From these formulae, correlated and varying parameters 𝛼𝑖 and 𝛽𝑖 are generated according to(︂
ln𝑇𝑖
ln𝛼𝑖

)︂
=

(︂
⟨ln𝑇 ⟩
⟨ln𝛼⟩

)︂
+ 𝐶

(︂
𝑧1
𝑧2

)︂
with

𝐶 =

(︂
𝜎(ln𝑇 ) 0

0 𝜎(ln𝛼)

)︂⎛⎝ √︁
1+𝜌
2

√︁
1−𝜌
2√︁

1+𝜌
2 −

√︁
1−𝜌
2

⎞⎠
𝜎(ln𝛼) and 𝜎(ln𝑇 ) are the fluctuations of 𝑇ℎ𝑜𝑚 and (𝛼ℎ𝑜𝑚. The values of the coefficients can be found in
Ref.[GP93].

18.1.3 Radial Shower Profiles

For the description of average radial energy profiles,

𝑓(𝑟) =
1

𝑑𝐸(𝑡)

𝑑𝐸(𝑡, 𝑟)

𝑑𝑟
,

a variety of different functions can be found in the literature. In Gflash the following two-component ansatz, an
extension of that in Ref. [GRP90], was used:

𝑓(𝑟) = 𝑝𝑓𝐶(𝑟) + (1 − 𝑝)𝑓𝑇 (𝑟)

= 𝑝
2𝑟𝑅2

𝐶

(𝑟2 +𝑅2
𝐶)2

+ (1 − 𝑝)
2𝑟𝑅2

𝑇

(𝑟2 +𝑅2
𝑇 )2

with

0 ≤ 𝑝 ≤ 1.

Here 𝑅𝐶 (𝑅𝑇 ) is the median of the core (tail) component and 𝑝 is a probability giving the relative weight of the core
component. The variable 𝜏 = 𝑡/𝑇 , which measures the shower depth in units of the depth of the shower maximum,
is used in order to generalize the radial profiles. This makes the parameterization more convenient and separates the
energy and material dependence of various parameters. The median of the core distribution, 𝑅𝐶 , increases linearly
with 𝜏 . The weight of the core, 𝑝, is maximal around the shower maximum, and the width of the tail, 𝑅𝑇 , is minimal
at 𝜏 ≈ 1.

The following formulae are used to parameterize the radial energy density distribution for a given energy and material:

𝑅𝐶,ℎ𝑜𝑚(𝜏) = 𝑧1 + 𝑧2𝜏

𝑅𝑇,ℎ𝑜𝑚(𝜏) = 𝑘1{exp(𝑘3(𝜏 − 𝑘2)) + exp(𝑘4(𝜏 − 𝑘2))}

𝑝ℎ𝑜𝑚(𝜏) = 𝑝1 exp

{︂
𝑝2 − 𝜏

𝑝3
− exp

(︂
𝑝2 − 𝜏

𝑝3

)︂}︂
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The parameters 𝑧1 · · · 𝑝3 are either constant or simple functions of ln𝐸 or 𝑍.

Radial shape fluctuations are also taken into account. A detailed explanation of this procedure, as well as a list of all
the parameters used in Gflash, can be found in Ref. [GP93].

18.1.4 Gflash Performance

The parameters used in this Gflash implementation were extracted from full simulation studies with Geant 3. They
also give good results inside the GEANT4 fast shower framework when compared with the full electromagnetic shower
simulation. However, if more precision or higher particle energies are required, retuning may be necessary. For the
longitudinal profiles the difference between full simulation and Gflash parameterization is at the level of a few percent.
Because the radial profiles are slightly broader in Geant3 than in GEANT4, the differences may reach >10%. The gain
in speed, on the other hand, is impressive. The simulation of a 1 TeV electron in a PbWO4 cube is 160 times faster with
Gflash. Gflash can also be used to parameterize electromagnetic showers in sampling calorimeters. So far, however,
only homogeneous materials are supported.
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CHAPTER

NINETEEN

PHONON-LATTICE INTERACTIONS

19.1 Introduction

Phonons are quantized vibrations in solid-state lattices or amorphous solids, of interest to the low-temperature physics
community. Phonons are typically produced when a heat source excites lattice vibrations, or when energy from
radiation is deposited through elastic interactions with nuclei of lattice atoms. Below 1 K, thermal phonons are highly
suppressed; this leaves only acoustic and optical phonons to propagate.

There is significant interest from the condensed-matter community and direct dark-matter searches to integrate phonon
production and propagation with the excellent nuclear and electromagnetic simulations available in GEANT4. An
effort in this area began in 2011 by the SuperCDMS Collaboration [BAB+12] and is continuing; initial developments
in phonon propagation have been incorporated into the GEANT4 toolkit for Release 10.0.

As quasiparticles, phonons at low temperatures may be treated in the GEANT4 particle-tracking framework,
carrying well defined momenta, and propagating in specific directions until they interact [BAB+12]. The
present implementation handles ballistic transport, scattering with mode-mixing, and anharmonic downconversion
[Tam93a][Tam93b][Tam85] of acoustic phonons. Optical phonon transport and interactions between propagating
phonons and thermal background phonons are not treated.

Production of phonons from charged particle energy loss or by photon-lattice interactions are in development, but are
not yet included in the GEANT4 toolkit.

19.2 Phonon Propagation

The propagation of phonons is governed by the three-dimensional wave equation [Wol98]:

𝜌𝜔2𝑒𝑖 = 𝐶𝑖𝑗𝑙𝑚𝑘𝑗𝑘𝑚𝑒𝑙 (19.1)

where 𝜌 is the crystal mass density and 𝐶𝑖𝑗𝑚𝑙 is the elasticity tensor; the phonon is described by its wave vector �⃗�,
frequency 𝜔 and polarization �⃗�.

For a given wave vector �⃗�, Eq.(19.1) has three eigenvalues 𝜔 and three polarization eigenvectors �⃗�. The three polar-
ization states are labelled Fast Transverse (FT), Slow Transverse (ST) and Longitudinal (L). The direction and speed
of propagation of the phonon are given by the group velocity 𝑣𝑔 = 𝑑𝜔/𝑑𝑘, which may be computed from Eq.(19.1):

𝑣𝑔 =
𝑑𝜔(�⃗�)

𝑑�⃗�
= ∇𝑘𝜔(�⃗�) . (19.2)

Since the lattice tensor 𝐶𝑖𝑗𝑚𝑙 is anisotropic in general, the phonon group velocity 𝑣𝑔 is not parallel to the momen-
tum vector ~�⃗�. This anisotropic transport leads to a focussing effect, where phonons are driven to directions which
correspond to the highest density of eigenvectors �⃗�. Experimentally, this is seen [NW79] as caustics in the energy
distribution resulting from a point-like phonon source isotropic in �⃗�-space, as shown in Fig. 19.1.
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Fig. 19.1: Left: outline of phonon caustics in germanium as predicted by Northrop and Wolfe [NW79]. Right: Phonon
caustics as simulated using the GEANT4 phonon transport code.

19.3 Lattice Parameters

19.4 Scattering and Mode Mixing

In a pure crystal, isotope scattering occurs when a phonon interacts with an isotopic substitution site in the lattice. We
treat it as an elastic scattering process, where the phonon momentum direction (wave vector) and polarization are both
randomized. The scattering rate for a phonon of frequency 𝜈 (𝜔/2𝜋) is given by [Tam93b]

Γ𝑠𝑐𝑎𝑡𝑡𝑒𝑟 = 𝐵𝜈4 (19.3)

where Γ𝑠𝑐𝑎𝑡𝑡𝑒𝑟 is the number of scattering events per unit time, and 𝐵 is a constant of proportionality derived from the
elasticity tensor (see Eq. 11 and Table 1 in [Tam85]). For germanium, 𝐵 = 3.67 × 10−41s3. [Tam85]

At each scattering event, the phonon polarization may change between any of the three states 𝐿, 𝑆𝑇 , 𝐹𝑇 . The
branching ratios for the polarizations are determined by the relative density of allowed states in the lattice. This
process is often referred to as mode mixing.

19.5 Anharmonic Downconversion

An energetic phonon may interact in the crystal to produce two phonons of reduced energy. This anharmonic down-
conversion conserves energy (⃗𝑘 = �⃗�′+�⃗�′′), but not momentum, since momentum is exchanged with the bulk lattice. In
principle, all three polarization states may decay through downconversion. In practice, however, the rate for𝐿-phonons
completely dominates the energy evolution of the system, with downconversion events from other polarization states
being negligible [Tam93b].

The total downconversion rate Γ𝑎𝑛ℎ for an 𝐿-phonon of frequency 𝜈 is given by [Tam93b]

Γ𝑎𝑛ℎ = 𝐴𝜈5 (19.4)

where (as in Eq.(19.3)) 𝐴 is a constant of proportionality derived from the elasticity tensor (see Eq. 11 and Table 1 in
[Tam85]). For germanium, 𝐴 = 6.43 × 10−55s4. [Tam85]
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Downconversion may produce either two transversely polarized phonons, or one transverse and one longitudinal. The
relative rates are determined by dynamical constants derived from the elasticity tensor 𝐶𝑖𝑗𝑘𝑙.

As can be seen from Eqs.(19.3) and (19.4), phonon interactions depend strongly on energy ~𝜈. High energy phonons
(𝜈 ∼ THz) start out in a diffusive regime with high isotope scattering and downconversion rates and mean free paths of
order microns. After several such interactions, mean free paths increase to several centimeters or more. This transition
from a diffuse to a ballistic transport mode is commonly referred to as “quasi-diffuse” and it controls the time evolution
of phonon heat pulses.

Simulation of heat pulse propagation using our GEANT4 transport code has been described previously [BAB+12] and
shows good agreement with experiment.

19.5. Anharmonic Downconversion 237
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CHAPTER

TWENTY

CRYSTAL CHANNELING PHYSICS

20.1 Channeling of relativistic particles

Coherent effects of ultra-relativistic particles in crystals allow the manipulation of particle trajectories thanks to the
strong electric field generated between crystal planes and axes [Tsy76].

When the motion of a charged particle is aligned (or at a small angle) with a string (or plane), a coherent scattering
with the atoms of the string (or plane) can occur. In the low-angle approximation we can replace the potentials of the
single atoms with an averaged continuous potential. The atomic string (plane) in the continuum approximation gently
steers a particle away from the atoms, therefore suppressing the encounters with small impact parameters listed above.
The channeling phenomenon is due to the fact that the fields of the atomic axes and planes form the potential wells,
where the particle may be trapped. Particles can be trapped between planes or axes, under planar or axial channeling,
respectively.

The continuous approximation by Lindhard [Lin65] was developed to describe channeling and its related phenomena.
Coherent effects are primary phenomena, i.e., they govern path of particles. Four basic assumptions can be introduced
for particles under orientational effects. First, angles of scattering may be assumed to be small. Indeed, scattering
at large angles imply complete lost of the original direction. Secondly, because particle move at small angle with
respect to an aligned pattern of atoms and collisions with atoms in a crystal demand proximity, correlations between
collisions occur. Third, since coherent length 𝑙 of scattering process (𝑙 = 2𝐸/𝑞2, where 𝐸 is the particle energy and 𝑞
the transferred momentum) is larger than lattice constant, classical picture can be adopted. Fourth, idealized case of a
perfect lattice may be used as a first approximation.

By following such assumptions, the continuous approximation can be inferred. Under such approximation, the poten-
tial of a plane of atoms 𝑈(𝑐) can be averaged along direction parallel to plane directions. Angle 𝜃 has to be greater
than scattering angle 𝜑 with a single atom:

𝑈(𝑥) = 𝑁𝑑𝑝

∫︁ ∫︁ +∞

−∞
𝑑𝑦𝑑𝑧𝑉 (r)

The transverse motion of a particle incident at small angle with respect to one of the crystal axes or planes is governed
by the continuous potential of the crystal lattice. A charged particle moving in a crystal is in planar channeling
condition if it has a transverse momentum that is not sufficient to exceed the barrier to a neighboring channel, in this
case the particle can not escape from the channel.

In the limit of high particle momenta the motion of particles in the channeling case (a series of correlated collisions)
may be considered in the framework of classical mechanics, even though the single process of scattering is a quantum
event . The classical approximation works better at high energy for two reasons: the first is that the wave lengths of
incoming particles are sufficiently small to prevent the formation of interference patterns of waves; secondly classical
mechanics is applicable thanks to the large number of energetic levels accessible in the interplanar potential (in analogy
with the quantum harmonic oscillator). The second condition is always fulfilled for heavy particles, such as ions and
protons, but for light particles (electrons, positrons) the classical approach starts to work in the 10 − 100𝑀𝑒𝑉 range.
For motion in the potential 𝑈(𝑥) the longitudinal component of the momentum is conserved for a relativistic particle,
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implying the conservation of the transverse energy [BCK96]:

𝐸𝑇 =
𝑝𝛽

2

(︂
𝑑𝑥

𝑑𝑧

)︂2

+ 𝑈(𝑥) = 𝑐𝑜𝑛𝑠𝑡

The equation which describes the particle motion in the potential well is therefore:

𝑝𝛽
𝑑2𝑥

𝑑𝑧
+ 𝑈 ′(𝑥) = 0

The particle remains trapped within the channel if its transverse energy 𝐸𝑇 is less than the potential-well depth 𝑈0:

𝐸𝑇 =
𝑝𝛽

2
𝜃2 + 𝑈(𝑥) ≤ 𝑈0

where 𝑈0 is the maximum value of the potential barrier at the distance 𝑑𝑝/2 from the center of the potential well,
where the plane is located.

Intensity of incoherent interactions for particles under coherent effects strongly depends on local nuclei and electronic
density. Thereby, the intensity of interaction in amorphous media has to be weighted with respect to the nuclear and
electronic density averaged transverse to the crystal planes or axes [KO73]. Root-mean-square of transverse energy
variation in crystal turns into a function of particle position, e.g. it is valid to treat intensity of interactions under planar
condition ⟨

𝑑𝑝2𝑥
𝑑𝑧

⟩
=

⟨
𝑑𝑝2𝑥
𝑑𝑧

⟩
𝑎𝑚

𝑛(𝑥)

𝑛𝑎𝑚

where
⟨

𝑑𝑝2
𝑥

𝑑𝑧

⟩
is the root-mean-square of transverse energy variation in crystal, 𝑛(𝑥) is the atomic density along the

crystal plane, 𝑛𝑎𝑚 is the average crystal atomic density.

Information on the implementation details can be found in literature [BAB+14][EBaVGuidi13]
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CHAPTER

TWENTYONE

HADRONIC CROSS SECTIONS IN GEANT4

Total, inelastic and elastic cross sections for hadron-nucleus, nucleus-nucleus and antinucleus-nucleus reactions are
provided which cover energies up to TeV in some cases.

21.1 Hadronic Projectile Cross Section

21.1.1 Glauber-Gribov extension

The simplified Glauber model cross sections assume Gaussian-distributed, point-like nucleons and are given by
[Gri09a][Gri09b]:

𝜎ℎ𝐴
𝑡𝑜𝑡 = 2𝜋𝑅2 ln

[︂
1 +

𝐴𝜎ℎ𝑁
𝑡𝑜𝑡

2𝜋𝑅2

]︂
, 𝜎ℎ𝐴

𝑖𝑛 = 𝜋𝑅2 ln

[︂
1 +

𝐴𝜎ℎ𝑁
𝑡𝑜𝑡

𝜋𝑅2

]︂
,

𝜎ℎ𝐴
𝑒𝑙 = 𝜎ℎ𝐴

𝑡𝑜𝑡 − 𝜎ℎ𝐴
𝑖𝑛 .

Here 𝜎ℎ𝐴
𝑡𝑜𝑡 , 𝜎ℎ𝐴

𝑖𝑛 , and 𝜎ℎ𝐴
𝑒𝑙 are the total, inelastic and elastic cross sections, respectively.

The model is reduced to the selection of 𝜎ℎ𝑁
𝑡𝑜𝑡 and 𝑅(𝐴) values. The latest edition of PDG [Groom00] and parame-

terizations were used for 𝜎ℎ𝑁
𝑡𝑜𝑡 , including the total cross sections of 𝑝, 𝑝, 𝑛, 𝜋±, 𝐾± and Σ− on protons and neutrons

For known cross sections on protons and neutrons, 𝐴𝜎ℎ𝑁
𝑡𝑜𝑡 = 𝑁𝑝𝜎

ℎ𝑝
𝑡𝑜𝑡 + 𝑁𝑛𝜎

ℎ𝑛
𝑡𝑜𝑡, where 𝑁𝑝 and 𝑁𝑛 are the number

of protons and neutrons in the nucleus. The nuclear radius (the RMS radius of the nucleon Gaussian distribution),
is parametrized as 𝑅(𝐴) = 𝑟𝑜𝐴

1
3 𝑓(𝐴), 𝑟𝑜 ∼ 1.1 𝑓𝑚, with 𝑓(𝐴) < 1 for 𝐴 > 21, and 𝑓(𝐴) > 1 for the case

3 < 𝐴 < 21. Fig. 21.1 and Fig. 21.2 show the prediction of the Barashenkov and Glauber-Gribov model for total,
inelastic and production cross sections of neutrons and protons on a carbon target. The production cross section is
defined to be the difference between the inelastic and charge exchange cross sections.

21.1.2 Extraction of CHIPS kaon and hyperon cross sections

The cross sections for kaons and hyperons incident upon nuclei are based on the parameterization by Kossov and
Degtyarenko who developed them as part of the CHIPS package [Kos02][DKW00a][DKW00b][DKW00c]. This
parameterization was developed using extensive data samples and contains a number of parameters which depend on
the type of projectile. With 9.6 these cross sections were made independent of the CHIPS package and their interfaces
made to conform to the hadronic standard in the toolkit. They are currently used by default in production physics lists
such as FTFP_BERT and QGSP_BERT.
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Fig. 21.1: Total, inelastic and production cross-sections of neutrons on a carbon target in the energy range 10−2 −
103 GeV. Experimental data (open and solid points) from [IHEP][NEA], lines correspond to the Glauber-Gribov
model.
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Fig. 21.2: Inelastic and production cross-sections of protons on a carbon target in the energy range 10−2 − 103 GeV.
Experimental data (open points and squares) are from [IHEP][NEA]. The solid and dashed lines correspond to the
Barashenkov and Glauber-Gribov inelastic models, respectively. The dotted line shows the Glauber-Gribov production
model.

21.1. Hadronic Projectile Cross Section 247



Physics Reference Manual, Release 10.4

21.2 Total Reaction Cross Section in Nucleus-nucleus Reactions

21.2.1 Nucleus-nucleus cross sections

The simulation of nucleus-nucleus interactions and the corresponding cross sections is required by accelerator experi-
ments, cosmic ray studies and medical applications, to name a few domains.

Because nuclei are charged, total and elastic cross sections are infinite due to Coulomb interaction. In reality, they
are restricted by the screening of the atomic electrons. This interaction leads to a small-angle scattering which can be
ignored in a first approximation. Thus, inelastic cross sections are the most important ones. With increasing energy
electromagnetic dissociation (EMD) becomes dominant, especially for the collisions of heavy nuclei. At low and
intermediate energies EMD does not play an essential role, while the nuclear break-up and multi-particle productions
dominate.

The strong interaction cross sections can be calculated in the Glauber approximation [SYuSZ89][Shu03] at high (> 1
GeV) energies. The description of the cross sections at low and intermediate energies is the challenging component.

A first simple expression was proposed in [BP50]: 𝜎1,2 = 𝜋(𝑅1 + 𝑅2 − 𝑐)2, where 𝑅1 and 𝑅2 are the radii of the
two interacting nuclei (𝑅 = 𝑟0 𝐴

1/3), 𝑟0 ≃ 1.36 fm, and 𝑐 ∼ 0 – 1.5 fm, depending on a projectile energy (following
[SBV74][SBV75] and the further refinements of [STS+93] 𝑐 ∝ (𝐴

−1/3
1 +𝐴

−1/3
2 )).

In order to extend the parameterization to the intermediate energy range [eal87] 𝜎𝐴𝐵 = 𝜋𝑅2
𝑖𝑛𝑡 (1 − 𝐵/𝐸𝐶𝑀𝑆) can

be used, where 𝑅𝑖𝑛𝑡 is composed of two terms, energy dependent and independent, 𝐵 = 𝑍𝐴𝑍𝐵𝑒
2/𝑟𝐶(𝐴1/3 +𝐵1/3)

is the Coulomb barrier of the projectile-target system, and 𝐸𝐶𝑀𝑆 is center-of-mass system energy.

In the “Sihver”, “Kox” and “Shen” parameterizations [STS+93][eal87][SWF+89] are used, with the Shen parameter-
ization recommended for all physics lists.

The transportation of heavy ions in matter is a subject of much interest in several fields of science. An important input
for simulations of this process is the total reaction cross section, which is defined as the total (𝜎𝑇 ) minus the elastic
(𝜎𝑒𝑙) cross section for nucleus-nucleus reactions:

𝜎𝑅 = 𝜎𝑇 − 𝜎𝑒𝑙.

The total reaction cross section has been studied both theoretically and experimentally and several empirical param-
eterizations of it have been developed. In GEANT4 the total reaction cross sections are calculated using four such
parameterizations: the Sihver[STS+93], Kox[eal87], Shen[SWF+89] and Tripathi[TCW97] formulae. Each of these
is discussed in order below.

21.2.2 Sihver Formula

Of the four parameterizations, the Sihver formula has the simplest form:

𝜎𝑅 = 𝜋𝑟20

[︁
𝐴1/3

𝑝 +𝐴
1/3
𝑡 − 𝑏0[𝐴−1/3

𝑝 +𝐴
−1/3
𝑡 ]

]︁2
where A𝑝 and A𝑡 are the mass numbers of the projectile and target nuclei, and

𝑏0 = 1.581 − 0.876(𝐴−1/3
𝑝 +𝐴

−1/3
𝑡 ),

𝑟0 = 1.36 fm.

It consists of a nuclear geometrical term (𝐴
1/3
𝑝 + 𝐴

1/3
𝑡 ) and an overlap or transparency parameter (𝑏0) for nucleons

in the nucleus. The cross section is independent of energy and can be used for incident energies greater than 100
MeV/nucleon.
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21.2.3 Kox and Shen Formulae

Both the Kox and Shen formulae are based on the strong absorption model. They express the total reaction cross
section in terms of the interaction radius 𝑅, the nucleus-nucleus interaction barrier 𝐵, and the center-of-mass energy
of the colliding system 𝐸𝐶𝑀 :

𝜎𝑅 = 𝜋𝑅2

[︂
1 − 𝐵

𝐸𝐶𝑀

]︂
.

Kox formula: Here 𝐵 is the Coulomb barrier (𝐵𝑐) of the projectile-target system and is given by

𝐵𝑐 =
𝑍𝑡𝑍𝑝𝑒

2

𝑟𝐶

(︁
𝐴

1/3
𝑡 +𝐴

1/3
𝑝

)︁ ,
where 𝑟𝐶 = 1.3 fm, 𝑒 is the electron charge and 𝑍𝑡, 𝑍𝑝 are the atomic numbers of the target and projectile nuclei. 𝑅 is
the interaction radius 𝑅𝑖𝑛𝑡 which in the Kox formula is divided into volume and surface terms:

𝑅𝑖𝑛𝑡 = 𝑅𝑣𝑜𝑙 +𝑅𝑠𝑢𝑟𝑓 .

𝑅𝑣𝑜𝑙 and 𝑅𝑠𝑢𝑟𝑓 correspond to the energy-independent and energy-dependent components of the reactions, respec-
tively. Collisions which have relatively small impact parameters are independent of both energy and mass number.
These core collisions are parameterized by 𝑅𝑣𝑜𝑙. Therefore 𝑅𝑣𝑜𝑙 can depend only on the volume of the projectile and
target nuclei:

𝑅𝑣𝑜𝑙 = 𝑟0

(︁
𝐴

1/3
𝑡 +𝐴1/3

𝑝

)︁
.

The second term of the interaction radius is a nuclear surface contribution and is parameterized by

𝑅𝑠𝑢𝑟𝑓 = 𝑟0

[︃
𝑎
𝐴

1/3
𝑡 𝐴

1/3
𝑝

𝐴
1/3
𝑡 +𝐴

1/3
𝑝

− 𝑐

]︃
+𝐷.

The first term in brackets is the mass asymmetry which is related to the volume overlap of the projectile and target.
The second term 𝑐 is an energy-dependent parameter which takes into account increasing surface transparency as the
projectile energy increases. 𝐷 is the neutron-excess which becomes important in collisions of heavy or neutron-rich
targets. It is given by

𝐷 =
5(𝐴𝑡 − 𝑍𝑡)𝑍𝑝

𝐴𝑝𝐴𝑟
.

The surface component (𝑅𝑠𝑢𝑟𝑓 ) of the interaction radius is actually not part of the simple framework of the strong
absorption model, but a better reproduction of experimental results is possible when it is used.

The parameters 𝑟0, 𝑎 and 𝑐 are obtained using a 𝜒2 minimizing procedure with the experimental data. In this procedure
the parameters 𝑟0 and 𝑎 were fixed while 𝑐 was allowed to vary only with the beam energy per nucleon. The best 𝜒2 fit
is provided by 𝑟0 = 1.1 fm and 𝑎 = 1.85 with the corresponding values of 𝑐 listed in Table III and shown in Fig. 12 of
Ref. [eal87] as a function of beam energy per nucleon. This reference presents the values of 𝑐 only in chart and figure
form, which is not suitable for Monte Carlo calculations. Therefore a simple analytical function is used to calculate 𝑐
in GEANT4. The function is:

𝑐 = −10

𝑥5
+ 2.0 for x ≥ 1.5

𝑐 =

(︂
− 10

1.55
+ 2.0

)︂
×
(︁ 𝑥

1.5

)︁3
for x < 1.5,

𝑥 = log(𝐾𝐸),

where 𝐾𝐸 is the projectile kinetic energy in units of MeV/nucleon in the laboratory system.
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Shen formula: as mentioned earlier, this formula is also based on the strong absorption model, therefore it has a
structure similar to the Kox formula:

𝜎𝑅 = 10𝜋𝑅2

[︂
1 − 𝐵

𝐸𝐶𝑀

]︂
.

However, different parameterized forms for 𝑅 and 𝐵 are applied. The interaction radius 𝑅 is given by

𝑅 = 𝑟0

[︃
𝐴

1/3
𝑡 +𝐴1/3

𝑝 + 1.85
𝐴

1/3
𝑡 𝐴

1/3
𝑝

𝐴
1/3
𝑡 +𝐴

1/3
𝑝

− 𝐶 ′(𝐾𝐸)

]︃
+ 𝛼

5(𝐴𝑡 − 𝑍𝑡)𝑍𝑝

𝐴𝑝𝐴𝑟
+ 𝛽𝐸

−1/3
𝐶𝑀

𝐴
1/3
𝑡 𝐴

1/3
𝑝

𝐴
1/3
𝑡 +𝐴

1/3
𝑝

where 𝛼, 𝛽 and 𝑟0 are

𝛼 = 1 fm

𝛽 = 0.176 MeV1/3 · fm
𝑟0 = 1.1fm.

In Ref. [SWF+89] as well, no functional form for 𝐶 ′(𝐾𝐸) is given. Hence the same simple analytical function is
used by GEANT4 to derive 𝑐 values.

The second term 𝐵 is called the nuclear-nuclear interaction barrier in the Shen formula and is given by

𝐵 =
1.44𝑍𝑡𝑍𝑝

𝑟
− 𝑏

𝑅𝑡𝑅𝑝

𝑅𝑡 +𝑅𝑝
(MeV)

where 𝑟, 𝑏, 𝑅𝑡 and 𝑅𝑝 are given by

𝑟 = 𝑅𝑡 +𝑅𝑝 + 3.2 fm

𝑏 = 1 MeV · fm−1

𝑅𝑖 = 1.12𝐴
1/3
𝑖 − 0.94𝐴

−1/3
𝑖 (𝑖 = 𝑡, 𝑝)

The difference between the Kox and Shen formulae appears at energies below 30 MeV/nucleon. In this region the
Shen formula shows better agreement with the experimental data in most cases.

21.2.4 Tripathi formula

Because the Tripathi formula is also based on the strong absorption model its form is similar to the Kox and Shen
formulae:

𝜎𝑅 = 𝜋𝑟20(𝐴1/3
𝑝 +𝐴

1/3
𝑡 + 𝛿𝐸)2

[︂
1 − 𝐵

𝐸𝐶𝑀

]︂
, (21.1)

where 𝑟0 = 1.1 fm. In the Tripathi formula 𝐵 and 𝑅 are given by

𝐵 =
1.44𝑍𝑡𝑍𝑝

𝑅

𝑅 = 𝑟𝑝 + 𝑟𝑡 +
1.2(𝐴

1/3
𝑝 +𝐴

1/3
𝑡 )

𝐸
1/3
𝐶𝑀

where 𝑟𝑖 is the equivalent sphere radius and is related to the 𝑟𝑟𝑚𝑠,𝑖 radius by

𝑟𝑖 = 1.29𝑟𝑟𝑚𝑠,𝑖 (𝑖 = 𝑝, 𝑡).

𝛿𝐸 represents the energy-dependent term of the reaction cross section which is due mainly to transparency and Pauli
blocking effects. It is given by

𝛿𝐸 = 1.85𝑆 + (0.16𝑆/𝐸
1/3
𝐶𝑀 ) − 𝐶𝐾𝐸 + [0.91(𝐴𝑡 − 2𝑍𝑡)𝑍𝑝/(𝐴𝑝𝐴𝑡)],
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where 𝑆 is the mass asymmetry term given by

𝑆 =
𝐴

1/3
𝑝 𝐴

1/3
𝑡

𝐴
1/3
𝑝 +𝐴

1/3
𝑡

.

This is related to the volume overlap of the colliding system. The last term accounts for the isotope dependence of
the reaction cross section and corresponds to the 𝐷 term in the Kox formula and the second term of 𝑅 in the Shen
formula.

The term 𝐶𝐾𝐸 corresponds to 𝑐 in Kox and 𝐶 ′(𝐾𝐸) in Shen and is given by

𝐶𝐸 = 𝐷𝑃𝑎𝑢𝑙𝑖[1 − exp(−𝐾𝐸/40)] − 0.292 exp(−𝐾𝐸/792) × cos(0.229𝐾𝐸0.453).

Here D𝑃𝑎𝑢𝑙𝑖 is related to the density dependence of the colliding system, scaled with respect to the density of the
12C+12C colliding system:

𝐷𝑃𝑎𝑢𝑙𝑖 = 1.75
𝜌𝐴𝑝

+ 𝜌𝐴𝑡

𝜌𝐴𝐶
+ 𝜌𝐴𝐶

.

The nuclear density is calculated in the hard sphere model. 𝐷𝑃𝑎𝑢𝑙𝑖 simulates the modifications of the reaction cross
sections caused by Pauli blocking and is being introduced to the Tripathi formula for the first time. The modification of
the reaction cross section due to Pauli blocking plays an important role at energies above 100 MeV/nucleon. Different
forms of 𝐷𝑃𝑎𝑢𝑙𝑖 are used in the Tripathi formula for alpha-nucleus and lithium-nucleus collisions. For alpha-nucleus
collisions,

𝐷𝑃𝑎𝑢𝑙𝑖 = 2.77 − (8.0 × 10−3𝐴𝑡) + (1.8 × 10−5𝐴2
𝑡 ) − 0.8/{1 + exp[(250 −𝐾𝐸)/75]}

For lithium-nucleus collisions,

𝐷𝑃𝑎𝑢𝑙𝑖 = 𝐷𝑃𝑎𝑢𝑙𝑖/3.

Note that the Tripathi formula is not fully implemented in GEANT4 and can only be used for projectile energies less
than 1 GeV/nucleon.

21.2.5 Representative Cross Sections

Representative cross section results from the Sihver, Kox, Shen and Tripathi formulae in GEANT4 are displayed in
Table 21.1 and compared to the experimental measurements of Ref. [eal87].

21.2.6 Tripathi Formula for “light” Systems

For nuclear-nuclear interactions in which the projectile and/or target are light, Tripathi et al. [TCW99] pro-
pose an alternative algorithm for determining the interaction cross section (implemented in the new class
G4TripathiLightCrossSection). For such systems, Eq.(21.1) becomes:

𝜎𝑅 = 𝜋𝑟20[𝐴1/3
𝑝 +𝐴

1/3
𝑡 + 𝛿𝐸 ]2

(︂
1 −𝑅𝐶

𝐵

𝐸𝐶𝑀

)︂
𝑋𝑚

𝑅𝐶 is a Coulomb multiplier, which is added since for light systems Eq.(21.1) overestimates the interaction distance,
causing 𝐵 (in Eq.(21.1)) to be underestimated. Values for 𝑅𝐶 are given in Table 21.2.

𝑋𝑚 = 1 −𝑋1 exp

(︂
− 𝐸

𝑋1𝑆𝐿

)︂
where:

𝑋1 = 2.83 −
(︀
3.1 × 10−2

)︀
𝐴𝑇 +

(︀
1.7 × 10−4

)︀
𝐴2

𝑇
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except for neutron interactions with 4He, for which 𝑋1 is better approximated to 5.2, and the function 𝑆𝐿 is given by:

𝑆𝐿 = 1.2 + 1.6

[︂
1 − exp

(︂
− 𝐸

15

)︂]︂
For light nuclear-nuclear collisions, a slightly more general expression for 𝐶𝐸 is used:

𝐶𝐸 = 𝐷

[︂
1 − exp

(︂
− 𝐸

𝑇1

)︂]︂
− 0.292 exp

(︂
− 𝐸

792

)︂
· cos

(︀
0.229𝐸0.453

)︀
𝐷 and 𝑇1 are dependent on the interaction, and are defined in tableTable 21.3.

Table 21.1: Representative total reaction cross sections
Proj. Target Elab Exp. Results Sihver Kox Shen Tripathi

[MeV/n] [mb]

12C 12C 30 1316±40 — 1295.04 1316.07 1269.24
83 965±30 — 957.183 969.107 989.96
200 864±45 868.571 885.502 893.854 864.56
300 858±60 868.571 871.088 878.293 857.414
8701 | 939±50 868.571 852.649 857.683 939.41
21001 | 888±49 868.571 846.337 850.186 936.205

27Al 30 1748±85 — 1801.4 1777.75 1701.03
83 1397±40 — 1407.64 1386.82 1405.61
200 1270±70 1224.95 1323.46 1301.54 1264.26
300 1220±85 1224.95 1306.54 1283.95 1257.62

89Y 30 2724±300 — 2898.61 2725.23 2567.68
83 2124±140 — 2478.61 2344.26 2346.54
200 1885±120 2156.47 2391.26 2263.77 2206.01
300 1885±150 2156.47 2374.17 2247.55 2207.01

16O 27Al 30 1724±80 — 1965.85 1935.2 1872.23
89Y 30 2707±330 — 3148.27 2957.06 2802.48

20Ne 27Al 30 2113±100 — 2097.86 2059.4 2016.32
100 1446±120 1473.87 1684.01 1658.31 1667.17
300 1328±120 1473.87 1611.88 1586.17 1559.16

108Ag 300 2407±2002 2730.69 3095.18 2939.86 2893.12

1. Data measured by Jaros et al. [eal78]
2. Natural silver was used in this measurement.
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Table 21.2: Coulomb multiplier for light systems [TCW99].
System 𝑅𝐶

p + d 13.5
p + 3He 21
p + 4He 27
p + Li 2.2
d + d 13.5
d + 4He 13.5
d + C 6.0
4He + Ta 0.6
4He + Au 0.6

Table 21.3: Parameters D and T1 for light systems [TCW99].
System T1

[MeV]
D G [MeV] (4He + X

only)
p + X 23 1.85 + 0.16

1+exp( 500−𝐸
200 )

(Not applicable)

n + X 18 1.85 + 0.16

1+exp( 500−𝐸
200 )

(Not applicable)

d + X 23 1.65 + 0.1

1+exp( 500−𝐸
200 )

(Not applicable)
3He + X)‘ 40 1.55 (Not applicable)
4He + 4He 40 2.77−8.0×10−3𝐴𝑇 +1.8×10−5𝐴2

𝑇 − 0.8

1+exp( 250−𝐸
𝐺 )

300
4He + Be 25 (as for 4He + 4He) 300
4He + N 40 (as for 4He + 4He) 500
4He + Al 25 (as for 4He + 4He) 300
4He + Fe 40 (as for 4He + 4He) 300
4He + X (gen-
eral)

40 (as for 4He + 4He) 75

Antinucleus–nucleus cross sections

Production of anti-nuclei, especially anti-4He, has been observed in nucleus-nucleus and proton-proton collisions by
the RHIC and LHC experiments. Contemporary and future experimental studies of anti-nucleus production require a
knowledge of anti-nucleus interaction cross sections with matter which are needed to estimate various experimental
corrections, especially those due to particle losses which reduce the detected rate. Because only a few measurements
of these cross sections exist, they were calculated using the Glauber approach [FG66][Fra68][DK85] and the Monte
Carlo averaging method proposed in [AMZS84][SYuSZ89].

Two main considerations are used in the calculations: a parameterization of the amplitude of antinucleon-nucleon
elastic scattering in the impact parameter representation and a parameterization of one-particle nuclear densities for
various nuclei. The Gaussian form from [FG66][DK85] was used for the amplitude and for the nuclear density the
Woods-Saxon distribution for intermediate and heavy nuclei and the Gaussian form for light nuclei was used, with
parameters from the paper [WBB09]. Details of the calculations are presented in [eal11].

Resulting calculations agree rather well with experimental data on anti-proton interactions with light and heavy target
nuclei (𝜒2/𝑁𝑜𝐹 = 258/112) which corresponds to an accuracy of ∼8% [eal11]. Nearly all available experimental
data were analyzed to get this result. The predicted antideuteron-nucleus cross sections are in agreement with the
corresponding experimental data [eal72].

Direct application of the Glauber approach in software packages like is ineffective due to the large number of numerical
integrations required. To overcome this limitation, a parameterization of calculations [Gri09a][Gri09b] was used,
with expressions for the total and inelastic cross sections as proposed above in the discussion of the Glauber-Gribov
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extension. Fitting the calculated Glauber cross sections yields the effective nuclear radii presented in the expressions
for 𝑝𝐴, 𝑑𝐴, 𝑡𝐴 and �̄�𝐴 interactions:

𝑅𝑒𝑓𝑓
𝐴 = 𝑎 𝐴𝑏 + 𝑐/𝐴1/3.

The quantities 𝑎, 𝑏 and 𝑐 are given in [eal11].

As a result of these studies, the toolkit can now simulate anti-nucleus interactions with matter for projectiles with
momenta between 100 MeV/c and 1 TeV/c per anti-nucleon.
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CHAPTER

TWENTYTWO

COHERENT ELASTIC SCATTERING

22.1 Nucleon-Nucleon elastic Scattering

The classes G4LEpp and G4LEnp provide data-driven models for proton-proton (or neutron-neutron) and neutron-
proton elastic scattering over the range 10-1200 MeV. Final states (primary and recoil particle) are derived by sampling
from tables of the cumulative distribution function of the centre-of-mass scattering angle, tabulated for a discrete set
of lab kinetic energies from 10 MeV to 1200 MeV. The CDF’s are tabulated at 1 degree intervals and sampling is done
using bi-linear interpolation in energy and CDF values. The data are derived from differential cross sections obtained
from the SAID database, R. Arndt, 1998.

In class G4LEpp there are two data sets: one including Coulomb effects (for p-p scattering) and one with
no Coulomb effects (for n-n scattering or p-p scattering with Coulomb effects suppressed). The method
G4LEpp::SetCoulombEffects can be used to select the desired data set:

• SetCoulombEffects(0): No Coulomb effects (the default)

• SetCoulombEffects(1): Include Coulomb effects

The recoil particle will be generated as a new secondary particle. In class G4LEnp, the possiblity of a charge-exchange
reaction is included, in which case the incident track will be stopped and both the primary and recoil particles will be
generated as secondaries.
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CHAPTER

TWENTYTHREE

HADRON-NUCLEUS ELASTIC SCATTERING AT MEDIUM AND HIGH
ENERGY

23.1 Method of Calculation

The Glauber model [Gla70] is used as an alternative method of calculating differential cross sections for elastic and
quasi-elastic hadron-nucleus scattering at high and intermediate energies.

For high energies this includes corrections for inelastic screening and for quasi-elastic scattering the exitation of a
discrete level or a state in the continuum is considered.

The usual expression for the Glauber model amplitude for multiple scattering was used

𝐹 (𝑞) =
𝑖𝑘

2𝜋

∫︁
𝑑2𝑏𝑒�⃗�·⃗𝑏𝑀 (⃗𝑏). (23.1)

Here 𝑀 (⃗𝑏) is the hadron-nucleus amplitude in the impact parameter representation

𝑀 (⃗𝑏) = 1 −
[︁
1 − 𝑒−𝐴

∫︀
𝑑3𝑟Γ(⃗𝑏−�⃗�)𝜌(�⃗�)

]︁𝐴
, (23.2)

𝑘 is the incident particle momentum, �⃗� = �⃗�′− �⃗� is the momentum transfer, and �⃗�′ is the scattered particle momentum.
Note that |�⃗�|2 = −𝑡 - invariant momentum transfer squared in the center of mass system. Γ(⃗𝑏) is the hadron-nucleon
amplitude of elastic scattering in the impact-parameter representation

Γ(⃗𝑏) =
1

2𝜋𝑖𝑘ℎ𝑁

∫︁
𝑑�⃗�𝑒−�⃗�·⃗𝑏𝑓(�⃗�). (23.3)

The exponential parameterization of the hadron-nucleon amplitude is usually used:

𝑓(�⃗�) =
𝑖𝑘ℎ𝑁𝜎ℎ𝑁

2𝜋
𝑒−0.5𝑞2𝐵 . (23.4)

Here 𝜎ℎ𝑁 = 𝜎ℎ𝑁
𝑡𝑜𝑡 (1−𝑖𝛼)𝜎ℎ𝑁

𝑡𝑜𝑡 is the total cross section of a hadron-nucleon scattering,𝐵 is the slope of the diffraction
cone and 𝛼 is the ratio of the real to imaginary parts of the amplitude at 𝑞 = 0. The value 𝑘ℎ𝑁 is the hadron momentum
in the hadron-nucleon coordinate system.

The important difference of these calculations from the usual ones is that the two-gaussian form of the nuclear density
was used

𝜌(𝑟) = 𝐶
(︁
𝑒−(𝑟/𝑅1)

2

− 𝑝𝑒−(𝑟/𝑅2)
2
)︁
, (23.5)

where 𝑅1 𝑅2 and 𝑝 are the fitting parameters and 𝐶 is a normalization constant.

This density representation allows the expressions for amplitude and differential cross section to be put into analytical
form. It was earlier used for light [BW68][Cho68][NGG+78][BDK+81] and medium [KS83][EKS81] nuclei. De-
scribed below is an extension of this method to heavy nuclei. The form (23.5) is not physical for a heavy nucleus, but
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nevertheless works rather well (see figures below). The reason is that the nucleus absorbs the hadrons very strongly,
especially at small impact parameters where the absorption is full. As a result only the peripherial part of the nucleus
participates in elastic scattering. Eq. (23.5) therefore describes only the edge of a heavy nucleus.

Substituting Eqs. (23.5) and (23.4) into Eqs. (23.1), (23.2) and (23.3) yields the following formula

𝐹 (𝑞) =
𝑖𝑘𝜋

2

𝐴∑︁
𝑘=1

(−1)𝑘
(︂
𝐴

𝑘

)︂
[

𝜎ℎ𝑁

2𝜋(𝑅3
1 − 𝑝𝑅3

2)
]𝑘

𝑘∑︁
𝑚=0

(−1)𝑚
(︂
𝑘

𝑚

)︂[︂
𝑅3

1

𝑅2
1 + 2𝐵

]︂𝑘−𝑚

×
[︂

𝑝𝑅3
2

𝑅2
2 + 2𝐵

]︂𝑚(︂
𝑚

𝑅2
2 + 2𝐵

+
𝑘 −𝑚

𝑅2
1 + 2𝐵

)︂−1

× exp

[︃
−−𝑞2

4

(︂
𝑚

𝑅2
2 + 2𝐵

+
𝑘 −𝑚

𝑅2
1 + 2𝐵

)︂−1
]︃
.

(23.6)

An analogous procedure can be used to get the inelastic screening corrections to the hadron-nucleus amplitude ∆𝑀 (⃗𝑏)
[NNikolskiiS+77]. In this case an intermediate inelastic diffractive state is created which rescatters on the nucleons of
the nucleus and then returns into the initial hadron. Hence it is nessesary to integrate the production cross section over
the mass distribution of the excited system 𝑑𝜎𝑑𝑖𝑓𝑓/𝑑𝑡𝑑𝑀2

𝑥 . The expressions for the corresponding amplitude are quite
long and so are not presented here. The corrections for the total cross-sections can be found in [NNikolskiiS+77].

The full amplitude is the sum 𝑀 (⃗𝑏) + ∆𝑀 (⃗𝑏).

The differential cross section is connected with the amplitude in the following way

𝑑𝜎

𝑑Ω𝐶𝑀
= |𝐹 (𝑞)|2 , 𝑑𝜎

|𝑑𝑡|
=

𝑑𝜎

𝑑𝑞2𝐶𝑀

=
𝜋

𝑘2𝐶𝑀

|𝐹 (𝑞)|2 . (23.7)

The main energy dependence of the hadron-nucleus elastic scattering cross section comes from the energy dependence
of the parameters of hadron-nucleon scattering (𝜎ℎ𝑁

𝑡𝑜𝑡 𝛼 𝐵 and 𝑑𝜎𝑑𝑖𝑓𝑓

𝑑𝑡𝑑𝑀2
𝑥

). At interesting energies these parameters were
fixed at their well-known values. The fitting of the nuclear density parameters was performed over a wide range of
atomic numbers (𝐴 = 4 − 208) using experimental data on proton-nuclei elastic scattering at a kinetic energy of
𝑇𝑝 = 1 GeV.

The fitting was perfomed both for individual nuclei and for the entire set of nuclei at once. It is necessary to note that
for every nucleus an optimal set of density parameters exists and it differs slightly from the one derived for the full set
of nuclei.

A comparision of the phenomenological cross sections [ABV78] with experiment is presented in Fig. 23.1 - Fig. 23.9.

In this comparison, the individual nuclei parameters were used. The experimental data were obtained in Gatchina
(Russia) and in Saclay (France) [ABV78]. The horizontal axis is the scattering angle in the center of mass system
Θ𝐶𝑀 and the vertical axis is 𝑑𝜎

𝑑Ω𝐶𝑀
in mb/Ster. Comparisions were also made for p4He elastic scatering at 𝑇 = 1

GeV [7], 45 GeV and 301 GeV [3]. The resulting cross sections 𝑑𝜎
𝑑|𝑡| are shown in Fig. 23.10 - Fig. 23.12.

In order to generate events the distribution function ℱ of a corresponding process must be known. The differential
cross section is proportional to the density distribution. Therefore to get the distribution function it is sufficient to
integrate the differential cross section and normalize it:

ℱ(𝑞2) =

𝑞2∫︁
0

𝑑(𝑞2)
𝑑𝜎

𝑑(𝑞2)

𝑞2𝑚𝑎𝑥∫︁
0

𝑑(𝑞2)
𝑑𝜎

𝑑(𝑞2)
.

(23.8)

Expressions (23.6) and (23.7) allow analytic integration in Eq. (23.8) but the result is too long to be given here.

For light and medium nuclei the analytic expression is more convenient for calculations than the numerical integration
of Eq. (23.8), but for heavy nuclei the latter is preferred due to the large number of terms in the analytic expression.
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Fig. 23.1: Elastic proton scattering on 9Be at 1 GeV.
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Fig. 23.2: Elastic proton scattering on 11B at 1 GeV.
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Fig. 23.3: Elastic proton scattering on 12C at 1 GeV.
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Fig. 23.4: Elastic proton scattering on 16O at 1 GeV.
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Fig. 23.5: Elastic proton scattering on 28Si at 1 GeV.
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Fig. 23.6: Elastic proton scattering on 40Ca at 1 GeV.
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Fig. 23.7: Elastic proton scattering on 58Ni at 1 GeV.
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Fig. 23.8: Elastic proton scattering on 90Zr at 1 GeV.
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Fig. 23.9: Elastic proton scattering on 208Pb at 1 GeV.
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Fig. 23.10: Elastic proton scattering on 4He at 1 GeV.
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Fig. 23.11: Elastic proton scattering on 4He at 45 GeV.
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Fig. 23.12: Elastic proton scattering on 4He at 301 GeV.
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CHAPTER

TWENTYFOUR

PARTON STRING MODEL

24.1 Reaction initial state simulation.

24.1.1 Allowed projectiles and bombarding energy range for interaction with nu-
cleon and nuclear targets

The GEANT4 parton string models are capable to predict final states (produced hadrons which belong to the scalar
and vector meson nonets and the baryon (antibaryon) octet and decuplet) of reactions on nucleon and nuclear targets
with nucleon, pion and kaon projectiles. The allowed bombarding energy

√
𝑠 > 5 GeV is recommended. Two

approaches, based on diffractive excitation or soft scattering with diffractive admixture according to cross-section, are
considered. Hadron-nucleus collisions in the both approaches (diffractive and parton exchange) are considered as a
set of the independent hadron-nucleon collisions. However, the string excitation procedures in these approaches are
rather different.

24.1.2 MC initialization procedure for nucleus

The initialization of each nucleus, consisting from 𝐴 nucleons and 𝑍 protons with coordinates r𝑖 and momenta p𝑖,
where 𝑖 = 1, 2, ..., 𝐴 is performed. We use the standard initialization Monte Carlo procedure, which is realized in the
most of the high energy nuclear interaction models:

• Nucleon radii 𝑟𝑖 are selected randomly in the rest of nucleus according to proton or neutron density 𝜌(𝑟𝑖). For
heavy nuclei with 𝐴 > 16 [GLMP91] nucleon density is

𝜌(𝑟𝑖) =
𝜌0

1 + exp [(𝑟𝑖 −𝑅)/𝑎]

where

𝜌0 ≈ 3

4𝜋𝑅3

(︂
1 +

𝑎2𝜋2

𝑅2

)︂−1

.

Here 𝑅 = 𝑟0𝐴
1/3 fm and 𝑟0 = 1.16(1 − 1.16𝐴−2/3) fm and 𝑎 ≈ 0.545 fm. For light nuclei with 𝐴 < 17

nucleon density is given by a harmonic oscillator shell model [B61], e. g.

𝜌(𝑟𝑖) = (𝜋𝑅2)−3/2 exp (−𝑟2𝑖 /𝑅2),

where 𝑅2 = 2/3⟨𝑟2⟩ = 0.8133𝐴2/3 fm2. To take into account nucleon repulsive core it is assumed that
internucleon distance 𝑑 > 0.8 fm;

• The initial momenta of the nucleons are randomly choosen between 0 and 𝑝𝑚𝑎𝑥
𝐹 , where the maximal momenta

of nucleons (in the local Thomas-Fermi approximation [DA74]) depends from the proton or neutron density 𝜌
according to

𝑝𝑚𝑎𝑥
𝐹 = ~𝑐(3𝜋2𝜌)1/3
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with ~𝑐 = 0.197327 GeV fm;

• To obtain coordinate and momentum components, it is assumed that nucleons are distributed isotropicaly in
configuration and momentum spaces;

• Then perform shifts of nucleon coordinates r′j = rj−1/𝐴
∑︀

𝑖 ri and momenta p′
j = pj−1/𝐴

∑︀
𝑖 pi of nucleon

momenta. The nucleus must be centered in configuration space around 0, i. e.
∑︀

𝑖 r𝑖 = 0 and the nucleus must
be at rest, i. e.

∑︀
𝑖 pi = 0;

• We compute energy per nucleon 𝑒 = 𝐸/𝐴 = 𝑚𝑁 + 𝐵(𝐴,𝑍)/𝐴, where 𝑚𝑁 is nucleon mass and the nucleus
binding energy 𝐵(𝐴,𝑍) is given by the Bethe-Weizsäcker formula [BA69]:

𝐵(𝐴,𝑍) = −0.01587𝐴+ 0.01834𝐴2/3 + 0.09286(𝑍 − 𝐴

2
)2 + 0.00071𝑍2/𝐴1/3,

and find the effective mass of each nucleon 𝑚𝑒𝑓𝑓
𝑖 =

√︀
(𝐸/𝐴)2 − 𝑝2′𝑖 .

24.1.3 Random choice of the impact parameter

The impact parameter 0 ≤ 𝑏 ≤ 𝑅𝑡 is randomly selected according to the probability:

𝑃 (b)𝑑b = 𝑏𝑑b,

where 𝑅𝑡 is the target radius, respectively. In the case of nuclear projectile or target the nuclear radius is determined
from condition:

𝜌(𝑅)

𝜌(0)
= 0.01.

24.2 Sample of collision participants in nuclear collisions.

24.2.1 MC procedure to define collision participants.

The inelastic hadron–nucleus interactions at ultra–relativistic energies are considered as independent hadron–nucleon
collisions. It was shown long time ago [AA78] for the hadron–nucleus collision that such a picture can be obtained
starting from the Regge–Gribov approach [MA76], when one assumes that the hadron-nucleus elastic scattering am-
plitude is a result of reggeon exchanges between the initial hadron and nucleons from target–nucleus. This result leads
to simple and efficient MC procedure [S86][ANS90] to define the interaction cross sections and the number of the
nucleons participating in the inelastic hadron–nucleus collision:

• We should randomly distribute 𝐵 nucleons from the target-nucleus on the impact parameter plane according
to the weight function 𝑇 ([⃗𝑏𝐵𝑗 ]). This function represents probability density to find sets of the nucleon impact
parameters [⃗𝑏𝐵𝑗 ], where 𝑗 = 1, 2, ..., 𝐵.

• For each pair of projectile hadron 𝑖 and target nucleon 𝑗 with choosen impact parameters �⃗�𝑖 and �⃗�𝐵𝑗 we should
check whether they interact inelastically or not using the probability 𝑝𝑖𝑗 (⃗𝑏𝑖 − �⃗�𝐵𝑗 , 𝑠), where 𝑠𝑖𝑗 = (𝑝𝑖 + 𝑝𝑗)

2 is
the squared total c.m. energy of the given pair with the 4–momenta 𝑝𝑖 and 𝑝𝑗 , respectively.

In the Regge–Gribov approach [MA76] the probability for an inelastic collision of pair of 𝑖 and 𝑗 as a function at the
squared impact parameter difference 𝑏2𝑖𝑗 = (⃗𝑏𝑖 − �⃗�𝐵𝑗 )2 and 𝑠 is given by

𝑝𝑖𝑗 (⃗𝑏𝑖 − �⃗�𝐵𝑗 , 𝑠) = 𝑐−1[1 − exp {−2𝑢(𝑏2𝑖𝑗 , 𝑠)}] =

∞∑︁
𝑛=1

𝑝
(𝑛)
𝑖𝑗 (⃗𝑏𝑖 − �⃗�𝐵𝑗 , 𝑠), (24.1)
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where

𝑝
(𝑛)
𝑖𝑗 (⃗𝑏𝑖 − �⃗�𝐵𝑗 , 𝑠) = 𝑐−1 exp {−2𝑢(𝑏2𝑖𝑗 , 𝑠)}

[2𝑢(𝑏2𝑖𝑗 , 𝑠)]
𝑛

𝑛!
. (24.2)

is the probability to find the 𝑛 cut Pomerons or the probability for 2𝑛 strings produced in an inelastic hadron-nucleon
collision. These probabilities are defined in terms of the (eikonal) amplitude of hadron–nucleon elastic scattering with
Pomeron exchange:

𝑢(𝑏2𝑖𝑗 , 𝑠) =
𝑧(𝑠)

2
exp(−𝑏2𝑖𝑗/4𝜆(𝑠)).

The quantities 𝑧(𝑠) and 𝜆(𝑠) are expressed through the parameters of the Pomeron trajectory, 𝛼
′

𝑃 = 0.25 GeV−2 and
𝛼𝑃 (0) = 1.0808, and the parameters of the Pomeron-hadron vertex 𝑅𝑃 and 𝛾𝑃 :

𝑧(𝑠) =
2𝑐𝛾𝑃
𝜆(𝑠)

(𝑠/𝑠0)𝛼𝑃 (0)−1

𝜆(𝑠) = 𝑅2
𝑃 + 𝛼

′

𝑃 ln(𝑠/𝑠0),

respectively, where 𝑠0 is a dimensional parameter.

In Eqs. (24.1),(24.2) the so–called shower enhancement coefficient 𝑐 is introduced to determine the contribution of
diffractive dissociation [MA76]. Thus, the probability for diffractive dissociation of a pair of nucleons can be computed
as

𝑝𝑑𝑖𝑗 (⃗𝑏𝑖 − �⃗�𝐵𝑗 , 𝑠) =
𝑐− 1

𝑐
[𝑝𝑡𝑜𝑡𝑖𝑗 (⃗𝑏𝑖 − �⃗�𝐵𝑗 , 𝑠) − 𝑝𝑖𝑗 (⃗𝑏𝑖 − �⃗�𝐵𝑗 , 𝑠)],

where

𝑝𝑡𝑜𝑡𝑖𝑗 (⃗𝑏𝑖 − �⃗�𝐵𝑗 , 𝑠) = (2/𝑐)[1 − exp{−𝑢(𝑏2𝑖𝑗 , 𝑠)}].

The Pomeron parameters are found from a global fit of the total, elastic, differential elastic and diffractive cross
sections of the hadron–nucleon interaction at different energies.

For the nucleon-nucleon, pion-nucleon and kaon-nucleon collisions the Pomeron vertex parameters and shower en-
hancement coefficients are found: 𝑅2𝑁

𝑃 = 3.56 GeV−2, 𝛾𝑁𝑃 = 3.96 GeV−2, 𝑠𝑁0 = 3.0 GeV2, 𝑐𝑁 = 1.4 and
𝑅2𝜋

𝑃 = 2.36 GeV−2, 𝛾𝜋𝑃 = 2.17 GeV−2, and 𝑅2𝐾
𝑃 = 1.96 GeV−2, 𝛾𝐾𝑃 = 1.92 GeV−2, 𝑠𝐾0 = 2.3 GeV2, 𝑐𝜋 = 1.8.

24.2.2 Separation of hadron diffraction excitation.

For each pair of target hadron 𝑖 and projectile nucleon 𝑗 with choosen impact parameters �⃗�𝑖 and �⃗�𝐵𝑗 we should check
whether they interact inelastically or not using the probability

𝑝𝑖𝑛𝑖𝑗 (⃗𝑏𝑖 − �⃗�𝐵𝑗 , 𝑠) = 𝑝𝑖𝑗 (⃗𝑏𝑖 − �⃗�𝐵𝑗 , 𝑠) + 𝑝𝑑𝑖𝑗 (⃗𝑏
𝐴
𝑖 − �⃗�𝐵𝑗 , 𝑠).

If interaction will be realized, then we have to consider it to be diffractive or nondiffractive with probabilities

𝑝𝑑𝑖𝑗 (⃗𝑏𝑖 − �⃗�𝐵𝑗 , 𝑠)

𝑝𝑖𝑛𝑖𝑗 (⃗𝑏𝐴𝑖 − �⃗�𝐵𝑗 , 𝑠)

and

𝑝𝑖𝑗 (⃗𝑏𝑖 − �⃗�𝐵𝑗 , 𝑠)

𝑝𝑖𝑛𝑖𝑗 (⃗𝑏𝐴𝑖 − �⃗�𝐵𝑗 , 𝑠)
.
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24.3 Longitudinal string excitation

24.3.1 Hadron–nucleon inelastic collision

Let us consider collision of two hadrons with their c. m. momenta 𝑃1 = {𝐸+
1 ,𝑚

2
1/𝐸

+
1 ,0} and 𝑃2 =

{𝐸−
2 ,𝑚

2
2/𝐸

−
2 ,0}, where the light-cone variables 𝐸±

1,2 = 𝐸1,2 ± 𝑃𝑧1,2 are defined through hadron energies 𝐸1,2 =√︁
𝑚2

1,2 + 𝑃 2
𝑧1,2, hadron longitudinal momenta 𝑃𝑧1,2 and hadron masses 𝑚1,2, respectively. Two hadrons collide by

two partons with momenta 𝑝1 = {𝑥+𝐸+
1 , 0,0} and 𝑝2 = {0, 𝑥−𝐸−

2 ,0}, respectively.

24.3.2 The diffractive string excitation

In the diffractive string excitation (the Fritiof approach [AB87]) only momentum can be transferred:

𝑃 ′
1 = 𝑃1 + 𝑞

𝑃 ′
2 = 𝑃2 − 𝑞,

where

𝑞 = {−𝑞2𝑡 /(𝑥−𝐸−
2 ), 𝑞2𝑡 /(𝑥

+𝐸+
1 ),qt} (24.3)

is parton momentum transferred and qt is its transverse component. We use the Fritiof approach to simulate the
diffractive excitation of particles.

24.3.3 The string excitation by parton exchange

For this case the parton exchange (rearrangement) and the momentum exchange are allowed
[KAB82][AUIJ94][S86][ANS90]:

𝑃 ′
1 = 𝑃1 − 𝑝1 + 𝑝2 + 𝑞

𝑃 ′
2 = 𝑃2 + 𝑝1 − 𝑝2 − 𝑞,

(24.4)

where 𝑞 = {0, 0,qt} is parton momentum transferred, i. e. only its transverse components qt = 0 is taken into
account.

24.3.4 Transverse momentum sampling

The transverse component of the parton momentum transferred is generated according to probability

𝑃 (qt)𝑑qt =

√︂
𝑎

𝜋
exp (−𝑎𝑞2𝑡 )𝑑qt, (24.5)

where parameter 𝑎 = 0.6 GeV−2.

24.3.5 Sampling x-plus and x-minus

Light cone parton quantities 𝑥+ and 𝑥− are generated independently and according to distribution:

𝑢(𝑥) ∼ 𝑥𝛼(1 − 𝑥)𝛽 , (24.6)
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where 𝑥 = 𝑥+ or 𝑥 = 𝑥−. Parameters 𝛼 = −1 and 𝛽 = 0 are chosen for the FRITIOF approach [AB87]. In the case
of the QGSM approach [S86][ANS90] 𝛼 = −0.5 and 𝛽 = 1.5 or 𝛽 = 2.5. Masses of the excited strings should satisfy
the kinematical constraints:

𝑃 ′+
1 𝑃 ′−

1 ≥ 𝑚2
ℎ1 + 𝑞2𝑡 (24.7)

and

𝑃 ′+
2 𝑃 ′−

2 ≥ 𝑚2
ℎ2 + 𝑞2𝑡 , (24.8)

where hadronic masses 𝑚ℎ1 and 𝑚ℎ2 (model parameters) are defined by string quark contents. Thus, the random
selection of the values 𝑥+ and 𝑥− is limited by above constraints.

24.3.6 The diffractive string excitation

In the diffractive string excitation (the FRITIOF approach [AB87]) for each inelastic hadron–nucleon collision we
have to select randomly the transverse momentum transferred qt (in accordance with the probability given by Eq.
(24.5) and select randomly the values of 𝑥± (in accordance with distribution defined by Eq. (24.6). Then we have to
calculate the parton momentum transferred 𝑞 using Eq. (24.3) and update scattered hadron and nucleon or scatterred
nucleon and nucleon momenta using Eq. (24.4). For each collision we have to check the constraints (24.7) and (24.8),
which can be written more explicitly:[︂

𝐸+
1 − 𝑞2𝑡

𝑥−𝐸−
2

]︂ [︂
𝑚2

1

𝐸+
1

+
𝑞2𝑡

𝑥+𝐸+
1

]︂
≥ 𝑚2

ℎ1 + 𝑞2𝑡

and [︂
𝐸−

2 +
𝑞2𝑡

𝑥−𝐸−
2

]︂ [︂
𝑚2

2

𝐸−
2

− 𝑞2𝑡
𝑥+𝐸+

1

]︂
≥ 𝑚2

ℎ1 + 𝑞2𝑡 .

24.3.7 The string excitation by parton rearrangement

In this approach [S86][ANS90] strings (as result of parton rearrangement) should be spanned not only between valence
quarks of colliding hadrons, but also between valence and sea quarks and between sea quarks. The each participant
hadron or nucleon should be splitted into set of partons: valence quark and antiquark for meson or valence quark
(antiquark) and diquark (antidiquark) for baryon (antibaryon) and additionaly the (𝑛 − 1) sea quark-antiquark pairs
(their flavours are selected according to probability ratios 𝑢 : 𝑑 : 𝑠 = 1 : 1 : 0.35), if hadron or nucleon is participating
in the 𝑛 inelastic collisions. Thus for each participant hadron or nucleon we have to generate a set of light cone
variables 𝑥2𝑛, where 𝑥2𝑛 = 𝑥+2𝑛 or 𝑥2𝑛 = 𝑥−2𝑛 according to distribution:

𝑓ℎ(𝑥1, 𝑥2, ..., 𝑥2𝑛) = 𝑓0

2𝑛∏︁
𝑖=1

𝑢ℎ𝑞𝑖(𝑥𝑖)𝛿(1 −
2𝑛∑︁
𝑖=1

𝑥𝑖),

where 𝑓0 is the normalization constant. Here, the quark structure functions 𝑢ℎ𝑞𝑖(𝑥𝑖) for valence quark (antiquark) 𝑞𝑣 ,
sea quark and antiquark 𝑞𝑠 and valence diquark (antidiquark) 𝑞𝑞 are:

𝑢ℎ𝑞𝑣 (𝑥𝑣) = 𝑥𝛼𝑣
𝑣 , 𝑢ℎ𝑞𝑠(𝑥𝑠) = 𝑥𝛼𝑠

𝑠 , 𝑢ℎ𝑞𝑞(𝑥𝑞𝑞) = 𝑥𝛽𝑞𝑞
𝑞𝑞 ,

where 𝛼𝑣 = −0.5 and 𝛼𝑠 = −0.5 [KAB82] for the non-strange quarks (antiquarks) and 𝛼𝑣 = 0 and 𝛼𝑠 = 0 for
strange quarks (antiquarks), 𝛽𝑢𝑢 = 1.5 and 𝛽𝑢𝑑 = 2.5 for proton (antiproton) and 𝛽𝑑𝑑 = 1.5 and 𝛽𝑢𝑑 = 2.5 for
neutron (antineutron). Usualy 𝑥𝑖 are selected between 𝑥𝑚𝑖𝑛

𝑖 ≤ 𝑥𝑖 ≤ 1, where model parameter 𝑥𝑚𝑖𝑛 is a function of
initial energy, to prevent from production of strings with low masses (less than hadron masses), when whole selection
procedure should be repeated. Then the transverse momenta of partons qit are generated according to the Gaussian
probability Eq. (24.5) with 𝑎 = 1/4Λ(𝑠) and under the constraint:

∑︀2𝑛
𝑖=1 qit = 0. The partons are considered as the

off-shell partons, i. e. 𝑚2
𝑖 ̸= 0.
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24.4 Longitudinal string decay.

24.4.1 Hadron production by string fragmentation.

A string is stretched between flying away constituents: quark and antiquark or quark and diquark or diquark and
antidiquark or antiquark and antidiquark. From knowledge of the constituents longitudinal 𝑝3𝑖 = 𝑝𝑧𝑖 and transversal
𝑝1𝑖 = 𝑝𝑥𝑖, 𝑝2𝑖 = 𝑝𝑦𝑖 momenta as well as their energies 𝑝0𝑖 = 𝐸𝑖, where 𝑖 = 1, 2, we can calculate string mass
squared:

𝑀2
𝑆 = 𝑝𝜇𝑝𝜇 = 𝑝20 − 𝑝21 − 𝑝22 − 𝑝23,

where 𝑝𝜇 = 𝑝𝜇1 + 𝑝𝜇2 is the string four momentum and 𝜇 = 0, 1, 2, 3.

The fragmentation of a string follows an iterative scheme:

𝑠𝑡𝑟𝑖𝑛𝑔 ⇒ ℎ𝑎𝑑𝑟𝑜𝑛+ 𝑛𝑒𝑤 𝑠𝑡𝑟𝑖𝑛𝑔,

i.e. a quark-antiquark (or diquark-antidiquark) pair is created and placed between leading quark-antiquark (or diquark-
quark or diquark-antidiquark or antiquark-antidiquark) pair.

The values of the strangeness suppression and diquark suppression factors are

𝑢 : 𝑑 : 𝑠 : 𝑞𝑞 = 1 : 1 : 0.35 : 0.1.

A hadron is formed randomly on one of the end-points of the string. The quark content of the hadrons determines
its species and charge. In the chosen fragmentation scheme we can produce not only the groundstates of baryons and
mesons, but also their lowest excited states. If for baryons the quark-content does not determine whether the state
belongs to the lowest octet or to the lowest decuplet, then octet or decuplet are choosen with equal probabilities. In
the case of mesons the multiplet must also be determined before a type of hadron can be assigned. The probability of
choosing a certain multiplet depends on the spin of the multiplet.

The zero transverse momentum of created quark-antiquark (or diquark-antidiquark) pair is defined by the sum of an
equal and opposite directed transverse momenta of quark and antiquark.

The transverse momentum of created quark is randomly sampled according to probability (24.5) with the parameter
𝑎 = 0.25 GeV−2. Then a hadron transverse momentum pt is determined by the sum of the transverse momenta of its
constituents.

The fragmentation function 𝑓ℎ(𝑧, 𝑝𝑡) represents the probability distribution for hadrons with the transverse momenta
pt to acquire the light cone momentum fraction 𝑧 = 𝑧± = (𝐸ℎ ± 𝑝ℎ𝑧/(𝐸

𝑞 ± 𝑝𝑞𝑧), where 𝐸ℎ and 𝐸𝑞 are the hadron
and fragmented quark energies, respectively and 𝑝ℎ𝑧 and 𝑝𝑞𝑧 are hadron and fragmented quark longitudinal momenta,
respectively, and 𝑧±𝑚𝑖𝑛 ≤ 𝑧± ≤ 𝑧±𝑚𝑎𝑥, from the fragmenting string. The values of 𝑧±𝑚𝑖𝑛,𝑚𝑎𝑥 are determined by hadron
𝑚ℎ and constituent transverse masses and the available string mass. One of the most common fragmentation function
is used in the LUND model [BGGT83]:

𝑓ℎ(𝑧, 𝑝𝑡) ∼
1

𝑧
(1 − 𝑧)𝑎 exp

[︂
−𝑏(𝑚

2
ℎ + 𝑝2𝑡 )

𝑧

]︂
.

One can use this fragmentation function for the decay of the excited string.

One can use also the fragmentation functions are derived in [B87]:

𝑓ℎ𝑞 (𝑧, 𝑝𝑡) = [1 + 𝛼ℎ
𝑞 (⟨𝑝𝑡⟩)](1 − 𝑧)𝛼

ℎ
𝑞 (⟨𝑝𝑡⟩).

The advantage of these functions as compared to the LUND fragmentation function is that they have correct
three–reggeon behaviour at 𝑧 → 1 [B87].
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24.4.2 The hadron formation time and coordinate.

To calculate produced hadron formation times and longitudinal coordinates we consider the (1 + 1)-string with mass
𝑀𝑆 and string tension 𝜅, which decays into hadrons at string rest frame. The 𝑖-th produced hadron has energy 𝐸𝑖 and
its longitudinal momentum 𝑝𝑧𝑖, respectively. Introducing light cone variables 𝑝±𝑖 = 𝐸𝑖 ± 𝑝𝑖𝑧 and numbering string
breaking points consecutively from right to left we obtain 𝑝+0 = 𝑀𝑆 , 𝑝+𝑖 = 𝜅(𝑧+𝑖−1 − 𝑧+𝑖 ) and 𝑝−𝑖 = 𝜅𝑥−𝑖 .

We can identify the hadron formation point coordinate and time as the point in space-time, where the quark lines of
the quark-antiquark pair forming the hadron meet for the first time (the so-called ’yo-yo’ formation point [BGGT83]):

𝑡𝑖 =
1

2𝜅

⎡⎣𝑀𝑆 − 2

𝑖−1∑︁
𝑗=1

𝑝𝑧𝑗 + 𝐸𝑖 − 𝑝𝑧𝑖

⎤⎦
and coordinate

𝑧𝑖 =
1

2𝜅

⎡⎣𝑀𝑆 − 2

𝑖−1∑︁
𝑗=1

𝐸𝑗 + 𝑝𝑧𝑖 − 𝐸𝑖

⎤⎦ .
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CHAPTER

TWENTYFIVE

FRITIOF (FTF) MODEL

25.1 Introduction

The Fritiof model, or FTF for short, is used in GEANT4 for simulation of the following interactions: hadron-nucleus at
Plab > 3–4 GeV/c, nucleus-nucleus at Plab > 2–3 GeV/c/nucleon, antibaryon-nucleus at all energies, and antinucleus-
nucleus. Because the model does not include multi-jet production in hadron-nucleon interactions, the upper limit of
its validity range is estimated to be 1000 GeV/c per hadron or nucleon.

The model assumes that one or two unstable objects (quark-gluon strings) are produced in elementary interactions. If
only one object is created, the process is called diffraction dissociation. It is assumed also that the objects can interact
with other nucleons in hadron-nucleus and nucleus-nucleus collisions, and can produce other objects. The number of
produced objects in these non-diffractive interactions is proportional to the number of participating nucleons. Thus,
multiplicities in the hadron-nucleus and nucleus-nucleus interactions are larger than those in elementary ones.

The modeling of hadron-nucleon interactions in the FTF model includes simulations of elastic scattering, binary
reactions like 𝑁𝑁 → 𝑁∆, 𝜋𝑁 → 𝜋∆, single diffractive and non-diffractive events, and annihilation in antibaryon-
nucleon interactions. It is assumed that the unstable objects created in hadron-nucleus and nucleus-nucleus collisions
can have analogous reactions.

Parameterizations of the CHIPS GEANT4 model are used for calculations of elastic and inelastic hadron-nucleon cross
sections. Data-driven parameterizations of the binary reaction cross sections and the diffraction dissociation cross
sections in the elementary interactions are implemented in the FTF model. It is assumed in the model that the unstable
object cross sections are equal to the cross sections of stable objects having the same quark content.

The LUND string fragmentation model is used for the simulation of unstable object decays. The formation time of
hadrons is considered also. Parameters of the fragmentation model were tuned to experimental data. A restriction of
the available phase space is taken into account in low mass string fragmentation.

A simplified Glauber model is used for sampling the multiplicity of intra-nuclear collisions. Gribov inelastic screening
is not considered. For medium and heavy nuclei a Saxon-Woods parameterization of the one-particle nuclear density is
used, while for light nuclei a harmonic oscillator shape is used. Center-of-mass correlations and short range nucleon-
nucleon correlations are taken into account.

The reggeon theory inspired model (RTIM) of nuclear destruction is applied for a description of secondary particle
intra-nuclear cascading. A new algorithm to simulate “Fermi motion” in nuclear reactions is used.

Excitation energies of residual nuclei are estimated in the wounded nucleon approximation. This allows for a direct
coupling of the FTF model to the Precompound model of GEANT4 and hence with the GEM nuclear fragmentation
model. The determination of the particle formation time allows one to couple the FTF model with the Binary cascade
model of GEANT4 (The Binary Cascade Model).
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25.1.1 Main assumptions of the FTF model

The Fritiof model [eal87][BNilssonAEStenlund87] assumes that all hadron-hadron interactions are binary reactions,
ℎ1 + ℎ2 → ℎ′1 + ℎ′2, where ℎ′1 and ℎ′2 are excited states of the hadrons with discrete or continuous mass spectra (see
Fig. 25.1). If one of the final hadrons is in its ground state (ℎ1+ℎ2 → ℎ1+ℎ′2) the reaction is called “single diffraction
dissociation”, and if neither hadron is in its ground state it is called a “non-diffractive” interaction. (Notice that, in
spite of its name, this definition of “non-diffractive” interaction includes the double diffraction dissociation as well.)

Fig. 25.1: Non-diffractive and diffractive interactions considered in the Fritiof model.

The excited hadrons are considered as QCD-strings, and the corresponding LUND-string fragmentation model is
applied in order to simulate their decays.

The key ingredient of the Fritiof model is the sampling of the string masses. In general, the set of final state of
interactions can be represented by Fig. 25.2, where samples of possible string masses are shown. There is a point
corresponding to elastic scattering, a group of points which represents final states of binary hadron-hadron interactions,
lines corresponding to the diffractive interactions, and various intermediate regions. The region populated with the
red points is responsible for the non-diffractive interactions. In the model, the mass sampling threshold is set equal to
the ground state hadron masses, but in principle the threshold can be lower than these masses. The string masses are
sampled in the triangular region restricted by the diagonal line corresponding to the kinematical limit𝑀1+𝑀2 = 𝐸𝑐𝑚𝑠

where 𝑀1 and 𝑀2 are the masses of the ℎ′1 and ℎ′2 hadrons, and also of the threshold lines. If a point is below the
string mass threshold, it is shifted to the nearest diffraction line.

Fig. 25.2: Diagram of the final states of hadron-hadron interactions.
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Unlike the original Fritiof model, the final state diagram of the current model is complicated, which leads to a mass
sampling algorithm that is not simple. This will be considered below. The original model had no points corresponding
to elastic scattering or to the binary final states. As it was known at the time, the mass of an object produced by
diffraction dissociation, 𝑀𝑥, for example from the reaction 𝑝+ 𝑝 → 𝑝+𝑋 , is distributed as 𝑑𝑀𝑥/𝑀𝑥 ∝ 𝑑𝑀2

𝑥/𝑀
2
𝑥 ,

so it was natural to assume that the object mass distributions in all inelastic interactions obeyed the same law. This can
be re-written using the light-cone momentum variables, 𝑃+ or 𝑃−,

𝑃+ = 𝐸 + 𝑝𝑧, 𝑃− = 𝐸 − 𝑝𝑧

where 𝐸 is an energy of a particle, and 𝑝𝑧 is its longitudinal momentum along the collision axis. At large energy and
positive 𝑝𝑧 , 𝑃− ≃ (𝑀2 + 𝑃 2

𝑇 )/2𝑝𝑧 . At negative 𝑝𝑧 , 𝑃+ ≃ (𝑀2 + 𝑃 2
𝑇 )/2|𝑝𝑧|. Usually, the transferred transverse

momentum, 𝑃𝑇 , is small and can be neglected. Thus, it was assumed that 𝑃− and 𝑃+ of a projectile, or target
associated hadron, respectively, are distributed as

𝑑𝑃−/𝑃−, 𝑑𝑃+/𝑃+

A gaussian distribution was used to sample 𝑃𝑇 .

In the case of hadron-nucleus or nucleus-nucleus interactions it was assumed that the created objects can interact
further with other nuclear nucleons and create new objects. Assuming equal masses of the objects, the multiplicity of
particles produced in these interactions will be proportional to the number of participating nuclear nucleons, or to the
multiplicity of intra-nuclear collisions. Due to this, the multiplicity of particles produced in hadron-nucleus or nucleus-
nucleus interactions is larger than that in hadron-hadron ones. The probabilities of multiple intra-nuclear collisions
were sampled with the help of a simplified Glauber model. Cascading of secondary particles was not considered.

Because the Fermi motion of nuclear nucleons was simulated in a simple manner, the original Fritiof model could not
work at 𝑃𝑙𝑎𝑏 < 10–20 GeV/c.

It was assumed in the model that the created objects are quark-gluon strings with constituent quarks at their ends orig-
inating from the primary colliding hadrons. Thus, the LUND-string fragmentation model was applied for a simulation
of the object decays. It was assumed also that the strings with sufficiently large masses have “kinks” – additional
radiated gluons. This was very important for a correct reproduction of particle multiplicities in the interactions.

All of the above assumptions were reconsidered in the implementation of the GEANT4 Fritiof model, and new features
were added. These will be presented below.

25.1.2 General properties of hadron–nucleon interactions

Before going into details of the FTF model implementation it would be better to consider briefly the general properties
of hadron-nucleon interactions in order to understand what needs to be simulated. These properties include total and
elastic cross sections, and cross sections of various other reactions. There is so much data on inclusive spectra that
not all of it can be addressed in this work. It is hoped that the remaining data will be the subject of a future paper.
Inclusive data present kinematical properties of produced particles. Their description requires additional methods and
parameters, which will be considered later.

𝜋−𝑝 interactions

Total, elastic and reaction cross sections of 𝜋−𝑝-interactions are presented in Fig. 25.3. As seen, there are peaks in
the total cross section connected with ∆-isobar production (∆(1232), ∆(1600), ∆(1700) and so on) in the 𝑠-channel,
𝜋− + 𝑝 → ∆0. The main channel of a ∆0-isobar decay is ∆0 → 𝜋− + 𝑝. These resonances are reflected in the
elastic cross section. The other important decay channel is ∆0 → 𝜋0 + 𝑛, which is the main inelastic reaction
channel at 𝑃𝑙𝑎𝑏 < 700 MeV/c. At higher energy two-meson production channels start to dominate, and at 𝑃𝑙𝑎𝑏 > 3
GeV/c there is practically no structure in the cross sections. Cross sections of final states with defined charged particle
multiplicity, so-called prong cross sections according to the old terminology, are presented in the last figure. As seen,
real multi-particle production processes (𝑛 ≥ 4) dominate at 𝑃𝑙𝑎𝑏 > 5–7 GeV/c.
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Fig. 25.3: General properties of 𝜋−𝑝-interactions. Points are experimental data: data on total and elastic cross
sections from PDG data-base [PDG12], other data from [eal72].

In the constituent quark model of hadrons, the creation of 𝑠-channel ∆-isobars is explained by quark–antiquark anni-
hilation (see Fig. 25.4a). The production of two mesons may result from quark exchange (see Fig. 25.4b, Fig. 25.4c).
A quark–diquark (𝑞–𝑞𝑞) system created in the process can be in a resonance state (Fig. 25.4b), or in a state with a
continuous mass spectrum (Fig. 25.4c). In the latter case, multi-meson production is possible. Amplitudes of these
two channels are connected by crossing symmetry to annihilation in the 𝑡-channel, and with non-vacuum exchanges in
the elastic scattering according to the reggeon phenomenology. According to that phenomenology, pomeron exchange
must dominate in elastic scattering at high energies. In a simple approach, this corresponds to two-gluon exchange
between colliding hadrons. It reflects also one or many non-perturbative gluon exchanges in the inelastic reaction. Due
to these exchanges, a state with subdivided colors is created (see Fig. 25.4d). The state can decay into two colorless
objects. The quark content of the objects coincides with the quark content of the primary hadrons, according to the
FTF model, or it is a mixture of the primary hadron’s quarks, according to the Quark-Gluon-String model (QGSM).

Fig. 25.4: Quark flow diagrams of 𝜋𝑁 -interactions.

The original Fritiof model contains only the pomeron exchange process shown in Fig. 25.4d. It would be useful to
extend the model by adding the exchange processes shown in Fig. 25.4b and Fig. 25.4c, and the annihilation process
of Fig. 25.4a. This could probably be done by introducing a restricted set of mesonic and baryonic resonances and
a corresponding set of parameters. This procedure was employed in The Binary Cascade Model of GEANT4 (BIC)
[FIW04] and in the Ultra-Relativistic-Quantum-Molecular-Dynamic model (UrQMD) [eal98][eal99] (see Quantum
Molecular Dynamics for Heavy Ions). However, it is complicated to use this solution for a simulation of hadron-
nucleus and nucleus-nucleus interactions. The problem is that one has to consider resonance propagation in the
nuclear medium and take into account their possible decays which enormously increases computing time. Thus, in the
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current version of the FTF model only quark exchange processes have been added to account for meson and baryon
interactions with nucleons, without considering resonance propagation and decay. This is a reasonable hypothesis at
sufficiently high energies.

𝜋+𝑝 interactions

Fig. 25.5: General properties of 𝜋+𝑝-interactions. Points are experimental data: data on total and elastic cross
sections from PDG data-base [PDG12], other data from [eal72].

Total, elastic and reaction cross sections of 𝜋+𝑝-interactions are presented in Fig. 25.5. As seen, there are fewer peaks
in the total cross section than in 𝜋−𝑝-collisions. The creation of ∆++-isobars in the 𝑠-channel (𝜋+ + 𝑝 → ∆++) is
mainly seen in the elastic cross section because the main channel of ∆++-isobar decay is ∆++ → 𝜋++𝑝. This process
is due to quark–antiquark annihilation. At 𝑃𝑙𝑎𝑏 > 400 MeV/c two-meson production channels appear. They can be
connected with quark exchange and with the formation of ∆++ and ∆+ isobars at the proton site. The corresponding
cross sections of the reactions – 𝜋+ + 𝑝 → 𝜋0 + ∆++ → 𝜋0 + 𝜋+ + 𝑝, 𝜋+ + 𝑝 → 𝜋+ + ∆+ → 𝜋+ + 𝜋0 + 𝑝,
𝜋+ + 𝑝 → 𝜋+ + ∆+ → 𝜋+ + 𝜋+ + 𝑛 have structures at 𝑃𝑙𝑎𝑏 ≃ 1.5 and 2.8 GeV/c. At higher energies there is no
structure. The cross sections of other reactions are rather smooth.

𝑝𝑝 interactions

Total, elastic and reaction cross sections of 𝑝𝑝-interactions are presented in Fig. 25.6. The total cross section is
seen to decrease with energy below the meson production threshold (𝑃𝑙𝑎𝑏 ≤ 800 MeV/c). Above the threshold
the cross section starts to increase and becomes nearly constant. The main reaction channel below 6–8 GeV/c is
𝑝 + 𝑝 → 𝑝 + 𝑛 + 𝜋+. Because there cannot be quark–antiquark annihilation in the interaction, the reaction must
be connected to quark exchange. Intermediate states can be 𝑝 + 𝑝 → 𝑝 + ∆+ and 𝑝 + 𝑝 → 𝑛 + ∆++. In the first
case, quarks of the same flavor in the projectile and the target are exchanged. In the second case quarks with different
flavors take part in the exchange. Because the cross section of the 𝑝+ 𝑝→ 𝑝+ 𝑛+ 𝜋+ reaction is larger than the that
of 𝑝+ 𝑝→ 𝑝+ 𝑝+ 𝜋0, one has to assume that the exchange of quarks with the same flavors is suppressed.

All the reactions shown can also be caused by diffraction dissociation. Although there can be a contribution of the
𝑝+𝑝→ ∆0 + ∆++ reaction into the cross section of the channel 𝑝+𝑝→ (𝑝+𝜋−) + (𝑝+𝜋+) at 𝑃𝑙𝑎𝑏 ∼ 2–3 GeV/c,
one can assume that diffraction plays an essential role in these interactions, because there are no defined structures in
the cross sections.
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Fig. 25.6: General properties of 𝑝𝑝-interactions. Points are experimental data: data on total and elastic cross sections
from PDG data-base [PDG12], other data from [eal73a][eal84].

Summing up the consideration of the interactions, one can conclude that the probability of quark exchanges can depend
on quark flavors, and that 𝑝𝑝-collisions could be a source of information about diffraction.

𝐾+𝑝 – and 𝐾−𝑝 interactions

For completeness, the properties of 𝐾+𝑝- and 𝐾−𝑝-interactions are presented. Total and elastic cross sections are
shown in Fig. 25.7. As the 𝑠-antiquark in the 𝐾+-mesons cannot annihilate in the 𝐾+𝑝-interactions, the structure of
the corresponding cross sections is rather simple, and is very like the structure of 𝑝𝑝 cross sections. The 𝑢-antiquark
in the 𝐾−-mesons can annihilate, and the structure of the cross sections is more complicated. Due to these features,
inelastic reactions are very different even though all of them can be connected with various quark flow diagrams like
that shown in Fig. 25.4

Fig. 25.7: Total and elastic cross sections of 𝐾𝑝-interactions. Points are experimental data from PDG data-base .

The reactions 𝐾− +𝑝→ Σ− +𝜋+ and 𝐾− +𝑝→ Σ0 +𝜋0 can be explained by the annihilation of the 𝑢-antiquark of
the𝐾− and the formation of 𝑠-channel resonances. The other reactions –𝐾−+𝑝→ Σ++𝜋− and𝐾−+𝑝→ Λ+𝜋0,
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are connected with quark exchange. As seen, the energy dependence of the cross sections of the two types of processes
are different. The 𝐾− + 𝑝→ 𝑛+𝐾0 reaction must be caused by annihilation, but the dependence of its cross section
on energy is closer to that of the quark exchange processes. The cross section of the reaction has a resonance structure
only at 𝑃𝑙𝑎𝑏 < 2 GeV/c. Above that energy there is no structure. Because the cross section of the reaction is sufficiently
small at high energies, one can omit its correct description.

Fig. 25.8: Reaction cross sections of 𝐾𝑝-interactions. Points are experimental data .

𝐾− + 𝑝→ 𝑛+𝐾− +𝜋+ and 𝐾− + 𝑝→ 𝑝+𝐾0 +𝜋− reactions are mainly caused by the diffraction dissociation of
a projectile or a target hadron. The energy dependence of their cross sections are different from those of annihilation
and quark exchange.

The same regularities can be seen in 𝐾+𝑝 reactions. The energy dependence of the cross sections of the 𝐾+ + 𝑝 →
𝑝 + 𝐾0 + 𝜋+, 𝐾+ + 𝑝 → 𝑝 + 𝐾+ + 𝜋0 and 𝐾+ + 𝑝 → 𝑛 + 𝐾+ + 𝜋+ reactions are quite different from those of
𝐾− + 𝑝.

In summary, there are three types of energy dependence in the reaction cross sections. The rapidly decreasing one is
due to annihilation. The cross sections of the quark exchange processes decrease more slowly. Finally, the diffraction
cross sections grow with energy and reach near-constant values.

𝑝𝑝 interactions

Proton–antiproton interactions provide the beautiful possibility of studying annihilation processes in detail. The gen-
eral properties of the interactions are presented in Fig. 25.9. Almost no structure is seen in the cross sections and their
energy dependence is very different from the previously described reactions.

Cross sections of the reactions – 𝑝+ 𝑝→ 𝜋+ + 𝜋− and 𝑝+ 𝑝→ 𝐾+ +𝐾−, decrease faster than other cross sections
as a functions of energy. 𝑝 + 𝑝 → 𝜋+ + 𝜋− + 𝜋0 and 𝑝 + 𝑝 → 2𝜋+ + 2𝜋− cross sections decrease less rapidly,
nearly in the same manner as cross sections of the reactions – 𝑝 + 𝑝 → 𝑛 + �̄� and 𝑝 + 𝑝 → Λ + Λ̄. The cross
sections of the reaction – 𝑝+ 𝑝→ 2𝜋+ + 2𝜋− + 𝜋0, is a slowly decreasing function. The cross section of the process
– 𝑝 + 𝑝 → 3𝜋+ + 3𝜋− + 𝜋0 varies only a little over the studied energy range. Cross sections of other reactions
(𝑝+ 𝑝→ 𝑝+ 𝜋0 + 𝑝, 𝑝+ 𝑝→ 𝑝+ 𝜋+ + 𝜋− + 𝑝 and so on) show behaviour typical of diffraction cross sections.

The main channel of 𝑝𝑝 interactions at 𝑃𝑙𝑎𝑏 < 4 GeV/c is 𝑝 + 𝑝 → 2𝜋+ + 2𝜋− + 𝜋0. At higher energies, there is
a mixture of various channels. Such variety in the processes is indicative of complicated quark interactions. Possible
quark flow diagrams are shown in Fig. 25.10.

As usual, quarks and antiquarks are shown by solid lines. Dashed lines present so-called string junctions. It is assumed
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Fig. 25.9: General properties of 𝑝𝑝-interactions. Points are experimental data: data on total and elastic cross sections
from PDG data-base [PDG12], other data from [eal73a][eal84].
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Fig. 25.10: Quark flow diagrams of 𝑝𝑝-interactions.
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that the gluon field in baryons has a non-trivial topology. This heterogeneity is called a “string junction”. Quark-gluon
strings produced in the reaction are shown by wavy lines.

The diagram of Fig. 25.10a represents a process with a string junction annihilation and the creation of three strings.
Diagram Fig. 25.10b describes quark-antiquark annihilation and string creation between the diquark and anti-diquark.
Quark-antiquark and string junction annihilation is shown in Fig. 25.10c. Finally, one string is created in the process of
Fig. 25.10e. Hadrons appear at the fragmentation of the strings in the same way that they appear in 𝑒+𝑒−-annihilation.
One can assume that excited strings with complicated gluonic field configurations are created in processes Fig. 25.10d
and Fig. 25.10f. If the collision energy is sufficiently small glueballs can be formed in the process Fig. 25.10f. Mesons
with constituent gluons or with hidden baryon number can be created in process Fig. 25.10d. Of course the standard
FTF processes shown in the bottom of the figure are also allowed.

In the simplest approach it is assumed that the energy dependence of the cross sections of these processes vary inversely
with a power of 𝑠 as depicted in Fig. 25.10. Here 𝑠 is center-of-mass energy squared. This is suggested by the reggeon
phenomenology (at the leading order). Calculating the cross sections of binary reactions (in the reggeon framework,
including higher-order terms) is a rather complicated procedure (see [KV94]) because there can be interactions in
the initial and final states. Similar complications appear also in the computation of cross sections of other reactions
[UG02].

25.1.3 Cross sections of hadron–nucleon processes

Total, elastic and inelastic hadron–nucleon cross sections

Parameterizations of the cross sections implemented in the CHIPS model of GEANT4 (authors: M.V. Kossov and P.V.
Degtyarenko) are used in the FTF model. The general form of the parameterization is:

𝜎 = 𝜎𝐿𝐸 + 𝜎𝐴𝑠

where 𝜎𝐿𝐸 is a low energy parameterization depending on the types of colliding particles, and 𝜎𝐴𝑠 is the asymptotic
part of cross sections. The COMPLETE Collaboration proposed a hypothesis [ealCOMPLETEcollab02] that 𝜎𝐴𝑠 of
total cross sections at very high energies does not depend on the types of colliding particles:

𝜎𝑡𝑜𝑡
𝐴𝑠 = 𝑍ℎ1ℎ2 +𝐵 (log(𝑠/𝑠0))

2

𝐵 = 0.3152, 𝑠0 = 34.0[(GeV/𝑐)2] (𝐶𝑂𝑀𝑃𝐿𝐸𝑇𝐸, 2002)

𝐵 = 0.308 , 𝑠0 = 28.9[(GeV/𝑐)2] (𝑃𝐷𝐺, 2006)

𝐵 = 0.304 , 𝑠0 = 33.1[(GeV/𝑐)2] (M. Ishida, K.Igi, 2009)

while the pre-asymptotic part does depend on colliding particles (ℎ1, ℎ2).

The CHIPS model 𝜎𝐴𝑠 for total and elastic cross sections has the same form:

𝜎𝐴𝑠 =
{︁
𝐴 [ln(𝑃_𝑙𝑎𝑏) −𝐵]

2
+ 𝐶 +𝐷/𝑃 0.5

𝑙𝑎𝑏 + 𝐸/𝑃𝑙𝑎𝑏 + 𝐹/𝑃 2
𝑙𝑎𝑏

}︁
/(︀

1 +𝐺/𝑃 0.5
𝑙𝑎𝑏 +𝐻/𝑃 3

𝑙𝑎𝑏 + 𝐼/𝑃 4
𝑙𝑎𝑏

)︀
[mb]

where 𝑃𝑙𝑎𝑏 is in [GeV/𝑐], and the parameters 𝐴, 𝐵, etc. are given in the tables Table 25.1 and Table 25.2.

Table 25.1: CHIPS model parameters for total cross sections
ℎ1 ℎ2 𝐴 𝐵 𝐶 𝐷 𝐸 𝐹 𝐺 𝐻 𝐼
𝜋−𝑝 0.3 3.5 22.3 12.0 0 0 0 0 0.4
𝜋+𝑝 0.3 3.5 22.3 5.0 0 0 0 0 1.0
𝑝𝑝 0.3 3.5 38.2 0 0 0 0 0 0.54
𝑛𝑝 0.3 3.5 38.2 0 0 52.7 0 0 2.72
𝐾+𝑝 0.3 3.5 19.5 0 0 0 0.46 0 1.6
𝐾−𝑝 0.3 3.5 19.5 0 0 0 -0.21 0 0.52
𝑝𝑝 0.3 3.5 38.2 0 0 0 0 0 0
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Table 25.2: CHIPS model parameters for elastic cross sections
ℎ1 ℎ2 𝐴 𝐵 𝐶 𝐷 𝐸 𝐹 𝐺 𝐻 𝐼
𝜋−𝑝 0.0557 3.5 2.4 6.0 0 0 0 0 3.0
𝜋+𝑝 0.0557 3.5 2.4 7.0 0 0 0 0 0.7
𝑝𝑝 0.0557 3.5 6.72 0 30.0 0 0 0.49 0.0
𝑛𝑝 0.0557 3.5 6.72 0 32.6 0 0 0 1.0
𝐾+𝑝 0.0557 3.5 2.23 0 0 0 -0.7 0 0.1
𝐾−𝑝 0.0557 3.5 2.23 0 0 0 -0.7 0 0.075

The low energy parts of the cross sections are very different for various projectiles, and they are not presented here.
These can be found in the corresponding classes of GEANT4.

It is obvious that 𝜎𝑖𝑛 = 𝜎𝑡𝑜𝑡 − 𝜎𝑒𝑙.

A comparison of the parameterizations with experimental data was presented in the previous figures.

Cross sections of quark exchange processes

Cross sections of quark exchange processes are parameterized as:

𝜎𝑞𝑒 = 𝜎𝑖𝑛 𝐴 𝑒−𝐵 𝑦𝑙𝑎𝑏 (25.1)

where 𝑦𝑙𝑎𝑏 is a projectile rapidity in a target rest frame. 𝐴 and 𝐵 are parameters given in Table 25.3.

Table 25.3: Parameters of quark exchange cross sections
ℎ1 ℎ2 𝐴 𝐵
𝑝𝑝/𝑝𝑛 1.85 0.7
𝜋𝑝/𝜋𝑛 240 2
𝐾𝑝/𝐾𝑛 40 2.25

The parameters were determined from a description of reaction channel cross sections.

Cross sections of antiproton processes

The annihilation cross section is parameterized as:

𝜎𝑎𝑛𝑛 = 𝜎𝑎 + 𝐵 𝑋𝑏 + 𝐶 𝑋𝑐 + 𝐷 𝑋𝑑 (25.2)

where: 𝑋𝑖 are the contributions of the diagrams of Fig. 25.10; all cross sections are given in [𝑚𝑏];

𝜎𝑎 = 25
√
𝑠/𝜆1/2(𝑠,𝑚2

𝑝,𝑚
2
𝑁 )

𝜆(𝑠,𝑚2
𝑝,𝑚

2
𝑁 ) = 𝑠2 +𝑚4

𝑝 +𝑚4
𝑁 − 2𝑠𝑚2

𝑝 − 2𝑠𝑚2
𝑁 − 2𝑚2

𝑝𝑚
2
𝑁

𝑋𝑏 = 3.13 + 140 (𝑠𝑡ℎ − 𝑠)2.5, 𝑠 < 𝑠𝑡ℎ

𝑋𝑏 = 6.8/
√
𝑠, 𝑠 > 𝑠𝑡ℎ

𝑠𝑡ℎ = (𝑚𝑝 +𝑚𝑁 + 2𝑚𝜋 + 𝛿)2

𝑋𝑐 = 2

√
𝑠

𝜆1/2(𝑠,𝑚2
𝑝,𝑚

2
𝑁 )

(𝑚𝑝 +𝑚𝑁 )2

𝑠

𝑋𝑑 = 23.3/𝑠

(25.3)
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Table 25.4: Coefficients B, C, and D.
𝑝𝑝 𝑝𝑛 �̄�𝑝 �̄�𝑛 Λ̄𝑝 Λ̄𝑛 Σ̄−𝑝 Σ̄−𝑛 Σ̄0𝑝 Σ̄0𝑛 Σ̄+𝑝 Σ̄+𝑛

B 5 4 4 5 3 3 2 4 3 3 4 2
C 5 4 4 5 3 3 2 4 3 3 4 2
D 6 4 4 6 3 3 2 2 2 2 2 0

Table 25.5: Coefficients B, C, and D (continued).
Ξ̄−𝑝 Ξ̄−𝑛 Ξ̄0𝑝 Ξ̄0𝑛 Ω̄−𝑝 Ω̄−𝑛

B 1 2 2 1 0 0
C 1 2 2 1 0 0
D 0 0 0 0 0 0

The coefficients𝐵, 𝐶 and𝐷 are pure combinatorial coefficients calculated on the assumption that the same conditions
apply to all quarks and antiquarks. For example, in 𝑝𝑝 interactions there are five possibilities to annihilate a quark and
an antiquark, and six possibilities to annihilate two quarks and two antiquarks. Thus, 𝐵 = 𝐶 = 5 and 𝐷 = 6.

Note that final state particles in the process of Fig. 25.10b can coincide with initial state particles. Thus the true elastic
cross section is not given by the experimental cross section.

At 𝑃𝑙𝑎𝑏 < 40 MeV/c antiproton-nucleon cross sections are:

𝜎𝑡𝑜𝑡 = 1512.9, 𝜎𝑒𝑙 = 473.2, 𝜎𝑎 = 625.1, 𝜎𝑏 = 0, 𝜎𝑐 = 49.99, 𝜎𝑑 = 6.61

All cross sections are given in mb. 𝜎𝑏 = 0 for 𝑝𝑝-interactions because the process 𝑝𝑝 → �̄�𝑛 is impossible at these
energies (𝑃𝑙𝑎𝑏 < 40 MeV/c).

Cross sections of diffractive and non-diffractive processes

As mentioned above, three processes are considered in the FTF model at high energies: projectile diffraction (pd),
target diffraction (td) and non-diffractive interactions (nd). They are parameterized as:

𝜎𝑝𝑑
𝑝𝑝 = 𝜎𝑡𝑑

𝑝𝑝 = 6 + 𝜎𝑖𝑛 1.5

𝑠
(mb)

𝜎𝑝𝑑
𝑝𝑝 = 𝜎𝑡𝑑

𝑝𝑝 = 6 + 𝜎𝑖𝑛 1.5

𝑠
(mb)

𝜎𝑝𝑑
𝜋𝑝 = 6.2 − 𝑒−

(
√

𝑠−7)2

16

𝜎𝑡𝑑
𝜋𝑝 = 2 + 22/𝑠 (mb)

𝜎𝑝𝑑
𝐾𝑝 = 4.7,

𝜎𝑡𝑑
𝐾𝑝 = 1.5 (mb)

(25.4)

For the determination of these cross sections, inclusive spectra of particles in hadronic interactions were used. In Fig.
25.11 an inclusive spectrum of protons in the reaction 𝑝+𝑝→ 𝑝+𝑋 is shown in comparison with model predictions.

As it can be seen, all the models have difficulties in describing the data. In the FTF model this was overcome by tuning
the single diffraction dissociation cross section. Tuning was possible by the fact that the height of the proton peak at
large rapidities depends on this cross section (see left Fig. 25.11).

The 2𝜎𝑝𝑑
𝑝𝑝 (the factor of 2 is due to the fact that 𝜎𝑝𝑑

𝑝𝑝 = 𝜎𝑡𝑑
𝑝𝑝) predicted by the expression (blue solid curve) is shown at

the right of Fig. 25.11 in a comparison with experimental data gathered by K. Goulianos and J. Montanha [GM99].
The values are larger than experimental data. Though taking into account the restriction that the mass of a produced
system, 𝑋 , cannot be very small or very large (𝑀2/𝑠 < 0.05 and 𝑀 > 1.5 GeV) brings the predictions closer to the
data. So, the accounting of this restriction is very important for a correct reproduction of the data.
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Fig. 25.11: Left: inclusive spectrum of proton in 𝑝𝑝-interactions at 𝑃𝑙𝑎𝑏 = 24 GeV/c. Points are experimental data
[eal74], lines are model calculations. Right: single diffraction dissociation cross section in 𝑝𝑝-interactions. Points
are data gathered by K. Goulianos and J. Montanha [GM99]. Lines are FTF model calculations.

A more complicated situation arises with 𝜋𝑝- and 𝐾𝑝-interactions. The set of experimental data on diffraction cross
sections is very restricted. Thus, a refined tuning was used. The FTF processes discussed above contribute in various
regions of particle spectra. The target diffraction dissociation, 𝜋 + 𝑝 → 𝜋 + 𝑋 , gives its main contribution at large
values of 𝑥𝐹 = 2𝑝𝑧/

√
𝑠 for 𝜋-mesons. The projectile diffraction dissociation contribution (𝜋 + 𝑝 → 𝑋 + 𝑝) has a

maximum at 𝑥𝐹 ∼ −1. Thus, using various experimental data and varying the cross sections of the processes, the
points presented in the lower left corner of Fig. 25.12 were obtained. They were parameterized by the expressions in
(25.4). A correct reproduction of particle spectra in the central region, 𝑥𝐹 ∼ 0, was very important for these. As a
result, we have a good description of 𝜋-meson spectra in the interactions at various energies.

In 𝐾𝑝-interactions the projectile diffraction cross sections were determined by tuning on proton spectra from the
reactions 𝐾 + 𝑝→ 𝑝+𝑋 (see Fig. 25.13). There are no data on leading 𝐾-meson spectra in the reactions 𝐾 + 𝑝→
𝐾 + 𝑋 . Thus, 𝜋−-meson spectra in the central region were tuned. At a given value of a projectile diffraction cross
section, the central spectrum depends on a target diffraction. This was used to determine the target diffraction cross
sections. The estimated cross sections are shown in the lower left corner of Fig. 25.13. As a result, a satisfactory
description of meson spectra was obtained.

25.1.4 Simulation of hadron-nucleon interactions

Simulation of meson–nucleon and nucleon–nucleon interactions

Colliding hadrons may either be on or off the mass shell when they are bound in nuclei. When they are off-shell the
total mass of the hadrons is checked. If the sum of the masses is above the center-of-mass energy of the collision, the
simulated event is rejected. If below, the event is accepted. It is assumed that due to the interaction the hadrons go
on-shell, and the center-of-mass energy of the collision is not changed.

The simulation of an inelastic hadron-nucleon interaction starts with a choice: should a quark exchange or a
diffractive/non-diffractive excitation be simulated? The probability of a quark exchange is given by 𝑊𝑞𝑒 = 𝜎𝑞𝑒/𝜎

𝑖𝑛.
The combined probability of diffractive dissociation and non-diffractive excitation is then 1 −𝑊𝑞𝑒. 𝜎𝑞𝑒 depends on
the energies and flavors of the colliding hadron (see Eq.(25.1)).

If a quark exchange is sampled, the quark contents of the projectile and target are determined. After that the possibility
of a quark exchange is checked. A meson consists of a quark and an antiquark. Thus there is no alternative but to
choose a quark. Let it be 𝑞𝑀 . A baryon has three quarks, 𝑞1, 𝑞2 and 𝑞3. The quark from the meson can be exchanged, in
principle, with any of the baryon quarks, but the above description of the experimental data indicates that an exchange
of quarks with the same flavor must be suppressed. So, only the exchange of quarks with different flavors is allowed.
After the exchange (𝑞𝑀 ↔ 𝑞𝑖), the new contents of the meson and the baryon are determined. The new meson may
be either pseudo-scalar or pseudo-vector with a 50% probability. The new baryon may be in its ground state, or in an
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Fig. 25.12: Upper figures: inclusive spectra of protons and 𝜋+-mesons in 𝜋+𝑝-interactions. Points are experimental
data [eal73b]. Lines represent the contributions of the various FTF processes calculated by assuming that the proba-
bility of each process is 100 %. Bottom left figure: diffraction dissociation cross sections obtained by tuning (points),
and their description (lines) by the expression for 𝜋 in (25.4). Bottom right figure: rapidity spectrum of 𝜋+-mesons in
𝜋+𝑝-interactions at 𝑝𝑙𝑎𝑏 =100 GeV/c. Points are experimental data [Whi74].

Fig. 25.13: Upper figures: inclusive spectra of protons and 𝜋−-mesons in :math:‘(Kp)‘-interactions. Points are
experimental data [eal86][eal77]. Lines are FTF calculations. Bottom left figure: diffraction dissociation cross
sections obtained by tuning (points), and their description (lines) by the expression for Kp in (25.4). Bottom right
figure: 𝑥𝐹 spectrum of positive charged particles in 𝐾𝑝-interactions at 𝑝𝑙𝑎𝑏 =250 GeV/c. Points are experimental
data [Whi74], lines are model calculations.
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excited state. The probability of an excited baryon state is assumed (as common also in other codes) to be 0.5 for both
𝜋𝑁 -interactions and𝐾𝑁 -interactions. Only ∆(1232)’s are considered as excited states. If all quarks of a baryon have
the same flavor, the ∆(1232) is always created (∆(1232)++ or ∆(1232)−−).

The same procedure is followed for a projectile baryon, but in this case any quark of the projectile or target may
participate in an exchange if they have different flavors. Only the ground state of the new baryon is considered.

In order to generate a transverse momentum between the two final-state hadrons, these final-state hadrons undergo to
either an additional elastic scattering with probability 𝑊𝑒𝑙 = 2.256 𝑒−0.6 𝑦𝑙𝑎𝑏 (the parameters have been fitted from
experimental data), or a diffractive/non-diffractive excitation with probability 1 −𝑊𝑒𝑙, where 𝑦𝑙𝑎𝑏 is the rapidity of
the projectile in the target rest frame.

The above procedure is sufficient for a description of hadron-nucleon reaction cross sections at 𝑝𝑙𝑎𝑏 < 3 – 5 GeV/c.
At higher energies, diffractive dissociations and non-diffractive excitations must be simulated.

As mentioned above, there can be a projectile diffraction, or a target diffraction, or a non-diffractive interaction.
Probabilities of the corresponding processes at high energies are: 𝜎𝑝𝑑/𝜎𝑖𝑛, 𝜎𝑡𝑑/𝜎𝑖𝑛, and (𝜎𝑖𝑛 − 𝜎𝑝𝑑 − 𝜎𝑡𝑑)/𝜎𝑖𝑛. The
processes are sampled randomly.

Having sampled a projectile diffraction or a target diffraction, the corresponding light-cone momentum (𝑃− or 𝑃+) is
chosen according to the distribution: 𝑑𝑃−/𝑃− or 𝑑𝑃+/𝑃+. Boundaries for a sampling have to be determined before.

Let us consider the kinematics of projectile diffraction, 𝑃 + 𝑇 → 𝑃 ′ + 𝑇 , for the definition of these boundaries. It is
obvious that a mass of the diffractive produced system, 𝑚𝑃 ′ , must satisfy the conditions:

𝑚𝐷 ≤ 𝑚𝑃 ′ ≤
√
𝑠−𝑚𝑇

where 𝑚𝐷 is the minimal mass of the system, 𝑠 is the center-of-mass energy squared, 𝑚𝑇 is the mass of the target. If
there is not a transverse momentum transfer, and 𝑚𝑃 ′ reaches the lower boundary then

𝑃−
𝑚𝑖𝑛 =

√︁
𝑚2

𝐷 + 𝑝2𝑧 − 𝑝𝑧, 𝑝𝑧 = 𝜆1/2(𝑠,𝑚2
𝐷,𝑚

2
𝑇 )/2

√
𝑠

(See (25.3) for the definition of 𝜆().)

When 𝑚𝑃 ′ reaches the upper boundary, the longitudinal momenta of the particles are zeros. Thus,

𝑃−
𝑚𝑎𝑥 =

√
𝑠−𝑚𝑇

Having sampled 𝑃−, then 𝑚𝑃 ′ and 𝑃+ can be found with the help of the energy-momentum conservation law written
is the center-of-mass system:

{︂
𝐸𝑃 ′ + 𝐸𝑇 =

√
𝑠

𝑃𝑧,𝑃 ′ + 𝑃𝑧,𝑇 = 0

⃒⃒⃒⃒
𝑃−
𝑃 ′ + 𝑃−

𝑇 =
√
𝑠

𝑃+
𝑃 ′ + 𝑃+

𝑇 =
√
𝑠

⃒⃒⃒⃒
⃒⃒ 𝑃

−
𝑇 =

√
𝑠− 𝑃−

𝑃 ′

𝑃+
𝑇 = 𝑚2

𝑇 /𝑃
−
𝑇

𝑚2
𝑃 ′ = 𝑃−

𝑃 ′ · (
√
𝑠− 𝑃+

𝑇 )

The transferred transverse momentum is sampled according to the distribution:

𝑑𝑊 =
1

𝜋⟨𝑃 2
⊥⟩

𝑒−𝑃 2
⊥/⟨𝑃 2

⊥⟩𝑑2𝑃⊥, ⟨𝑃 2
⊥⟩ = 0.3 (GeV/𝑐)2

To account for it, it is enough to replace the masses with the transverse masses, 𝑚⊥ =
√︀
𝑚2 + 𝑃 2

⊥.

The light-cone momenta transferred to the projectile are:

𝑄+ = 𝑃+
𝑇,0 − 𝑃+

𝑇 , 𝑄− = 𝑃−
𝑇,0 − 𝑃−

𝑇

where 𝑃+
𝑇,0 and 𝑃−

𝑇,0 are the light-cone momenta of the target in the initial state.

In the case of non-diffractive excitation (𝑃 + 𝑇 → 𝑃 ′ + 𝑇 ′), 𝑃−
𝑃 ′ is sampled first of all as it was described above

at 𝑚𝑇 = 𝑚𝑇,𝑛𝑑, where 𝑚𝑇,𝑛𝑑 is the minimal mass of a target-originated particle produced in the non-diffractive
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excitation. After that, 𝑃+
𝑇 ′ is independently sampled at 𝑚𝑃 = 𝑚𝑃,𝑛𝑑. The minimal light-cone momenta, 𝑃−

𝑃 ′ and
𝑃+
𝑇 ′ , are calculated at 𝑚𝑃 = 𝑚𝑃,𝑛𝑑 and 𝑚𝑇 = 𝑚𝑇,𝑛𝑑. At the last step it is checked that 𝑚𝑃 ′ ≥ 𝑚𝑃,𝑛𝑑 and
𝑚𝑇 ′ ≥ 𝑚𝑇,𝑛𝑑. In the current version of the FTF model the same values for minimal masses are used in the diffractive
and non-diffractive excitation.

Table 25.6: Minimal masses of diffractive produced strings
𝑝/𝑛 𝜋 𝐾

𝑚𝐷 (MeV) 1160 500 600

Simulation of antibaryon–nucleon interactions

At the beginning of the simulation of an annihilation interaction, the cross sections of the processes (see Fig. 25.10)
are calculated (see (25.2)). After that a sampling of the processes takes place.

In the cases of the processes Fig. 25.10b and Fig. 25.10e quarks for the annihilation are chosen randomly. In each of
the processes only one string is created. Its mass is equal to the center-of-mass energy of the interaction. After that
the string is fragmented. It is required that in the fragmentation of the process Fig. 25.10b there must not be a baryon
and an antibaryon in the final state.

At sufficiently high energies the standard FTF processes can be simulated as it was described above.

In the process Fig. 25.10c only 2 strings will be created. If their masses are given, the kinematical properties of the
strings can be determined with the help of the energy-momentum conservation law. The masses must be related to the
momenta of the quarks and antiquarks.

We assume that in the process all quarks and antiquarks are in the same conditions, thus, their transverse momenta
are sampled independently according to the gaussian distribution with ⟨𝑃 2

⊥⟩ = 0.04 (GeV/𝑐)2. To guarantee that the
sum of the transverse momenta is zero, the transverse momentum of each particle is re-defined as follows: 𝑃⊥𝑖 →
𝑃⊥𝑖 − 1

4

∑︀4
𝑗=1 𝑃⊥𝑗 .

To find the longitudinal momenta of quarks we use the light-cone momenta: total light-cone momenta of projectile-
originated antiquarks and target-originated quarks,

𝑃+ = 𝑃+
𝑞1 + 𝑃+

𝑞2 , 𝑃− = 𝑃−
𝑞1 + 𝑃−

𝑞2

Let us introduce also the light-cone momentum fractions:

𝑥+𝑞1 = 𝑃+
𝑞1/𝑃

+, 𝑥+𝑞2 = 1 − 𝑥+𝑞1

𝑥−𝑞1 = 𝑃−
𝑞1/𝑃

−, 𝑥−𝑞2 = 1 − 𝑥−𝑞1

Using these variables, the energy-momentum conservation law in the center-of-mass system can be written as:

𝑃+

2
+

𝛼

2 𝑃+
+

𝑃−

2
+

𝛽

2 𝑃− =
√
𝑠

𝑃+

2
− 𝛼

2 𝑃+
− 𝑃−

2
+

𝛽

2 𝑃− = 0

𝛼 =
𝑚2

⊥𝑞1

𝑥+𝑞1
+

𝑚2
⊥𝑞2

1 − 𝑥+𝑞1

𝛽 =
𝑚2

⊥𝑞1

𝑥−𝑞1
+

𝑚2
⊥𝑞2

1 − 𝑥−𝑞1

A solution of the equations at
√
𝛼+

√
𝛽 ≤

√
𝑠 is:

𝑃+ =
𝑠+ 𝛼− 𝛽 + 𝜆1/2(𝑠, 𝛼, 𝛽)

2
√
𝑠

𝑃− =
𝑠− 𝛼+ 𝛽 + 𝜆1/2(𝑠, 𝛼, 𝛽)

2
√
𝑠
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(See (25.3) for the definition of 𝜆().)

If
√
𝛼+

√
𝛽 >

√
𝑠, the transverse momenta and 𝑥s are re-sampled until the inequality is broken.

Because quarks are in the same conditions, the distribution on 𝑥 can have the form 𝑥𝑎 (1 − 𝑥)𝑎. A recommended
value of 𝑎 can be zero or −0.5. We chose 𝑎 = −0.5. We assumed also that the quark masses are zero. Probably, other
values could be used, but we have not yet found experimental data sensitive to these parameters.

For the simulation of the process Fig. 25.10a we follow the same approach, and introduce light-cone momentum
fractions – 𝑥+𝑞1, 𝑥

+
𝑞2, 𝑥

+
𝑞3 and 𝑥−𝑞1 , 𝑥

−
𝑞2 , 𝑥

−
𝑞3 . The distribution on 𝑥s is chosen according to the form:

𝑑𝑊 ∝ 𝑥𝑎𝑞1 𝑥
𝑎
𝑞2 𝑥

𝑎
𝑞3𝛿(1 − 𝑥𝑞1 − 𝑥𝑞2 − 𝑥𝑞3)𝑑𝑥𝑞1 𝑑𝑥𝑞2 𝑑𝑥𝑞3 , 𝑎 = −0.5

It is obvious that in this case:

𝛼 =

3∑︁
𝑖=1

𝑚2
⊥𝑞𝑖

𝑥+𝑞𝑖
, 𝛽 =

3∑︁
𝑖=1

𝑚2
⊥𝑞𝑖

𝑥−𝑞𝑖

25.1.5 Flowchart of the FTF model

The simulation of hadron-nucleus or nucleus-nucleus interaction events starts with an initialization (done “on-the-fly”
just before simulating the interaction, not at the beginning of the program) of the model variables: calculations of cross
sections, setting up slopes, masses and so on. The next step is the determination of intra-nuclear collision multiplicity
with the help of Glauber model. If the energy of collisions is sufficiently high, the simulation of secondary particle
cascading within the reggeon theory inspired model (RTIM [AWU97][AWU98]) is carried out. After that all involved
nuclear nucleons are put on the mass-shell. If the energy is not high enough these steps are skipped. The reason for
this will be explained later.

The main job of the FTF algorithm is done in the loop over intra-nuclear collisions. At that moment, the time ordering
of the collisions has been determined. For each collision, it is sampled what has to be simulated – elastic scattering,
inelastic interaction or annihilation for projectile antibaryons. For each branch, an adjustment of the participating
nuclear nucleon is performed at low energy, and the corresponding process is simulated. In the case of the sampling
of the inelastic interaction at high energy there is an alternative – to reject the interaction or to process it.

At the end of the loop, the properties of nuclear residuals (mass number, charge, excitation energy and 4-momentum)
are transferred to a calling program. The program initiates the fragmentation of created strings and decays the excited
residuals.

Simulations of elastic scattering, inelastic interactions and annihilation were considered above. Other steps of the FTF
model will be presented below.

25.1.6 Simulation of nuclear interactions

Sampling of intra-nuclear collisions

Classical cascade-type sampling

As it is known, the intra-nuclear cascade models like the ones implemented in GEANT4 – The Bertini Intranuclear
Cascade Model, The Binary Cascade Model, INCL++: the Liège Intranuclear Cascade Model – work well for pro-
jectile energies below 5 – 10 GeV. The first step in these models is the sampling of the impact parameter, 𝑏. The next
step is the sampling of a point where the projectile will interact with nuclear matter (see Fig. 25.15a).

The following consideration is used here: the probability that the projectile reaches a point 𝑧 going from minus infinity
to the point 𝑧 is

𝑃 = 𝑒−𝜎𝑡𝑜𝑡
∫︀ 𝑧
−∞ 𝜌𝐴 (⃗𝑏,𝑧′) 𝑑𝑧′
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Fig. 25.14: Flowchart of the FTF model.

Fig. 25.15: Cascade-type sampling.
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where 𝜎𝑡𝑜𝑡 is the total cross section of the projectile-nucleon interaction, 𝜌𝐴 is the density of the nucleus considered
as a continuous medium.

The probability that the projectile will have an interaction in the range 𝑧 – 𝑧 + 𝑑𝑧 is equal to 𝜎𝑡𝑜𝑡𝜌𝐴(⃗𝑏, 𝑧) 𝑑𝑧. Thus,
the total probability is:

𝑃 (⃗𝑏, 𝑧) = 𝜎𝑡𝑜𝑡𝜌𝐴(⃗𝑏, 𝑧) 𝑒−𝜎𝑡𝑜𝑡
∫︀ 𝑧
−∞ 𝜌𝐴 (⃗𝑏,𝑧′) 𝑑𝑧′

𝑑𝑧

𝑃 (⃗𝑏) =

∫︁ +∞

−∞
𝑃 (⃗𝑏, 𝑧) 𝑑𝑧 = 1 − 𝑒−𝜎𝑡𝑜𝑡

∫︀ ∞
−∞ 𝜌𝐴 (⃗𝑏,𝑧′) 𝑑𝑧′

Having sampled the interaction point, the choice between an elastic scattering and an inelastic interaction is then
implemented.

In the case of the inelastic interaction, a multi-particle production process is simulated. After this, for each produced
particle new interaction points are sampled, and so on.

In the case of the elastic scattering, the scattering is simulated, and then new interaction points for the recoil nucleon
and the projectile are sampled.

The prescription is changed a little bit by replacing the continuous medium with a collection of 𝐴 nucleons located in
the points {�⃗�𝑖, 𝑧𝑖}, 𝑖 = 1–𝐴 where {�⃗�𝑖} are coordinates of the nucleons in the impact parameter plane. The projectile
can interact with the nearest nuclear nucleon, whose �⃗�𝑖 satisfies the condition: |⃗𝑏− �⃗�𝑖| ≤

√︀
𝜎𝑡𝑜𝑡/𝜋 (see Fig. 25.15b).

In the first versions of the cascade models, only nucleons and pions were considered. When it was recognized that most
of inelastic reactions at intermediate energies are going through resonance productions, various baryonic and mesonic
resonances were included, and the algorithm changed (see Fig. 25.15c). As energy grows, more and more heavy
resonances are produced. Because the properties of resonance-nucleon collisions were not known, the interpretation
of the Glauber approximation was very useful.

Short review of Glauber approximation

The Glauber approach [Gla59][Gla67] was proposed in the framework of the potential theory, before the creation
of the intra-nuclear cascade models. Its main assumption is that at sufficiently high energies many partial waves
contribute to a particle elastic scattering amplitude, 𝑓(�⃗�). Thus, a summation on angular momenta can be replaced by
an integral:

𝑓(�⃗�) =
𝑖𝑃

2𝜋

∫︁
𝑒𝑖𝑞𝑏

[︁
1 − 𝑒𝑖𝜒(⃗𝑏)

]︁
𝑑2𝑏 ,

𝑑𝜎

𝑑Ω
= |𝑓(�⃗�)|2

𝛾(⃗𝑏) =
1

2𝜋𝑖𝑃

∫︁
𝑒−𝑖𝑞𝑏 𝑓(�⃗�) 𝑑2𝑞

where 𝑃 is the projectile momentum, 𝑞 is the transferred transverse momentum, �⃗� is the impact parameter, 𝜒 is the
phase shift, and 𝛾 is the scattering amplitude in the impact parameter representation.

Due to the additivity of potentials, it was natural to assume that the overall phase shift for the projectile scattered on
𝐴 centers located in the points {�⃗�𝑖, 𝑧𝑖}, 𝑖 = 1–𝐴 is the sum of the corresponding shifts on each center:

𝜒ℎ𝐴 =

𝐴∑︁
𝑖=1

𝜒(⃗𝑏− �⃗�𝑖)

𝛾ℎ𝐴(⃗𝑏) = 1 −
𝐴∏︁
𝑖=1

[︁
1 − 𝛾(⃗𝑏− �⃗�𝑖)

]︁
(25.5)
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Because the positions of nucleons in nuclei are not fixed, the Eq. (25.5) has to be averaged, and the hadron-nucleus
scattering amplitude takes the form:

𝐹ℎ𝐴
0→𝑓 =

𝑖𝑃

2𝜋

∫︁
𝑑2𝑏 𝑒−𝑖𝑞𝑏

{︃
1 −

𝐴∏︁
𝑖=1

[︁
1 − 𝛾(⃗𝑏− �⃗�𝑖)

]︁}︃
Ψ0({𝑟𝐴})Ψ*

𝑓 ({𝑟𝐴})

𝐴∏︁
𝑖=1

𝑑3𝑟𝑖

where Ψ0 and Ψ𝑓 are wave functions of the nucleus in initial and final states, respectively.

In the case of elastic scattering, Ψ0 = Ψ𝑓 , we have:

𝐹ℎ𝐴
𝑒𝑙 =

𝑖𝑃

2𝜋

∫︁
𝑑2𝑏 𝑒−𝑖𝑞𝑏

{︃
1 −

𝐴∏︁
𝑖=1

[︂
1 −

∫︁
𝛾(⃗𝑏− �⃗�𝑖)𝜌𝐴(�⃗�𝑖, 𝑧

′)𝑑2𝑠𝑖𝑑𝑧
′
]︂}︃

≃ 𝑖𝑃

2𝜋

∫︁
𝑑2𝑏 𝑒−𝑖𝑞𝑏

{︃
1 −

[︂
1 − 1

𝐴

∫︁
𝛾(⃗𝑏− �⃗�)𝑇𝐴(�⃗�)𝑑2𝑠

]︂𝐴}︃

≃ 𝑖𝑃

2𝜋

∫︁
𝑑2𝑏 𝑒−𝑖𝑞𝑏

{︁
1 − 𝑒−

∫︀
𝛾(⃗𝑏−�⃗�)𝑇𝐴(�⃗�)𝑑2𝑠

}︁
≃ 𝑖𝑃

2𝜋

∫︁
𝑑2𝑏 𝑒−𝑖𝑞𝑏

{︁
1 − 𝑒−𝜎𝑡𝑜𝑡

ℎ𝑁 (1−𝑖𝛼)𝑇𝐴 (⃗𝑏)/2
}︁

(25.6)

Some assumptions and simplifications have been used in the above derivations. First of all, it was assumed that
|Ψ0|2 ≃

∏︀𝐴
𝑖=1 𝜌(�⃗�𝑖, 𝑧𝑖) where 𝜌 is the one-particle nuclear density. Because the nucleon coordinates must obey

the obvious condition:
∑︀𝐴

𝑖=1 �⃗�𝑖 = 0, it would be better to use |Ψ0|2 ≃ 𝛿(
∑︀𝐴

𝑖=1 �⃗�𝑖)
∏︀𝐴

𝑖=1 𝜌(�⃗�𝑖, 𝑧𝑖). Considering
this 𝛿-function corresponds to take into account the center-of-mass correlation. The second assumption is that 𝐴 is
sufficiently large, thus (1 − 𝑥

𝐴 )𝐴𝐴→∞ = 𝑒−𝑥 (optical limit). A thickness function of the nucleus was introduced:

𝑇 (⃗𝑏) = 𝐴

∫︁ +∞

−∞
𝜌(⃗𝑏, 𝑧) 𝑑𝑧

It was assumed also that the range of the 𝛾-function is much less than the range of the nuclear density:
∫︀
𝛾(⃗𝑏 −

�⃗�)𝑇𝐴(�⃗�)𝑑2𝑠 ≃ 𝜎𝑡𝑜𝑡
ℎ𝑁 (1−𝑖𝛼)𝑇𝐴(⃗𝑏)/2, where 𝜎𝑡𝑜𝑡

ℎ𝑁 is the hadron-nucleon total cross section, and 𝛼 = 𝑅𝑒 𝑓(0)/𝐼𝑚 𝑓(0)
is the ratio of real and imaginary parts of hadron-nucleon elastic scattering amplitude at zero momentum transfer.

There were many applications of the Glauber approach for calculations of elastic scattering cross sections, cross
sections of nuclear excitations, coherent particle production and so on. We consider here only its application to
inelastic reactions.

If the energy resolution of a scattered projectile is not too high, many nuclear excited states can contribute to the
scattering amplitude: 𝐹ℎ𝐴 =

∑︀
𝑓 𝐹

ℎ𝐴
0→𝑓 . To find the corresponding cross section, it is usually assumed that a set of

final-state wave functions satisfy the completeness relation:
∑︀

𝑓 Ψ𝑓 ({�⃗�𝑖})Ψ*
𝑓 ({�⃗�′𝑗}) =

∏︀𝐴
𝑖=1 𝛿(�⃗�𝑖 − �⃗�′𝑖).

In the Glauber approach, it is possible to show that the cross section of elastic and quasi-elastic scatterings has the
following expression:

𝜎ℎ𝐴
𝑒𝑙.+𝑞𝑒𝑙. =

∫︁
𝑑2𝑏

{︁
1 − 2𝑅𝑒 𝑒−𝜎𝑡𝑜𝑡

ℎ𝑁 (1−𝑖𝛼)𝑇𝐴 (⃗𝑏)/2 + 𝑒−𝜎𝑖𝑛
ℎ𝑁𝑇𝐴 (⃗𝑏)

}︁
Subtracting from it the cross section of the elastic scattering, we have:

𝜎ℎ𝐴
𝑞𝑒𝑙. =

∫︁
𝑑2𝑏

{︁
𝑒−𝜎𝑖𝑛

ℎ𝑁𝑇𝐴 (⃗𝑏) − 𝑒−𝜎𝑡𝑜𝑡
ℎ𝑁𝑇𝐴 (⃗𝑏)

}︁
=

∫︁
𝑑2𝑏 𝑒−𝜎𝑡𝑜𝑡

ℎ𝑁𝑇𝐴 (⃗𝑏)
{︁
𝑒𝜎

𝑒𝑙
ℎ𝑁𝑇𝐴 (⃗𝑏) − 1

}︁
=

∫︁
𝑑2𝑏 𝑒−𝜎𝑡𝑜𝑡

ℎ𝑁𝑇𝐴 (⃗𝑏)
∞∑︁

𝑛=1

[𝜎𝑒𝑙
ℎ𝑁𝑇𝐴(⃗𝑏)]𝑛

𝑛!
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The last expression shows that the quasi-elastic cross section is a sum of cross sections with various multiplicities of
elastic scatterings. It coincides with the prescription of the cascade model if only elastic scatterings of the projectile
are considered.

The cross section of multi-particle production processes in the Glauber approach has the form:

𝜎ℎ𝐴
𝑚𝑝𝑝 = 𝜎ℎ𝐴

𝑡𝑜𝑡 − 𝜎ℎ𝐴
𝑒𝑙.+𝑞𝑒𝑙. =

∫︁
𝑑2𝑏

{︁
1 − 𝑒−𝜎𝑖𝑛

ℎ𝑁𝑇𝐴 (⃗𝑏)
}︁

=

∫︁
𝑑2𝑏 𝑒−𝜎𝑖𝑛

ℎ𝑁𝑇𝐴 (⃗𝑏)
∞∑︁

𝑛=1

[𝜎𝑖𝑛
ℎ𝑁𝑇𝐴(⃗𝑏)]𝑛

𝑛!

(25.7)

This expression coincides with the analogous cascade expression in the case of a projectile particle that can be distin-
guished from the produced particles. Of course, it cannot be so in the case of projectile pions.

In the FTF model of GEANT4 it is assumed that projectile- and target-originated strings are distinguished. Thus, the
cascade-type algorithm of the sampling of the multiplicities and types of interactions in nuclei is used.

A generalization of the Glauber approach for the case of nucleus-nucleus interactions was proposed by V. Franco
[Fra68]. In this approach, the cross section of multi-particle production processes is given by the expression:

𝜎𝐴𝐵
𝑚𝑝𝑝 =

∫︁
𝑑2𝑏

⎧⎨⎩1 −
𝐴∏︁
𝑖=1

𝐵∏︁
𝑗=1

[︁
1 − 𝑔(⃗𝑏+ 𝜏𝑗 − �⃗�𝑖)

]︁⎫⎬⎭ · |Ψ𝐴
0 ({𝑟𝐴})|2|Ψ𝐵

0 ({𝑡𝐵})|2
[︃

𝐴∏︁
𝑖=1

𝑑3𝑟𝑖

]︃⎡⎣ 𝐵∏︁
𝑗=1

𝑑3𝑡𝑖

⎤⎦ (25.8)

where 𝑔(⃗𝑏) = 𝛾(⃗𝑏)+𝛾*(⃗𝑏)−|𝛾(⃗𝑏)|2,𝐴 and𝐵 are mass numbers of colliding nuclei, {�⃗�𝑗} is a set of impact coordinates
of projectile nucleons (⃗𝑡 = (�⃗� , 𝑧)).

Considering 𝑔(⃗𝑏) as a probability that two nucleons separated by the impact parameter �⃗� will have an inelas-
tic interaction, a simple interpretation of the Eq. (25.8) can be given. The expression in the curly brackets
of Eq. (25.8) is the probability that there will be at least one or more inelastic nucleon-nucleon interactions.
|Ψ𝐴

0 ({𝑟𝐴})|2 |Ψ𝐵
0 ({𝑡𝐵})|2

[︁∏︀𝐴
𝑖=1 𝑑

3𝑟𝑖

]︁ [︁∏︀𝐵
𝑗=1 𝑑

3𝑡𝑖

]︁
is the probability to find nucleons with coordinates {𝑟𝐴}

and {𝑡𝐵}. This interpretation allows a simple implementation in a program code, as described in many papers
[SUZ89][ABL+05][MRSS07][BRB09], sometimes with the simplifying assumption that 𝑔(⃗𝑏) = 𝜃(|⃗𝑏| −

√︀
𝜎𝑖𝑛
𝑁𝑁/𝜋).

This is the so-called Glauber Monte Carlo approach.

Because there is no expression in the Glauber theory that combines elastic and inelastic nucleon-nucleon collisions
in nucleus-nucleus interactions, the same cascade-type sampling is used in the FTF model also in the case of these
interactions.

Correction of the number of interactions

The Glauber cross section of multi-particle production processes in hadron-nucleus interactions (Eq. (25.7)) was
obtained in the reggeon phenomenology approach [Sha81], applying the asymptotical Abramovski-Gribov-Kancheli
cutting rules [AGK74] to the elastic scattering amplitude (Eq. (25.6)). Thus, the summation in Eq. (25.7) is going
from one to infinity. But a large number of intra-nuclear collisions cannot be reached in interactions with extra-heavy
nuclei (like neutron star), or at low energy. To restrict the number of collisions it is needed to introduce finite-energy
corrections to the cutting rules. Because there is no well-defined prescriptions for accounting these corrections, let us
take a phenomenological approach, starting with the cascade model.

As it was said above, a simple cascade model considers only pions and nucleons. Due to this it cannot work when
resonance production is a dominating process in hadronic interactions. But if energy is sufficiently low the resonances
can decay before a next possible collision, and the model can be valid. Let 𝑝 be the momentum of a produced resonance
(∆). The average life-time of the resonance in its rest frame is 1/Γ. In the laboratory frame the time is 𝐸Δ/Γ 𝑚Δ.
During the time, the resonance will fly a distance �̄� = 𝑣 𝐸Δ/Γ 𝑚Δ = 𝑝/Γ 𝑚Δ. If the distance is less than the average
distance between nucleons in nuclei (𝑑 ∼ 2 fm), the model can be applied. From this condition, we have:

𝑝 ≤ 𝑑 Γ𝑚Δ ∼ 1.5 (GeV/𝑐)
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Direct ∆-resonance production takes place in 𝜋𝑁 interactions at low energies. Thus the model cannot work quite well
for momentum of pions above 2 GeV/c. In nucleon-nucleon interactions, due to the momentum transfer to a target
nucleon, the boundary can be higher.

Returning back to the FTF model, let us assume that the projectile-originated strings have average life-time 1/Γ, and
an average mass 𝑚*. The strings can interact on average with �̄�/𝑑 = 𝑝/Γ 𝑚*/𝑑 = 𝑝/𝑝0 nucleons. Here 𝑝0 is a new
parameter. According to our estimations 𝑝0 has value of about 3–5 GeV/c. Thus, we can assume that at a given energy
there is a maximum number of intra-nuclear collisions in the FTF model, given by: 𝜈𝑚𝑎𝑥 = 𝑝/𝑝0.

Let us introduce this number in the Glauber expression for the cross section of multi-particle production processes.

𝜎ℎ𝐴
𝑚𝑝𝑝 =

∫︁
𝑑2𝑏

{︃
1 −

(︂
1 − 1

𝐴
𝜎𝑖𝑛
ℎ𝑁𝑇𝐴(⃗𝑏)

)︂𝐴
}︃

=

∫︁
𝑑2𝑏

{︃
1 −

[︃(︂
1 − 1

𝐴
𝜎𝑖𝑛
ℎ𝑁𝑇𝐴(⃗𝑏)

)︂𝐴/𝜈𝑚𝑎𝑥
]︃𝜈𝑚𝑎𝑥

}︃

=

∫︁
𝑑2𝑏

𝜈𝑚𝑎𝑥∑︁
𝜈=1

𝜈𝑚𝑎𝑥!

𝜈!(𝜈𝑚𝑎𝑥 − 𝜈)!

[︃
1 −

(︂
1 − 1

𝐴
𝜎𝑖𝑛
ℎ𝑁𝑇𝐴(⃗𝑏)

)︂𝐴/𝜈𝑚𝑎𝑥
]︃𝜈

·

[︃(︂
1 − 1

𝐴
𝜎𝑖𝑛
ℎ𝑁𝑇𝐴(⃗𝑏)

)︂𝐴/𝜈𝑚𝑎𝑥
]︃𝜈𝑚𝑎𝑥−𝜈

As seen from the expression above, the number of the intra-nuclear collisions is restricted to 𝜈𝑚𝑎𝑥.

The formula looks rather complicated, but a Monte Carlo algorithm for the rejection of the interaction number is quite
simple. For example, an algorithm implementing it could look like this: at the beginning, a projectile has the “power”,
𝑃𝑤, to interact inelastically with 𝜈𝑚𝑎𝑥 nucleons (𝑃𝑤 = 𝜈𝑚𝑎𝑥; you can think about it as a likelihood, or unnormalized
probability), thus the probability of an interaction with the first nucleon, 𝑃𝑤/𝜈𝑚𝑎𝑥, is equal to 1. The power decreases
after the first interaction. Thus, the probability of an inelastic interaction with a second nucleon is equal to 𝑃𝑤/𝜈𝑚𝑎𝑥,
where 𝑃𝑤 = 𝜈𝑚𝑎𝑥 − 1. If the second interaction happens, the power is decreased once more; else it is left at the same
level. This is applied for each possible interaction.

The same algorithm is applied in the case of nucleus-nucleus interactions, but the power 𝑃𝑤 is ascribed to each of the
projectile or target nucleons.

Reggeon cascading

As known, the Glauber approximation used in the Fritiof model and in other string models does not provide enough
amount of intra-nuclear collisions for a correct description of nuclear destruction. Additional cascading in nuclei
is needed. The usage of a standard cascade for secondary particle interactions leads to a too large multiplicity of
produced particles. Usually, it is assumed that the inclusion of secondary particle’s formation time can help to solve
this problem. Hadrons are not point-like particles: they have finite space sizes. Thus, the production of a hadron
cannot be considered as a process taking place in a point, but rather in a space region. To implement this idea in
Monte Carlo generators, it is assumed that particles do not appear in the nominal space-time point of production,
but after some time interval called the formation time, and at some distance called the formation length. Because
these time and length depend on the reference frame, it is assumed that for them standard relativistic formulae can
be applied: 𝑡𝐹 = 𝜏0𝐸/𝑚, 𝑙𝐹 = 𝜏0𝑝/𝑚, where 𝐸, 𝑝 and 𝑚 are, respectively, energy, momentum and mass of the
particle in the final state; 𝜏0 is a parameter. The problem is now: how can one determine the “nominal” point of the
production? There is no a well established and accepted solution to this problem. Moreover, reggeon theory experts
criticized for long time the concept of the formation time and the “standard” model of particle cascading in nuclei –
the approaches do not consider the space-time structure of strong interactions. It was also assumed that the cascading
could be correctly treated in the reggeon theory by considering the of so-called enhanced diagrams.

Reggeon phenomenology of nuclear interactions

According to the phenomenology, an elastic hadron-hadron scattering amplitude is the sum of contributions connected
with various exchanges in the 𝑡-channel. Each contribution has the following form in the impact parameter represen-
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tation:

𝐴𝑅
𝑁𝑁 (⃗𝑏, 𝜉) = 𝜂𝑅𝑔

2
𝑅𝑒

Δ𝑅𝜉 𝑒
− 𝑏2

4(𝑅2+𝛼′
𝑅

𝜉)

(𝑅2
𝑁𝑁 + 𝛼′

𝑅𝜉)

Here |⃗𝑏| is the impact parameter, 𝜉 = ln(𝑠), 𝑠 is the squared center-of-mass energy, 𝜂𝑅 is the signature factor: 𝜂𝑅 =
1 + 𝑖 cot(𝜋(1 + ∆𝑅)/2) for a pole with positive signature, and 𝜂𝑅 = −1 + 𝑖 cot(𝜋(1 + ∆𝑅)/2) for a pole with
negative signature. 1+∆𝑅 is the intercept of the reggeon trajectory, 𝛼′

𝑅 is its slope, and the vertex of reggeon-nucleon
interaction is parameterized as 𝑔(𝑡) = 𝑔𝑅 exp (𝑅2

𝑁𝑁 𝑡/2), 𝑡 is the transferred 4-momentum.

Fig. 25.16: Nonenhanced diagrams of 𝑁𝑁 -scattering.

Taking into account the contributions of other diagrams, shown in Fig. 25.16, one can find the 𝑁𝑁 -scattering ampli-
tude:

𝛾𝑁𝑁 (⃗𝑏, 𝜉) = 1 − 𝑒−𝐴𝑅
𝑁𝑁 (⃗𝑏,𝜉)

The calculation of amplitudes and cross sections for cascade interactions requires to consider the so-called enhanced
diagrams, like those shown in Fig. 25.17.

Fig. 25.17: Simplest enhanced diagrams of 𝑁𝑁 -scattering.

The contribution of the diagram in Fig. 25.17a to the elastic scattering amplitude is given by the expression:

𝐺𝐸𝑎(⃗𝑏, 𝜉) = −𝐺
𝜉−𝜖∫︁
𝜖

𝑑𝜉′
∫︁
𝑑2𝑏′𝐴𝑅1

𝑁𝜋 (⃗𝑏− 𝑏′, 𝜉 − 𝜉′)𝐴𝑅2

𝜋𝑁 (𝑏′, 𝜉′)𝐴𝑅3

𝜋𝑁 (𝑏′, 𝜉′)

where 𝐴𝜋𝑁 is the amplitude of meson-nucleon scattering due to one-reggeon exchange, 𝐺 is the three reggeon’s
coupling constant, 𝜖 is the cutoff parameter (𝜖 ∼ 1). Here we use the model of multi-reggeon vertices proposed in
[KpTM86], where it was assumed that reggeons are coupled to one another via a created virtual meson (pion) pair.

The simplest enhanced diagrams for hadron-nucleus scattering were evaluated in [JDTreliani76][Sar80]. An effective
computational procedure was proposed in papers [Sch75][CSRJenco76], but it was not applied to the analysis of
experimental data. The structure of the enhanced diagrams and their analytical properties were studied in [BKKS91].

In the reggeon approach the interaction of secondary particles with a nucleus is described by cuttings of enhanced dia-
grams. Here the Abramovski-Gribov-Kancheli (AGK) cutting rules [AGK74] are frequently applied. The corrections
to them were discussed in [BKKS91] for the problem of particle cascading into the nucleus. It was shown there that
inelastic rescatterings occur for any secondary particle, both slow and fast, and the contributions of enhanced diagrams
lead to the enrichment of the spectrum by slow particles in the target fragmentation region.

As in [KpTM86] we shall assume that the reggeon interaction vertices are small. Therefore of the full set of enhanced
diagrams the only important ones will be those containing vertices where one of the reggeons split into several, which
then interact with different nucleons of the nucleus (Fig. 25.18a). In studying interactions with nuclei, however, it is
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Fig. 25.18: Possible enhanced diagrams of ℎ𝐴 -interactions.

convenient, in the spirit of the Glauber approach, to deal not with individual reggeons, but with sets of them interacting
with a given nucleon of the nucleus (Fig. 25.18b). Unfortunately, the reggeon method of calculating the sum of the
contributions of enhanced diagrams in the case of ℎ𝐴- and𝐴𝐴-interactions is not developed for practical tasks. Hence
we propose a simple model of estimating reggeon cascading in ℎ𝐴- and 𝐴𝐴-interactions.

Let us consider the contribution of the first diagram of Fig. 25.18a:

𝑌 = 𝐺

∫︁
𝑑𝜉′𝑑2𝑏′𝐹𝑁𝜋 (⃗𝑏− 𝑏′, 𝜉 − 𝜉′) × 𝐹𝜋𝑁 (𝑏′ − �⃗�1, 𝜉

′)𝐹𝜋𝑁 (𝑏′ − �⃗�2, 𝜉
′)

where �⃗� is the impact parameter of a projectile hadron, �⃗�1 and �⃗�2 are impact coordinates of two nuclear nucleons, 𝑏′ is
the position of the reggeon interaction vertex in the impact parameter plane, 𝜉′ is its rapidity.

Using a gaussian parameterization for 𝐹𝑁𝜋 (𝐹𝜋𝑁 = exp(−|⃗𝑏|2/𝑅2
𝜋𝑁 )) and neglecting its dependence on energy, we

have

𝑌 ≃ 𝐺(𝜉0 − 2𝜖)
𝑅2

𝜋𝑁

3
exp(−(⃗𝑏− (�⃗�1 + �⃗�2)/2)2/3𝑅2

𝜋𝑁 ) × exp(−(�⃗�1 − �⃗�2)2/2𝑅2
𝜋𝑁 )

where 𝑅𝜋𝑁 is the pion-nucleon interaction radius. According to this expression, the contribution reaches a maximum
when the nucleon coordinates, �⃗�1 and �⃗�2, coincide, and decreases very fast with increasing distance between the
nucleons.

Cutting the diagram, one can obtain that the probability, 𝜑, to involve 2 neighboring nucleons is

𝜑(| �⃗�1 − �⃗�2 |) ∼ exp

(︂
−| �⃗�1 − �⃗�2 |2

𝑅2
𝜋𝑁

)︂
Schematically, the hadron-nucleus interaction process in the impact parameter plane can be represented as in Fig.
25.19, where the position of the projectile hadron is marked by an open circle, the positions of nuclear nucleons by
closed circles, reggeon exchanges by dashed lines and the small points are the coordinates of the reggeon interaction
vertices.

Let us consider the problem by using the quark-gluon approach. There were some successful attempts to describe
the hadron-nucleon elastic scattering at low and intermediate energies (below 1 – 2 GeV) within this approach (see
[BESSwanson92][TBarnesESSwansonJWeinstein92][TBarnesSCapstickMDKovarikS93][TBarnesESSwanson92]).
In particular, in the paper [BESSwanson92] the theoretical calculations of the amplitudes of 𝜋𝜋-, 𝐾𝐾- and 𝑁𝑁 -
scatterings were found in agreement with experimental data, assuming that in the elastic hadron scattering one-gluon
exchange with following quark interchange between hadrons takes place (see Fig. 25.20a). At high energies,
two-gluon exchange approximation (Fig. 25.20b) works quite well (see [Low75][Nus76][GDShoper77][LR81]).
What kind of exchanges can dominate in hadron-nucleus and nucleus-nucleus interactions?

The simplest possible diagrams of processes with three nucleons are given in Fig. 25.21. A calculation of their ampli-
tudes according to [BESSwanson92] is a serious mathematical problem. It can be simplified if one takes into account
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Fig. 25.19: Reggeon “cascade” in hA-scattering.

Fig. 25.20: Diagrams of quark-gluon exchanges and corresponding reggeon diagrams for hadron-nucleus interactions.

Fig. 25.21: Diagrams of quark-gluon exchanges and corresponding reggeon diagrams for hadron-nucleus interactions.

25.1. Introduction 303



Physics Reference Manual, Release 10.4

an analogy between quark-gluon diagrams and reggeon diagrams: the quark diagram of Fig. 25.20a corresponds to a
one-nonvacuum reggeon exchange; the diagram of Fig. 25.20b describes the pomeron exchange in the 𝑡-channel; the
diagram of Fig. 25.21a is in correspondence with the enhanced reggeon diagram of the pomeron splitting into two
non-vacuum reggeons. The three pomeron diagram (Fig. 25.21d) represents a more complicated process. It is rather
difficult to find a correspondence between reggeon diagrams and the diagrams of Fig. 25.21b, Fig. 25.21c.

It seems obvious that the processes like one in Fig. 25.21d cannot dominate in the elastic hadron-nucleus scattering
because they are accompanied by a production of high-mass diffractive particles in the intermediate state. Thus, their
contributions are damped by a nuclear form-factor. For the same reason, the contributions of processes like the ones
in Fig. 25.21a, Fig. 25.21b can be small too. If this is not the case, then one can expect large corrections to Glauber
cross sections. The practice shows that the corrections to hadron-nucleus cross sections must be lower than 5–7%.

The diagram Fig. 25.21c can give a correction to the Glauber one-scattering amplitude. Analogous corrections exist for
the other terms of Glauber series. They can re-normalize the nuclear vertex constants. According to [BESSwanson92]
the contribution has the form:

𝑌𝑐 ∝ exp [−(⃗𝑏− �⃗�1)/𝑅2
𝑝] exp [−(�⃗�1 − �⃗�2)/𝑅2

𝑐 ]

where 𝑅𝑝 is the radius of high-energy nucleon-nucleon interactions, and 𝑅𝑐 is another low-energy radius. Let us note
that 𝑌𝑐 does not depend, as other reggeon diagram contributions, on the longitudinal coordinates of nucleons and the
multiplicity of produced particles. This is the main difference between “reggeon cascading” and usual cascading.

As well known, the intra-nuclear cascade models assume that in a hadron-nucleus collision secondary particles are
produced in the first inelastic interaction of the projectile with a nuclear nucleon. The produced particles can interact
with other target nucleons. The distribution of the distance 𝑙 between the first interaction and the second one has the
form:

𝑊 (𝑙)𝑑𝑙 ∝ 𝑛

⟨𝑙⟩
exp

(︂
− 𝑛

⟨𝑙⟩
𝑙

)︂
where ⟨𝑙⟩ = 1/𝜎𝜌𝐴, 𝜎 is the hadron-nucleon cross section, 𝑛 is the multiplicity of the produced particles, and 𝜌𝐴 ∼
0.15 (fm)−3 is the nuclear density. At the same time, the amplitudes or cross sections of processes like Fig. 25.21
have no dependence on 𝑙 or 𝑛. Thus, one can expect that the “cascade” in the quark-gluon approach will be more
restricted than in the cascade models. The difference between these approaches can lead to different predictions for
hadron interactions with heavy nuclei due to the large multiplicity of the produced particles.

Because it is complicated to calculate the contributions of various diagrams, and to take into account all possibilities,
let us formulate a simpler phenomenological model that keeps the main features of the above approaches.

The model formulation

1. As it was said above, the “reggeon” cascade is developed in the impact parameter plane, and has features
typical for branching processes. Thus, for its description it is needed to determine the probability to involve a
nuclear nucleon into the “cascade”. It is obvious that the probability depends on the difference of the impact
coordinates of the new and previous involved nucleons. Looking at the contribution of the diagram Fig. 25.21c,
the functional form of the probability is chosen as:

𝑃 (|�⃗�𝑖 − �⃗�𝑗 |) = 𝐶𝑛𝑑 exp [−(�⃗�𝑖 − �⃗�𝑗)
2/𝑅2

𝑐 ] (25.9)

where �⃗�𝑖 and �⃗�𝑗 are the projections of the radii of the i𝑡ℎ and j𝑡ℎ nucleons on the impact parameter plane.

2. The “cascade” is initiated by the primary involved nucleons. These nucleons are determined with the help of the
Glauber approach.

3. All involved nucleons are ejected from the nucleus.
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The “cascade” looks like that: a projectile particle interacts with some intra-nuclear nucleons. These nucleons are
called “wounded” or “participating” nucleons. These nucleons initiate the “cascade”. A wounded nucleon can involve
a “spectator” nucleon into the “cascade” with the probability (25.9). A spectator nucleon can involve another nucleon,
which in turn can involve a third one and so on. This algorithm is implemented in the FTF model.

We have tuned 𝐶𝑛𝑑 using the HARP-CDP data on proton production in the 𝑝+𝐶𝑢 interactions [eal09]. According to
our estimations,

𝐶𝑛𝑑 = 𝑒4 (𝑦−2.1)/[1 + 𝑒4 (𝑦−2.1)], 𝑅2
𝑐 = 1.5 (fm)2

where 𝑦 is the projectile rapidity. The value of the exponent, 2.1, corresponds to 𝑃𝑙𝑎𝑏 ∼ 4 GeV/c.

“Fermi motion” of nuclear nucleons

In the “standard” approach, a nucleus is considered as a potential well where nucleons are freely moving. A particle
falling on the nucleus changes its momentum on the border of the well. Here a question appears: to whom the recoil
momentum must be ascribed? If the particle is absorbed by the nucleus, probably, one has to imagine in the final
state the potential well with its nucleons moving with a momentum of the particle. If some nucleons are ejected from
the nucleus, what conditions have to satisfy the nucleon momenta, and how will the “residual” well be moving to
satisfy the energy-momentum conservation law? In the case of a 3-dimensional potential well, how will be changed
the momentum components of a particle on the well surface? Will only the component transverse to the surface, or the
one parallel to the surface, or both be changed? The list of questions can be extended by considering nucleus-nucleus
interactions.

Two approaches are frequently used in practice.

According to the first one, the nucleus is considered as a continuous medium, and nucleons appeared only in points
of the projectile interactions with the medium. It seems natural in this approach to sum the momenta of all ejected
particles. Then, subtracting it from the initial momentum, one can find the momentum of the residual nucleus. It is
unclear, however, what has to be done in the case of nucleus-nucleus interactions.

In the second approach, space coordinates and momenta of the nucleons are sampled according to some assumptions.
In order to satisfy the energy-momentum conservation law, the projectile momentum does not changed, and to each
nucleon is ascribed a new mass:

𝑚 =
√︀

(𝑚0 − 𝜖𝑏)2 − 𝑝2

where 𝑚0 is the nucleon mass in the free state, 𝜖𝑏 is the nuclear binding energy per nucleon, and 𝑝 is the momentum
of the nucleon. In this approach, the nucleus is a collection of off-mass-shell particles. Apparently, in the case of
nucleus-nucleus interactions one has to consider two of such collections. The energy-momentum conservation law is
satisfied in this approach if it is satisfied in each collision of out-of-mass-shell nucleons. However, there is a problem
with the excitation energy of the nuclear residual: in most of the cases, it is too small.

All these questions are absent in the approach proposed in the paper [eal97].

Let us consider it starting from a simple example of a hadron interaction with a bound system of two nucleons, (1, 2).
In this approach it is assumed that the process has two stages. At the first one, the system is dissociated:

ℎ+ (1, 2) → ℎ+ 1 + 2

At the second stage a “hard” collision of the projectile with the first or second nucleon takes place. Neglecting
transverse momenta let us write the energy-momentum conservation law in the form:{︂

𝑝ℎ = 𝑝′ℎ + 𝑝1 + 𝑝2
𝐸ℎ + 𝐸(1,2) = 𝐸′

ℎ + 𝐸1 + 𝐸2
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In the above expressions, there are three variables and two equations. Thus, only one variable can be chosen as
independent. It can be 𝑝′ℎ – hadron momentum in the final state, or 𝑝1 or 𝑝2 – nucleon momentum in the final state.
We choose as the variable the light-cone momentum fraction of one of the final-state nucleons:

𝑥1 = (𝐸1 − 𝑝1)/(𝐸1 + 𝐸2 − 𝑝1 − 𝑝2)

This variable is invariant under the Lorentz transformation along the collision axis.

Using this variable and the energy-momentum conservation law, one can find:

𝑊− = 𝐸1 + 𝐸2 − 𝑝1 − 𝑝2 = [𝑠−𝑚2
ℎ + 𝛽2 − 𝜆1/2(𝑠,𝑚2

ℎ, 𝛽
2)]/2 𝑊+

0

where:

𝑊+
0 = 𝐸ℎ + 𝐸(1,2) + 𝑝ℎ, 𝑊−

0 = 𝐸ℎ + 𝐸(1,2) − 𝑝ℎ

𝑠 = 𝑊+
0 𝑊

−
0 , 𝛽2 =

𝑚2
1

𝑥1
+

𝑚2
2

1 − 𝑥1

(See (25.3) for the definition of 𝜆().)

The other kinematical variables are:

𝑝1 =
𝑚2

1

2𝑥1𝑊− − 𝑥1𝑊
−

2
, 𝐸1 =

𝑚2
1

2𝑥1𝑊− +
𝑥1𝑊

−

2

𝑝2 =
𝑚2

2

2(1 − 𝑥1)𝑊− − (1 − 𝑥1)𝑊−

2
, 𝐸2 =

𝑚2
2

2(1 − 𝑥1)𝑊− +
(1 − 𝑥1)𝑊−

2

𝑝′ℎ = 𝑝ℎ − 𝑝1 − 𝑝2, 𝐸′
ℎ = 𝐸ℎ + 𝐸(1,2) − 𝐸1 − 𝐸2

So, for the simulation of the interactions, one has to determine only one function: 𝑓(𝑥1) – the distribution of 𝑥1.
Distributions for 𝑝1 and 𝑝2 have interesting properties: at 𝑝ℎ → ∞ they become stable (i.e. the distributions remain
nearly unchanged when we vary 𝑝ℎ, for large values of 𝑝ℎ), thus reproducing the typical “limiting fragmentation”
(according to an old terminology) of bound system; at 𝑝ℎ → 0, 𝐸ℎ + 𝐸(1,2) > 𝑚ℎ +𝑚1 +𝑚2 the distributions 𝑝1
and 𝑝2 become narrower and narrower (i.e. similar to a 𝛿-Dirac distribution).

It is not complicated to introduce transverse momenta – 𝑝′⊥ℎ, 𝑝⊥1 and 𝑝⊥2, such that 𝑝′⊥ℎ + 𝑝⊥1 + 𝑝⊥2 = 0. It is
sufficient to replace the masses with the the transverse ones: 𝑚𝑖 → 𝑚⊥𝑖 =

√︀
𝑚2

𝑖 + 𝑝2⊥𝑖.

In the case of interactions of two composed systems, 𝐴 and 𝐵, consisting of 𝐴 and 𝐵 constituents respectively (for
brevity, we denote with the same symbol both a composed system and the number of its constituents), let us describe
the 𝑖𝑡ℎ constituent of 𝐴 by the variables:

𝑥+𝑖 = (𝐸𝐴𝑖 + 𝑝𝑖𝑧)/𝑊+
𝐴 and 𝑝𝑖⊥

and the 𝑗𝑡ℎ constituent of 𝐵 by the variables:

𝑦−𝑗 = (𝐸𝐵𝑗 − 𝑞𝑗𝑧)/𝑊−
𝐵 and �⃗�𝑖⊥

Here 𝐸𝐴𝑖(𝐸𝐵𝑖) and 𝑝𝑖(�⃗�𝑖) are energy and momentum of the 𝑖𝑡ℎ constituent of the system 𝐴 (𝐵).

𝑊+
𝐴 =

𝐴∑︁
𝑖=1

(𝐸𝐴𝑖 + 𝑝𝑖𝑧), 𝑊−
𝐵 =

𝐵∑︁
𝑖=1

(𝐸𝐵𝑖 − 𝑞𝑖𝑧)

Using these variables, the energy-momentum conservation law takes the form:

𝑊+
𝐴

2
+

1

2𝑊+
𝐴

𝐴∑︁
𝑖=1

𝑚2
𝑖⊥
𝑥+𝑖

+
𝑊−

𝐵

2
+

1

2𝑊−
𝐵

𝐵∑︁
𝑖=1

𝜇2
𝑖⊥
𝑦−𝑖

= 𝐸0
𝐴 + 𝐸0

𝐵

𝑊+
𝐴

2
− 1

2𝑊+
𝐴

𝐴∑︁
𝑖=1

𝑚2
𝑖⊥
𝑥+𝑖

−
𝑊−

𝐵

2
+

1

2𝑊−
𝐵

𝐵∑︁
𝑖=1

𝜇2
𝑖⊥
𝑦−𝑖

= 𝑃 0
𝐴 + 𝑃 0

𝐵

𝐴∑︁
𝑖=1

𝑝𝑖⊥ +

𝐵∑︁
𝑖=1

�⃗�𝑖⊥ = 0

(25.10)
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where 𝑚2
𝑖⊥ = 𝑚2

𝑖 + 𝑝2𝑖⊥, 𝜇2
𝑖⊥ = 𝜇2

𝑖 + �⃗�2𝑖⊥, and 𝑚𝑖(𝜇𝑖) is the mass of 𝑖𝑡ℎ constituent of the system 𝐴 (𝐵).

The system of equations (25.10) allows one to find 𝑊+
𝐴 , 𝑊

−
𝐵 and all kinematical properties of the particles at given

{𝑥+𝑖 , 𝑝𝑖⊥}, {𝑦−𝑖 , �⃗�𝑖⊥}.

𝑊+
𝐴 = (𝑊−

0 𝑊
+
0 + 𝛼− 𝛽 +

√
∆)/2𝑊−

0

𝑊−
𝐵 = (𝑊−

0 𝑊
+
0 − 𝛼+ 𝛽 +

√
∆)/2𝑊+

0

𝑊+
0 = (𝐸0

𝐴 + 𝐸0
𝐵) + (𝑃 0

𝐴𝑧 + 𝑃 0
𝐵𝑧)

𝑊−
0 = (𝐸0

𝐴 + 𝐸0
𝐵) − (𝑃 0

𝐴𝑧 + 𝑃 0
𝐵𝑧)

𝛼 =

𝐴∑︁
𝑖=1

𝑚2
𝑖⊥
𝑥+𝑖

, 𝛽 =

𝐵∑︁
𝑖=1

𝜇2
𝑖⊥
𝑦−𝑖

∆ = (𝑊−
0 𝑊

+
0 )2 + 𝛼2 + 𝛽2 − 2𝑊−

0 𝑊
+
0 𝛼− 2𝑊−

0 𝑊
+
0 𝛽 − 2𝛼𝛽

𝑝𝑖𝑧 = (𝑊+
𝐴 𝑥

+
𝑖 − 𝑚2

𝑖⊥
𝑥+𝑖 𝑊

+
𝐴

)/2; 𝑞𝑖𝑧 = −(𝑊−
𝐵 𝑦

−
𝑖 − 𝜇2

𝑖⊥
𝑦−𝑖 𝑊

−
𝐵

)/2

Consequently, the problem of accounting for the binding energy and Fermi motion in the simulation of interacting
composed systems comes to the definition of the distributions for 𝑥+𝑖 , 𝑦

−
𝑖 , 𝑝𝑖⊥, �⃗�𝑖⊥.

The transverse momentum of an ejected nucleon (𝑝⊥) is sampled according to the distribution:

𝑑𝑊 ∝ exp(−𝑝2⊥/⟨𝑝2⊥⟩)𝑑2𝑝⊥

⟨𝑝2⊥⟩ = 0.035 + 0.04
𝑒4 (𝑦𝑙𝑎𝑏−2.5)

1 + 𝑒4 (𝑦𝑙𝑎𝑏−2.5)
(GeV/𝑐)2

where 𝑦𝑙𝑎𝑏 is the projectile nucleus rapidity in the rest frame of the target nucleus. The sum of the transverse momenta
with minus sign is ascribed to the residual of the target nucleus.

𝑥+ (and similarly for 𝑦−) is sampled according to the distribution:

𝑑𝑊 ∝ exp[−(𝑥+ − 1/𝐴)2/(𝑑/𝐴)2]𝑑𝑥+, 𝑑 = 0.3

𝑥+ of the nuclear residual is determined as 1 −
∑︀
𝑥+𝑖 .

Excitation energy of nuclear residuals

According to the approach presented above, the excitation energy of a nuclear residual has to be determined before the
simulation of particle production. It seems natural to assume that this excitation energy is connected with the multi-
plicity of ejected nuclear nucleons, both the participating ones and those involved in the reggeon cascading. Without
the involved nucleons, the excitation energy would be proportional to the multiplicity of the participating nucleons as
calculated in the Glauber approach. Such approach was followed in the paper [AMWAFriedmanJHufner86], where
proton-nucleus interactions at intermediate energies were analyzed. There the multiplicity of the nucleons was cal-
culated in the Glauber approach. It was also assumed that each recoil of the participating nucleons contributes to the
excitation energy with a value sampled from the following distribution:

𝑑𝑊 (𝐸) =
1

⟨𝐸⟩
𝑒−𝐸/⟨𝐸⟩𝑑𝐸

The sum of these contributions determines the residual excitation energy. The authors of the paper
[AMWAFriedmanJHufner86] considered both absorptions and ejections of the nucleons, and took into account the
effect of decreasing projectile energy during the interactions. They obtained a good agreement of their calculations
with experimental data on neutron production as a function of the residual excitation energy.

Extending this approach, we assume, as a first step, that each participating or involved nucleon adds 100 MeV to
the nuclear residual excitation energy. The excited residual is then fragmented by using the Generalized Evaporation
Model (GEM) [Fur00].
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CHAPTER

TWENTYSIX

THE GEANT4 BERTINI INTRANUCLEAR CASCADE MODEL

26.1 Introduction

This cascade model is a re-engineered version of the INUCL code and includes the Bertini intra-nuclear cascade model
with excitons, a pre-equilibrium model, a nucleus explosion model, a fission model, and an evaporation model. It treats
nuclear reactions initiated by long-lived hadrons (𝑝, 𝑛, 𝜋,𝐾,Λ,Σ,Ξ,Ω) and 𝛾s with energies between 0 and 10 GeV.
Presented here is an overview of the models and a review of results achieved from simulations and comparisons with
experimental data.

The intranuclear cascade model (INC) was was first proposed by Serber in 1947 [Ser47]. He noticed that in particle-
nuclear collisions the deBroglie wavelength of the incident particle is comparable (or shorter) than the average intra-
nucleon distance. Hence, a description of interactions in terms of particle-particle collisions is justified.

The INC has been used succesfully in Monte Carlo simulations at intermediate energies since Goldberger made the first
hand-calculations in 1947 [Gol48]. The first computer simulations were done by Metropolis et al. in 1958 [MBS58].
Standard methods in INC implementations were developed when Bertini published his results in 1968 [GAB68]. An
important addition to INC was the exciton model introduced by Griffin in 1966 [Gri66].

The current presentation describes the implementation of the Bertini INC model within the GEANT4 hadronic physics
framework [SA03]. This framework is flexible and allows for the modular implementation of various kinds of hadronic
interactions.

26.2 The GEANT4 Cascade Model

Inelastic particle-nucleus collisions are characterized by both fast and slow components. The fast (10-23 - 10-22 s)
intra-nuclear cascade results in a highly excited nucleus which may decay by fission or pre-equilibrium emission. The
slower (10-18 - 10-16 s) compound nucleus phase follows with evaporation. A Boltzmann equation must be solved to
treat the collision process in detail.

The intranuclear cascade (INC) model developed by Bertini [GAB68][BG71] solves the Boltzmann equation on av-
erage. This model has been implemented in several codes such as HETC [AAH90]. Our model, which is based
on a re-engineering of the INUCL code [eal99], includes the Bertini intranuclear cascade model with excitons, a
pre-equilibrium model, a simple nucleus explosion model, a fission model, and an evaporation model.

The target nucleus is modeled by up to six concentric shells of constant density as an approximation to the continuously
changing density distribution of nuclear matter within nuclei. The cascade begins when an incident particle strikes a
nucleon in the target nucleus and produces secondaries. The secondaries may in turn interact with other nucleons or
be absorbed. The cascade ends when all particles, which are kinematically able to do so, escape the nucleus. At that
point energy conservation is checked. Relativistic kinematics is applied throughout the cascade.

309



Physics Reference Manual, Release 10.4

26.2.1 Model Limits

The model is valid for incident 𝑝, 𝑛, 𝜋,𝐾,Λ,Σ,Ξ,Ω and 𝛾s with energies between 0 and 10 GeV. All types of nuclear
targets are allowed.

The necessary condition of validity of the INC model is 𝜆𝐵/𝑣 ≪ 𝜏𝑐 ≪ ∆𝑡, where 𝛿𝐵 is the deBroglie wavelenth of
the nucleons, 𝑣 is the average relative velocity between two nucleons and ∆𝑡 is the time interval between collisions.
At energies below 200 MeV, this condition is no longer strictly valid, and a pre-quilibrium model must be invoked. At
energies greater than ~10 GeV the INC picture breaks down. This model has been tested against experimental data at
incident kinetic energies between 100 MeV and 10 GeV.

26.2.2 Intranuclear Cascade Model

The basic steps of the INC model are summarized as follows:

1. the space point at which the incident particle enters the nucleus is selected uniformly over the projected area of
the nucleus,

2. the total particle-particle cross sections and region-depenent nucleon densities are used to select a path length
for the projectile,

3. the momentum of the struck nucleon, the type of reaction and the four-momenta of the reaction products are
determined, and

4. the exciton model is updated as the cascade proceeds.

5. If the Pauli exclusion principle allows and 𝐸𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 > 𝐸𝑐𝑢𝑡𝑜𝑓𝑓 = 2 MeV, step (2) is performed to transport the
products.

After the intra-nuclear cascade, the residual excitation energy of the resulting nucleus is used as input for non-
equilibrium model.

26.2.3 Nuclear Model

Some of the basic features of the nuclear model are:

• the nucleons are assumed to have a Fermi gas momentum distribution. The Fermi energy is calculated in a
local density approximation i.e. the Fermi energy is made radius-dependent with Fermi momentum 𝑝𝐹 (𝑟) =

( 3𝜋2𝜌(𝑟)
2 )

1
3 .

• Nucleon binding energies (BE) are calculated using the mass formula. A parameterization of the nuclear binding
energy uses a combination of the Kummel mass formula and experimental data. Also, the asymptotic high
temperature mass formula is used if it is impossible to use experimental data.

Initialization

The initialization phase fixes the nuclear radius and momentum according to the Fermi gas model.

If the target is hydrogen (A = 1) a direct particle-particle collision is performed, and no nuclear modeling is required.

If 1 < 𝐴 < 4, a nuclear model consisting of one layer with a radius of 8.0 fm is created.

For 4 < 𝐴 < 11, the nuclear model is composed of three concentric spheres 𝑖 = {1, 2, 3} with radius

𝑟𝑖(𝛼𝑖) =

√︃
𝐶2

1

(︂
1 − 1

𝐴

)︂
+ 6.4

√︀
− log(𝛼𝑖).
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Here 𝛼𝑖 = {0.01, 0.3, 0.7} and 𝐶1 = 3.3836𝐴1/3.

If 𝐴 > 11, a nuclear model with three concentric spheres is also used. The sphere radius is now defined as

𝑟𝑖(𝛼𝑖) = 𝐶2 log

(︃
1 + 𝑒−

𝐶1
𝐶2

𝛼𝑖
− 1

)︃
+ 𝐶1,

where 𝐶2 = 1.7234.

The potential energy 𝑉 for nucleon 𝑁 is

𝑉𝑁 =
𝑝2𝐹

2𝑚𝑁
+𝐵𝐸𝑁 (𝐴,𝑍),

where 𝑝𝑓 is the Fermi momentum and 𝐵𝐸 is the binding energy.

The momentum distribution in each region follows the Fermi distribution with zero temperature.

𝑓(𝑝) = 𝑐𝑝2

where ∫︁ 𝑝𝐹

0

𝑓(𝑝)𝑑𝑝 = 𝑛𝑝 or 𝑛𝑛

where 𝑛𝑝 and 𝑛𝑛 are the number of protons or neutrons in the region. 𝑃𝑓 is the momentum corresponding to the Fermi
energy

𝐸𝑓 =
𝑝2𝐹

2𝑚𝑁
=

~2

2𝑚𝑁

(︂
3𝜋2

𝑣

)︂2/3

,

which depends on the density 𝑛/𝑣 of particles, and which is different for each particle and each region.

Pauli Exclusion Principle

The Pauli exclusion principle forbids interactions where the products would be in occupied states. Following the
assumption of a completely degenerate Fermi gas, the levels are filled from the lowest level. The minimum energy
allowed for the products of a collision correspond to the lowest unfilled level of the system, which is the Fermi energy
in the region. So in practice, the Pauli exclusion principle is taken into account by accepting only secondary nucleons
which have 𝐸𝑁 > 𝐸𝑓 .

Cross Sections and Kinematics

Path lengths of nucleons in the nucleus are sampled according to the local density and the free 𝑁 −𝑁 cross sections.
Angles after the collision are sampled from experimental differential cross sections. Tabulated total reaction cross
sections are calculated by Letaw’s formulation [eal83][eal93][Pea89]. For𝑁−𝑁 cross sections the parameterizations
are based on the experimental energy and isospin dependent data. The parameterization described in [BT72] is used.

For pions the intra-nuclear cross sections are provided to treat elastic collisions and the following inelastic channels:
𝜋−p → 𝜋0n, 𝜋0p → 𝜋+n, 𝜋0n → 𝜋−p, and 𝜋+n → 𝜋0p. Multiple particle production is also implemented.

The pion absorption channels are 𝜋+nn → pn, 𝜋+pn → pp, 𝜋0nn → nn, 𝜋0pn → pn, 𝜋0pp → pp, 𝜋−pn → nn , and
𝜋−pp → pn.

26.2. The GEANT4 Cascade Model 311



Physics Reference Manual, Release 10.4

26.2.4 Pre-equilibrium Model

The GEANT4 cascade model implements the exciton model proposed by Griffin [Gri66][Gri67]. In this model, nu-
cleon states are characterized by the number of excited particles and holes (the excitons). Intra-nuclear cascade colli-
sions give rise to a sequence of states characterized by increasing exciton number, eventually leading to an equilibrated
nucleus. For a practical implementation of the exciton model we use parameters from [eal73], (level densities) and
[Kal78] (matrix elements).

In the exciton model the possible selection rules for particle-hole configurations in the source of the cascade are:
∆𝑝 = 0,±1 ∆ℎ = 0,±1 ∆𝑛 = 0,±2, where 𝑝 is the number of particles, ℎ is number of holes and 𝑛 = 𝑝+ ℎ is the
number of excitons.

The cascade pre-equilibrium model uses target excitation data and the exciton configurations for neutrons and protons
to produce non-equilibrium evaporation. The angular distribution is isotropic in the rest frame of the exciton system.

Parameterizations of the level density are tabulated as functions of 𝐴 and 𝑍, and with high temperature behavior (the
nuclear binding energy using the smooth liquid high energy formula).

26.2.5 Break-up models

Fermi break-up is allowed only in some extreme cases, i.e. for light nuclei (𝐴 < 12 and 3(𝐴 − 𝑍) < 𝑍 < 6 )
and 𝐸𝑒𝑥𝑐𝑖𝑡𝑎𝑡𝑖𝑜𝑛 > 3𝐸𝑏𝑖𝑛𝑑𝑖𝑛𝑔 . A simple explosion model decays the nucleus into neutrons and protons and decreases
exotic evaporation processes.

The fission model is phenomenological, using potential minimization. A binding energy paramerization is used and
some features of the fission statistical model are incorporated [Fon69].

26.2.6 Evaporation Model

A statistical theory for particle emission of the excited nucleus remaining after the intra-nuclear cascade was originally
developed by Weisskopf [Wei37]. This model assumes complete energy equilibration before particle emission, and
re-equilibration of excitation energies between successive evaporations. As a result the angular distribution of emitted
particles is isotropic.

The GEANT4 evaporation model for the cascade implementation adapts the often-used computational method devel-
oped by Dostrowski [DFF59][DFR60]. The emission of particles is computed until the excitation energy falls below
some specific cutoff. If a light nucleus is highly excited, the Fermi break-up model is executed. Also, fission is per-
formed if that channel is open. The main chain of evaporation is followed until 𝐸𝑒𝑥𝑐𝑖𝑡𝑎𝑡𝑖𝑜𝑛 falls below E𝑐𝑢𝑡𝑜𝑓𝑓 = 0.1
MeV. The evaporation model ends with an emission chain which is followed until 𝐸𝑒𝑥𝑐𝑖𝑡𝑎𝑡𝑖𝑜𝑛 < 𝐸𝛾

𝑐𝑢𝑡𝑜𝑓𝑓 = 10−15

MeV.

An example of Bertini evaporation model in action is shown in Fig. 26.1.

26.3 Interfacing Bertini implementation

Typically Bertini models are used through physics lists, with ’BERT’ in their name. User should consult these validated
physics model collection to understand the inclusion mechanisms before using directly the actual Bertini cascade
interfaces:

G4CascadeInterface All the Bertini cascade submodels in integrated fashion, can be used collectively through this
interface using method ApplyYourself. A GEANT4 track (G4Track) and a nucleus (G4Nucleus) are given as
parameters.

G4ElasticCascadeInterface provides an access to elastic hadronic scattering. Particle treated are the same as in case
for G4CascadeInterface but only elastic scattering is modeled.
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Fig. 26.1: Secondary neutrons generated by Bertini INC with excitons and evaporation model.
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G4PreCompoundCascadeInterface provides an interface to INUCL intra nuclear cascade with excitons. Subse-
quent evaporation phase is not modeled.

G4InuclEvaporation provides an interface to INUCL evaporation model. This interface with method BreakItUp
inputs an excited nuclei G4Fragment to model evaporation phase.
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CHAPTER

TWENTYSEVEN

THE GEANT4 BINARY CASCADE MODEL

27.1 Modeling overview

The GEANT4 Binary Cascade is an intranuclear cascade propagating primary and secondary particles in a nucleus
[FIW04]. Interactions are between a primary or secondary particle and an individual nucleon of the nucleus, leading
to the name Binary Cascade [CVV97a][CVV97b][PBN94][WHQ92][IBGP92]. Cross section data are used to select
collisions. Where available, experimental cross sections are used by the simulation. Propagating of particles is the
nuclear field is done by numerically solving the equation of motion. The cascade terminates when the average and
maximum energy of secondaries is below threshold. The remaining fragment is treated by precompound and de-
excitation models documented in the corresponding chapters.

27.1.1 The transport algorithm

For the primary particle an impact parameter is chosen random in a disk outside the nucleus perpendicular to a vector
passing through the center of the nucleus coordinate system an being parallel to the momentum direction. Using a
straight line trajectory, the distance of closest approach 𝑑𝑚𝑖𝑛

𝑖 to each target nucleon 𝑖 and the corresponding time-of-
flight 𝑡𝑑𝑖 is calculated. In this calculation the momentum of the target nucleons is ignored, i.e. the target nucleons do not
move. The interaction cross section 𝜎𝑖 with target nucleons is calculated using total inclusive cross-sections described
below. For calculation of the cross-section the momenta of the nucleons are taken into account. The primary particle
may interact with those target nucleons where the distance of closest approach 𝑑𝑚𝑖𝑛

𝑖 is smaller than 𝑑𝑚𝑖𝑛
𝑖 <

√︀
𝜎𝑖

𝜋 .
These candidate interactions are called collisions, and these collisions are stored ordered by time-of-flight 𝑡𝑑𝑖 . In the
case no collision is found, a new impact parameter is chosen.

The primary particle is tracked the time-step given by the time to the first collision. As long a particle is outside the
nucleus, that is a radius of the outermost nucleon plus 3 fm, particles travel along straight line trajectories. Particles
entering the nucleus have their energy corrected for Coulomb effects. Inside the nucleus particles are propagated in the
scalar nuclear field. The equation of motion in the field is solved for a given time-step using a Runge-Kutta integration
method.

At the end of the step, the primary and the nucleon interact suing the scattering term. The resulting secondaries are
checked for the Fermi exclusion principle. If any of the two particles has a momentum below Fermi momentum, the
interaction is suppressed, and the original primary is tracked to the next collision. In case interaction is allowed, the
secondaries are treated like the primary, that is, all possible collisions are calculated like above, with the addition that
these new primary particles may be short-lived and may decay. A decay is treated like others collisions, the collision
time being the time until the decay of the particle. All secondaries are tracked until they leave the nucleus, or the until
the cascade stops.
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27.1.2 The description of the target nucleus and fermi motion

The nucleus is constructed from 𝐴 nucleons and 𝑍 protons with nucleon coordinates r𝑖 and momenta p𝑖, with 𝑖 =
1, 2, ..., 𝐴. We use a common initialization Monte Carlo procedure, which is realized in the most of the high energy
nuclear interaction models:

• Nucleon radii 𝑟𝑖 are selected randomly in the nucleus rest frame according to nucleon density 𝜌(𝑟𝑖). For heavy
nuclei with 𝐴 > 16 [GLMP91] nucleon density is

𝜌(𝑟𝑖) =
𝜌0

1 + exp [(𝑟𝑖 −𝑅)/𝑎]

where

𝜌0 ≈ 3

4𝜋𝑅3

(︂
1 +

𝑎2𝜋2

𝑅2

)︂−1

.

Here 𝑅 = 𝑟0𝐴
1/3 fm and 𝑟0 = 1.16(1 − 1.16𝐴−2/3) fm and 𝑎 ≈ 0.545 fm. For light nuclei with 𝐴 < 17

nucleon density is given by a harmonic oscillator shell model [B61], e.g.

𝜌(𝑟𝑖) = (𝜋𝑅2)−3/2 exp (−𝑟2𝑖 /𝑅2),

where 𝑅2 = 2/3⟨𝑟2⟩ = 0.8133𝐴2/3 fm2. To take into account nucleon repulsive core it is assumed that
internucleon distance 𝑑 > 0.8 fm;

• The nucleus is assumed to be isotropic, i.e. we place each nucleon using a random direction and the previously
determined radius 𝑟𝑖.

• The initial momenta of the nucleons 𝑝𝑖 are randomly choosen between 0 and 𝑝𝑚𝑎𝑥
𝐹 (𝑟), where the maximal

momenta of nucleons (in the local Thomas-Fermi approximation [DA74]) depends from the proton or neutron
density 𝜌 according to

𝑝𝑚𝑎𝑥
𝐹 (𝑟) = ~𝑐(3𝜋2𝜌(𝑟))1/3

• To obtain momentum components, it is assumed that nucleons are distributed isotropic in momentum space; i.e.
the momentum direction is chosen at random.

• The nucleus must be centered in momentum space around 0, i. e. the nucleus must be at rest, i. e.
∑︀

𝑖 pi = 0; To
achieve this, we choose one nucleon to compensate the sum the remaining nucleon momenta 𝑝𝑟𝑒𝑠𝑡 =

∑︀𝑖=𝐴−1
𝑖=1 .

If this sum is larger than maximum momentum 𝑝𝑚𝑎𝑥
𝐹 (𝑟), we change the direction of the momentum of a few

nucleons. If this does not lead to a possible momentum value, than we repeat the procedure with a different
nucleon having a larger maximum momentum 𝑝𝑚𝑎𝑥

𝐹 (𝑟). In the rare case this fails as well, we choose new
momenta for all nucleons.

This procedure gives special for hydrogen 1H, where the proton has momentum 𝑝 = 0, and for deuterium 2H,
where the momenta of proton and neutron are equal, and in opposite direction.

• We compute energy per nucleon 𝑒 = 𝐸/𝐴 = 𝑚𝑁 + 𝐵(𝐴,𝑍)/𝐴, where 𝑚𝑁 is nucleon mass and the nucleus
binding energy 𝐵(𝐴,𝑍) is given by the tabulation of [rtbcXX] and find the effective mass of each nucleon
𝑚𝑒𝑓𝑓

𝑖 =
√︀

(𝐸/𝐴)2 − 𝑝2′𝑖 .

27.1.3 Optical and phenomenological potentials

The effect of collective nuclear elastic interaction upon primary and secondary particles is approximated by a nuclear
potential.
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For projectile protons and neutrons this scalar potential is given by the local Fermi momentum 𝑝𝐹 (𝑟)

𝑉 (𝑟) =
𝑝2𝐹 (𝑟)

2𝑚

where 𝑚 is the mass of the neutron 𝑚𝑛 or the mass of proton 𝑚𝑝.

For pions the potential is given by the lowest order optical potential [SMC79]

𝑉 (𝑟) =
−2𝜋(~𝑐)2𝐴

𝑚𝜋

(︁
1 +

𝑚𝜋

𝑀

)︁
𝑏0𝜌(𝑟)

where 𝐴 is the nuclear mass number, 𝑚𝜋 , 𝑀 are the pion and nucleon mass, 𝑚𝜋 is the reduced pion mass 𝑚𝜋 =
(𝑚𝜋𝑚𝑁 )/(𝑚𝜋+𝑚𝑁 ), with𝑚𝑁 is the mass of the nucleus, and 𝜌(𝑟) is the nucleon density distribution. The parameter
𝑏0 is the effective 𝑠−wave scattering length and is obtained from analysis to pion atomic data to be about -0.042 fm.

27.1.4 Pauli blocking simulation

The cross sections used in this model are cross sections for free particles. In the nucleus these cross sections are
reduced to effective cross sections by Pauli-blocking due to Fermi statistics.

For nucleons created by a collision, ie. an inelastic scattering or from decay, we check that all secondary nucleons
occupy a state allowed by Fermi statistics. We assume that the nucleus in its ground state and all states below Fermi
energy are occupied. All secondary nucleons therefore must have a momentum 𝑝𝑖 above local Fermi momentum
𝑝𝐹 (𝑟), i.e.

𝑝𝑖 > 𝑝𝑚𝑎𝑥
𝐹 (𝑟).

If any of the nucleons of the collision has a momentum below the local Fermi momentum, then the collision is Pauli
blocked. The reaction products are discarded, and the original particles continue the cascade.

27.1.5 The scattering term

The basis of the description of the reactive part of the scattering amplitude are two particle binary collisions (hence
binary cascade), resonance production, and decay. Based on the cross-section described later in this paper, collisions
will occur when the transverse distance 𝑑𝑡 of any projectile target pair becomes smaller than the black disk radium
corresponding to the total cross-section 𝜎𝑡

𝜎𝑡
𝜋
> 𝑑2𝑡

In case of a collision, all particles will be propagated to the estimated time of the collision, i.e. the time of closest
approach, and the collision final state is produced.

27.1.6 Total inclusive cross-sections

Experimental data are used in the calculation of the total, inelastic and elastic cross-section wherever available.

Hadron-nucleon scattering

For the case of proton-proton(pp) and proton-neutron(pn) collisions, as well as 𝜋= and 𝜋− nucleon collisions, experi-
mental data are readily available as collected by the Particle Data Group (PDG) for both elastic and inelastic collisions.
We use a tabulation based on a sub-set of these data for

√
𝑆 below 3 GeV. For higher energies, parametrizations from

the CERN-HERA collection are included.
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Channel cross-sections

A large fraction of the cross-section in individual channels involving meson nucleon scattering can be modeled as
resonance excitation in the s-channel. This kind of interactions show a resonance structure in the energy dependency
of the cross-section, and can be modeled using the Breit-Wigner function

𝜎𝑟𝑒𝑠(
√
𝑠) =

∑︁
𝐹𝑆

2𝐽 + 1

(2𝑆1 + 1)(2𝑆2 + 1)

𝜋

𝑘2
Γ𝐼𝑆Γ𝐹𝑆

(
√
𝑠−𝑀𝑅)2 + Γ/4

,

Where 𝑆1 and 𝑆2 are the spins of the two fusing particles, 𝐽 is the spin of the resonance,
√
𝑠 the energy in the center

of mass system, 𝑘 the momentum of the fusing particles in the center of mass system, Γ𝐼𝑆 and Γ𝐹𝑆 the partial width
of the resonance for the initial and final state respectively. 𝑀𝑅 is the nominal mass of the resonance.

The initial states included in the model are pion and kaon nucleon scattering. The product resonances taken into
account are the Delta resonances with masses 1232, 1600, 1620, 1700, 1900, 1905, 1910, 1920, 1930, and 1950 MeV,
the excited nucleons with masses of 1440, 1520, 1535, 1650, 1675, 1680, 1700, 1710, 1720, 1900, 1990, 2090, 2190,
2220, and 2250 MeV, the Lambda, and its excited states at 1520, 1600, 1670, 1690, 1800, 1810, 1820, 1830, 1890,
2100, and 2110 MeV, and the Sigma and its excited states at 1660, 1670, 1750, 1775, 1915, 1940, and 2030 MeV.

Mass dependent resonance width and partial width

During the cascading, the resonances produced are assigned reall masses, with values distributed according to the
production cross-section described above. The concrete (rather than nominal) masses of these resonances may be
small compared to the PDG value, and this implies that some channels may not be open for decay. In general it
means, that the partial and total width will depend on the concrete mass of the resonance. We are using the UrQMD
[rtbcYY][rtbcZZ] approach for calculating these actual widths,

Γ𝑅→12(𝑀) = (1 + 𝑟)
Γ𝑅→12(𝑀𝑅)

𝑝(𝑀𝑅)(2𝑙+1)

𝑀𝑅

𝑀

𝑝(𝑀)(2𝑙+1)

1 + 𝑟(𝑝(𝑀)/𝑝(𝑀𝑅))2𝑙
. (27.1)

Here 𝑀𝑅 is the nominal mass of the resonance, 𝑀 the actual mass, 𝑝 is the momentum in the center of mass system
of the particles, 𝐿 the angular momentum of the final state, and 𝑟 = 0.2.

Resonance production cross-section in the t-channel

In resonance production in the t-channel, single and double resonance excitation in nucleon-nucleon collisions are
taken into account. The resonance production cross-sections are as much as possible based on parametrizations of
experimental data [rtbcWW] for proton proton scattering. The basic formula used is motivated from the form of the
exclusive production cross-section of the ∆1232 in proton proton collisions:

𝜎𝐴𝐵 = 2𝛼𝐴𝐵𝛽𝐴𝐵

√
𝑠−√

𝑠0
(
√
𝑠−√

𝑠0)2 + 𝛽2
𝐴𝐵

(︃√
𝑠0 + 𝛽𝐴𝐵√

𝑠

)︃𝛾𝐴𝐵

The parameters of the description for the various channels are given in Table 27.1. For all other channels, the
parametrizations were derived from these by adjusting the threshold behavior.

Table 27.1: Values of the parameters of the cross-section formula for the
individual channels.

Reaction 𝛼 𝛽 𝛾
pp → p∆1232 25 mbarn 0.4 GeV 3
pp → ∆1232∆1232 1.5 mbarn 1 GeV 1
pp → pp 0.55 mbarn 1 GeV 1
pp → p∆ 0.4 mbarn 1 GeV 1
pp → ∆1232∆ 0.35 mbarn 1 GeV 1
pp → ∆1232N* 0.55 mbarn 1 GeV 1
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The reminder of the cross-section are derived from these, applying detailed balance. Iso-spin invariance is assumed.
The formalism used to apply detailed balance is

𝜎(𝑐𝑑→ 𝑎𝑏) =
∑︁
𝐽,𝑀

⟨𝑗𝑐𝑚𝑐𝑗𝑑𝑚𝑑 ‖ 𝐽𝑀⟩2

⟨𝑗𝑎𝑚𝑎𝑗𝑏𝑚𝑏 ‖ 𝐽𝑀⟩2
(2𝑆𝑎 + 1)(2𝑆𝑏 + 1)

(2𝑆𝑐 + 1)(2𝑆𝑑 + 1)

⟨︀
𝑝2𝑎𝑏
⟩︀

⟨𝑝2𝑐𝑑⟩
𝜎(𝑎𝑏→ 𝑐𝑑)

27.1.7 Nucleon Nucleon elastic collisions

Angular distributions for elastic scattering of nucleons are taken as closely as possible from experimental data, i.e.
from the result of phase-shift analysis. They are derived from differential cross sections obtained from the SAID
database, R. Arndt, 1998.

Final states are derived by sampling from tables of the cumulative distribution function of the centre-of-mass scattering
angle, tabulated for a discrete set of lab kinetic energies from 10 MeV to 1200 MeV. The CDF’s are tabulated at 1
degree intervals and sampling is done using bi-linear interpolation in energy and CDF values. Coulomb effects are
taken into consideration for pp scattering.

27.1.8 Generation of transverse momentum

Angular distributions for final states other than nucleon elastic scattering are calculated analytically, derived from the
collision term of the in-medium relativistic Boltzmann-Uehling-Uhlenbeck equation, based on the nucleon nucleon
elastic scattering cross-sections:

𝜎𝑁𝑁→𝑁𝑁 (𝑠, 𝑡) =
1

(2𝜋)2𝑠
(𝐷(𝑠, 𝑡) + 𝐸(𝑠, 𝑡) + (𝑖𝑛𝑣𝑒𝑟𝑡𝑒𝑑𝑡, 𝑢))

Here 𝑠, 𝑡, 𝑢 are the Mandelstamm variables, 𝐷(𝑠, 𝑡) is the direct term, and 𝐸(𝑠, 𝑡) is the exchange term, with

𝐷(𝑠, 𝑡) =
(𝑔𝜎𝑁𝑁 )4(𝑡− 4𝑚*2)2

2(𝑡−𝑚2
𝜎)2

+
(𝑔𝜔𝑁𝑁 )4(2𝑠2 + 2𝑠𝑡+ 𝑡2 − 8𝑚*2𝑠+ 8𝑚*4)

(𝑡−𝑚2
𝜔)2

+

+
24(𝑔𝜋𝑁𝑁 )4𝑚*2𝑡2

(𝑡−𝑚2
𝜋)2

− 4(𝑔𝜎𝑁𝑁𝑔
𝜔
𝑁𝑁 )2(2𝑠+ 𝑡− 4𝑚*2)𝑚*2

(𝑡−𝑚2
𝜎)(𝑡−𝑚2

𝜔)
,

and

𝐸(𝑠, 𝑡) =
(𝑔𝜎𝑁𝑁 )4

(︀
𝑡(𝑡+ 𝑠) + 4𝑚*2(𝑠− 𝑡)

)︀
8(𝑡−𝑚2

𝜎)(𝑢−𝑚2
𝜎)

+
(𝑔𝜔𝑁𝑁 )4(𝑠− 2𝑚*2)(𝑠− 6𝑚*2))

2(𝑡−𝑚2
𝜔)(𝑢−𝑚2

𝜔)
−

− 6(𝑔𝜋𝑁𝑁 )4(4𝑚*2 − 𝑠− 𝑡)𝑚*4𝑡

(𝑡−𝑚2
𝜋)(𝑢 = 𝑚𝑝𝑖2)

+
3(𝑔𝜎𝑁𝑁𝑔

𝜋
𝑁𝑁 )2𝑚*2(4𝑚*2 − 𝑠− 𝑡)(4𝑚*2 − 𝑡)

(𝑡−𝑚2
𝜎)(𝑢−𝑚2

𝜋)
+

+
3(𝑔𝜎𝑁𝑁𝑔

𝜋
𝑁𝑁 )2𝑡(𝑡+ 𝑠)𝑚*2

2(𝑡−𝑚2
𝜋)(𝑢−𝑚2

𝜎)
+

(𝑔𝜎𝑁𝑁𝑔
𝜔
𝑁𝑁 )2𝑡2 − 4𝑚*2𝑠− 10𝑚*2𝑡+ 24𝑚*4

4(𝑡−𝑚2
𝜎)(𝑢−𝑚2

𝜔)
+

+
(𝑔𝜎𝑁𝑁𝑔

𝜔
𝑁𝑁 )2(𝑡+ 𝑠)2 − 2𝑚*2𝑠+ 2𝑚*2𝑡

4(𝑡−𝑚2
𝜔)(𝑢−𝑚2

𝜎)
+

3(𝑔𝜔𝑁𝑁𝑔
𝜋
𝑁𝑁 )2(𝑡+ 𝑠− 4𝑚*2)(𝑡+ 𝑠− 2𝑚*2)

(𝑡−𝑚2
𝜔)(𝑢−𝑚2

𝜋)
+

+
3(𝑔𝜔𝑁𝑁𝑔

𝜋
𝑁𝑁 )2𝑚*2(𝑡2 − 2𝑚*2𝑡)

(𝑡−𝑚2
𝜋)(𝑢−𝑚2

𝜔)
.

Here, in this first release, the in-medium mass was set to the free mass, and the nucleon nucleon coupling constants
used were 1.434 for the 𝜋, 7.54 for the 𝜔, and 6.9 for the 𝜎. This formula was used for elementary hadron-nucleon
differential cross-sections by scaling the center of mass energy squared accordingly.

Finite size effects were taken into account at the meson nucleon vertex, using a phenomenological form factor (cut-off)
at each vertex.
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27.1.9 Decay of strong resonances

In the simulation of decay of strong resonances, we use the nominal decay branching ratios from the particle data
book. The stochastic mass of a individual resonance created is sampled at creation time from the Breit-Wigner form,
under the mass constraints posed by center of mass energy of the scattering, and the mass in the lightest decay channel.
The decay width from the particle data book are then adjusted according to Eq. eq:width, to take the stochastic mass
value into account.

All decay channels with nominal branching ratios greater than 1% are simulated.

27.1.10 The escaping particle and coherent effects

When a nucleon other than the incident particle leaves the nucleus, the ground state of the nucleus changes. The energy
of the outgoing particle cannot be such that the total mass of the new nucleus would be below its ground state mass.
To avoid this, we reduce the energy of an outgoing nucleons by the mass-difference of old and new nucleus.

Furthermore, the momentum of the final exited nucleus derived from energy momentum balance may be such that its
mass is below its ground state mass. In this case, we arbitrarily scale the momenta of all outgoing particles by a factor
derived from the mass of the nucleus and the mass of the system of outgoing particles.

27.1.11 Light ion reactions

In simulating light ion reactions, the initial state of the cascade is prepared in the form of two nuclei, as described in
the above section on the nuclear model.

The lighter of the collision partners is selected to be the projectile. The nucleons in the projectile are then entered,
with position and momenta, into the initial state of the cascade. Note that before the first scattering of an individual
nucleon, a projectile nucleon’s Fermi-momentum is not taken into account in the tracking inside the target nucleus.
The nucleon distribution inside the projectile nucleus is taken to be a representative distribution of its nucleons in
configuration space, rather than an initial state in the sense of QMD. The Fermi momentum and the local field are
taken into account in the calculation of the collision probabilities and final states of the binary collisions.

27.1.12 Transition to pre-compound modeling

Eventually, the cascade assumptions will break down at low energies, and the state of affairs has to be treated by
means of evaporation and pre-equilibrium decay. This transition is not at present studied in depth, and an interesting
approach which uses the tracking time, as in the Liege cascade code, remains to be studied in our context.

For this first release, the following algorithm is used to determine when cascading is stopped, and pre-equilibrium de-
cay is called: As long as there are still particles above the kinetic energy threshold (75 MeV), cascading will continue.
Otherwise, when the mean kinetic energy of the participants has dropped below a second threshold (15 MeV), the
cascading is stopped.

The residual participants, and the nucleus in its current state are then used to define the initial state, i.e. excitation
energy, number of excitons, number of holes, and momentum of the exciton system, for pre-equilibrium decay.

In the case of light ion reactions, the projectile excitation is determined from the binary collision participants (P) using
the statistical approach towards excitation energy calculation in an adiabatic abrasion process, as described in [GS91]:

𝐸𝑒𝑥 =
∑︁
𝑃

(𝐸𝑃
𝑓𝑒𝑟𝑚𝑖 − 𝐸𝑃 )

Given this excitation energy, the projectile fragment is then treated by the evaporation models described previously.
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27.1.13 Calculation of excitation energies and residuals

At the end of the cascade, we form a fragment for further treatment in precompound and nuclear de-excitation models
([rtbcVV]).

These models need information about the nuclear fragment created by the cascade. The fragment is characterized by
the number of nucleons in the fragment, the charge of the fragment, the number of holes, the number of all excitons,
and the number of charged excitons, and the four momentum of the fragment.

The number of holes is given by the difference of the number of nucleons in the original nucleus and the number of
non-excited nucleons left in the fragment. An exciton is a nucleon captured in the fragment at the end of the cascade.

The momentum of the fragment calculated by the difference between the momentum of the primary and the outgoing
secondary particles must be split in two components. The first is the momentum acquired by coherent elastic effects,
and the second is the momentum of the excitons in the nucleus rest frame. Only the later part is passed to the de-
excitation models. Secondaries arising from de-excitation models, including the final nucleus, are transformed back
the frame of the moving fragment.

27.2 Comparison with experiments

We add here a set of preliminary results produced with this code, focusing on neutron and pion production. Given that
we are still in the process of writing up the paper, we apologize for the at release time still less then publication quality
plots.

27.3 Neutrons Comparison with Experimental Data

Fig. 27.1: Double differential cross-section for neutrons produced in proton scattering off Aluminum. Proton incident
energy was 113 MeV.
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Fig. 27.2: Double differential cross-section for neutrons produced in proton scattering off Aluminum. Proton incident
energy was 256 MeV. The points are data, the histogram is Binary Cascade prediction.

Fig. 27.3: Double differential cross-section for neutrons produced in proton scattering off Aluminum. Proton incident
energy was 597 MeV. The points are data, the histogram is Binary Cascade prediction.

Fig. 27.4: Double differential cross-section for neutrons produced in proton scattering off Aluminum. Proton incident
energy was 800 MeV. The points are data, the histogram is Binary Cascade prediction.
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Fig. 27.5: Double differential cross-section for neutrons produced in proton scattering off Iron. Proton incident energy
was 113 MeV. The points are data, the histogram is Binary Cascade prediction.

Fig. 27.6: Double differential cross-section for neutrons produced in proton scattering off Iron. Proton incident energy
was 256 MeV. The points are data, the histogram is Binary Cascade prediction.

Fig. 27.7: Double differential cross-section for neutrons produced in proton scattering off Iron. Proton incident energy
was 597 MeV. The points are data, the histogram is Binary Cascade prediction.
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Fig. 27.8: Double differential cross-section for neutrons produced in proton scattering off Iron. Proton incident energy
was 800 MeV. The points are data, the histogram is Binary Cascade prediction.

Fig. 27.9: Double differential cross-section for neutrons produced in proton scattering off Lead. Proton incident energy
was 113 MeV. The points are data, the histogram is Binary Cascade prediction.

Fig. 27.10: Double differential cross-section for neutrons produced in proton scattering off Lead. Proton incident
energy was 256 MeV. The points are data, the histogram is Binary Cascade prediction.
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Fig. 27.11: Double differential cross-section for neutrons produced in proton scattering off Lead. Proton incident
energy was 597 MeV. The points are data, the histogram is Binary Cascade prediction.

Fig. 27.12: Double differential cross-section for neutrons produced in proton scattering off Lead. Proton incident
energy was 800 MeV. The points are data, the histogram is Binary Cascade prediction.

Fig. 27.13: Double differential cross-section for pions produced at 45∘ in proton scattering off various materials.
Proton incident energy was 597 MeV in each case. The points are data, the histogram is Binary Cascade prediction.
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CHAPTER

TWENTYEIGHT

INCL++: THE LIÈGE INTRANUCLEAR CASCADE MODEL

28.1 Introduction

There is a renewed interest in the study of spallation reactions. This is largely due to new technological applications,
such as Accelerator-Driven Systems, consisting of sub-critical nuclear reactor coupled to a particle accelerator. These
applications require optimized targets as spallation sources. This type of problem typically involves a large number
of parameters and thus it cannot be solved by trial and error. One has to rely on simulations, which implies that very
accurate tools need to be developed and their validity and accuracy need to be assessed.

Above ∼200 MeV incident energy it is necessary to use reliable models due to the prohibitive number of open chan-
nels. The most appropriate modeling technique in this energy region is intranuclear cascade (INC) combined with
evaporation model. One such pair of models is the Liège cascade model INCL++ [BCD+13][MBC+14] coupled with
the G4ExcitationHandler statistical de-excitation model. The strategy adopted by the INCL++ cascade is to
improve the quasi-classical treatment of physics without relying on too many free parameters.

This chapter introduces the physics provided by INCL++ as implemented in GEANT4. Table 28.1 summarizes the key
features and provides references to detailed descriptions of the physics.

The INCL++ model is available through dedicated physics lists (see Table 28.1). The _HP variants of the physics lists
use the NeutronHP model (Chapter Low Energy Neutron Interactions) for neutron interactions at low energy; the
QGSP_ and FTFP_ variants respectively use the QGSP and FTFP model at high energy. Fig. 28.1 shows a schematic
model map of the INCL++-based physics lists.

Finally, the INCL++ model is directly accessible through its interface (G4INCLXXInterface).

The reference paper for the INCL++ model is Ref. [MBC+14]. Please make sure you cite it appropriately if you
publish any work based on this model.
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Fig. 28.1: Model map for the INCL++-based physics lists. The first two columns represent nucleon- and pion-induced
reactions. The third column represents nucleus-nucleus reactions where at least one of the partners is below 𝐴 = 18.
The fourth column represents other nucleus-nucleus reactions.
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Table 28.1: INCL++ feature summary.
usage
physics lists QGSP_INCLXX

QGSP_INCLXX_HP
FTFP_INCLXX
FTFP_INCLXX_HP

interfaces
G4INCLXXInterface nucleon-, pion- , kaon- and nucleus-nucleus
projectile particles proton, neutron

pions (𝜋+, 𝜋0, 𝜋−)
kaons (𝐾+, 𝐾−)
deuteron, triton
3He, 𝛼
light ions (up to 𝐴 = 18)

energy range 1 MeV - 20 GeV
target nuclei
lightest applicable deuterium, 2H
heaviest no limit, tested up to uranium
features no ad-hoc parameters

realistic nuclear densities
Coulomb barrier
non-uniform time-step
pion and delta production cross sections
delta decay
Pauli blocking
emission of composite particles (𝐴 ≤ 8)
complete-fusion model at low energy
conservation laws satisfied at the keV level

typical CPU time 0.5 . INCL++/Binary Cascade . 2
code size 75 classes, 14k lines
references Ref. [MBC+14]

28.1.1 Suitable application fields

The INCL++-dedicated physics lists are suitable for the simulation of any system where spallation reactions or light-
ion-induced reactions play a dominant role. As examples, we include here a non-exhaustive list of possible application
fields:

• Accelerator-Driven Systems (ADS);

• spallation targets;

• radioprotection close to high-energy accelerators;

• radioprotection in space;

• proton or carbon therapy;

• production of beams of exotic nuclei.

28.1. Introduction 329



Physics Reference Manual, Release 10.4

28.2 Generalities of the INCL++ cascade

INCL++ is a Monte-Carlo simulation incorporating the aforementioned cascade physics principles. The INCL++ al-
gorithm consists of an initialization stage and the actual data processing stage.

The INCL++ cascade can be used to simulate the collisions between bullet particles and nuclei. The supported bullet
particles and the interface classes supporting them are presented in table Table 28.1.

The momenta and positions of the nucleons inside the nuclei are determined at the beginning of the simulation run. The
proton and neutron density profiles are based on Hartree-Fock-Bogoliubov calculations (Ref. [RodriguezSDM+17])
and the nucleons move in a static potential well. The cascade is modeled by tracking the nucleons and their collisions.

The possible reactions inside the nucleus are

• 𝑁𝑁 → 𝑁𝑁 (elastic scattering)

• 𝑁𝑁 → 𝑁∆ and 𝑁∆ → 𝑁𝑁

• ∆ → 𝜋𝑁 and 𝜋𝑁 → ∆

• 𝑁𝑁 → 𝑁𝑁 𝑥𝜋 (multiple pion production; 𝑥 ≥ 1)

• 𝜋𝑁 → 𝜋𝑁 (elastic scattering and charge exchange)

• 𝜋𝑁 → 𝑁 (𝑥+ 1)𝜋 (multiple pion production; 𝑥 ≥ 1)

• 𝑁𝑁 → 𝑁𝑁𝑀 𝑥𝜋 (𝑀 = 𝜂 or 𝜔; 𝑥 ≥ 0)

• 𝜋𝑁 →𝑀𝑁 (𝑀 = 𝜂 or 𝜔)

• 𝑀𝑁 → 𝜋𝑁, 𝜋𝜋𝑁 (𝑀 = 𝜂 or 𝜔)

• 𝑀𝑁 →𝑀𝑁 (𝑀 = 𝜂 or 𝜔; elastic scattering)

• 𝑁𝑁 → 𝑁𝑌𝐾 𝑥𝜋 (𝑌 = Λ or Σ; 𝑥 ≥ 0)

• 𝑁𝑁 → 𝑁𝑁𝐾�̄� (𝑌 = Λ or Σ)

• 𝜋𝑁 → 𝑌 𝐾 𝑥𝜋 (𝑌 = Λ or Σ; 𝑥 ≥ 0)

• 𝜋𝑁 → 𝑁𝐾�̄�

• 𝑁�̄� → 𝑁�̄� 𝑥𝜋 (𝑥 = 0, 1, 2)

• 𝑁�̄� → 𝑌 𝑥𝜋 (𝑌 = Λ or Σ; 𝑥 = 1, 2)

• 𝑁𝐾 → 𝑁𝐾 𝑥𝜋 (𝑥 = 0, 1, 2)

• 𝑁𝑌 → 𝑁𝑌 ′ (𝑌, 𝑌 ′ = Λ or Σ)

• ∆𝑁 → 𝑁𝑌𝐾 (𝑌 = Λ or Σ)

• ∆𝑁 → ∆𝑌 𝐾 (𝑌 = Λ or Σ)

• ∆𝑁 → 𝑁𝑁𝐾�̄�

28.2.1 Model limits

The INCL++ model has certain limitations with respect to the bullet particle energy and type, and target-nucleus type.
The supported energy range for incident nucleons and pions is 1 MeV–20 GeV. Any target nucleus from deuterium
(2H) up is in principle acceptable, but not all areas of the nuclide chart have received equal attention during testing.
Heavy nuclei (say above Fe) close to the stability valley have been more thoroughly studied than light or unstable
nuclei. The model is anyway expected to accept any existing nucleus as a target.
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Light nuclei (from 𝐴 = 2 to 𝐴 = 18 included) can also be used as projectiles. The G4INCLXXInterface class can
be used for collisions between nuclei of any mass, but it will internally rely on the Binary Cascade model (see chapter
The Binary Cascade Model) if both reaction partners have 𝐴 > 18. A warning message will be displayed (once) if
this happens.

28.3 Physics ingredients

The philosophy of the INCL++ model is to minimize the number of free parameters, which guarantees the predictive
power of the model. All INCL++parameters are either taken from known phenomenology (e.g. nuclear radii, elemen-
tary cross sections, nucleon potentials) or fixed once and for all (stopping time, cluster-coalescence parameters).

The nucleons are modeled from HFB calculations (Ref. [RodriguezSDM+17]) in a static potential well. The radius
of the well depends on the nucleon momentum, the 𝑟-𝑝 correlation being determined by the desired spatial density
distribution 𝜌𝑟(𝑟) according to the following equation:

𝜌𝑝(𝑝)𝑝2𝑑𝑝 = −𝑑𝜌𝑟(𝑟)

𝑑𝑟

𝑟3

3
𝑑𝑟,

where 𝜌𝑝(𝑝) is the momentum-space density (drawn from HFB calculations (Ref. [RodriguezSDM+17])).

After the initialization a projectile particle, or bullet, is shot towards the target nucleus. In the following we assume
that the projectile is a nucleon, a pion or a kaon; the special case of composite projectiles will be described in more
detail in subsection Initialisation of composite projectiles.

The impact parameter, i.e. the distance between the projectile particle and the center point of the projected nucleus
surface is chosen at random. The value of the impact parameter determines the point where the bullet particle will
enter the calculation volume. After this the algorithm tracks the nucleons by determining the times at which an event
will happen. The possible events are:

• collision

• decay of a delta resonance

• reflection from the nuclear potential well

• transmission through the nuclear potential well

The particles are assumed to propagate along straight-line trajectories. The algorithm calculates the time at which
events will happen and propagates the particles directly to their positions at that particular point in time. This means
that the length of the time step in simulation is not constant, and that we do not need to perform expensive numerical
integration of the particle trajectories.

Particles in the model are labeled either as participants (projectile particles and particles that have undergone a col-
lision with a projectile) or spectators (target particles that have not undergone any collision). Collisions between
spectator particles are neglected.

28.3.1 Emission of composite particles

INCL++ is able to simulate the emission of composite particles (up to 𝐴 = 8) during the cascade stage. Clusters
are formed by coalescence of nucleons; when a nucleon (the leading particle) reaches the surface and is about to
leave the system, the coalescence algorithm looks for other nucleons that are “sufficiently close” in phase space; if
any are found, a candidate cluster is formed. If several clusters are formed, the algorithm selects the least excited
one. Penetration of the Coulomb barrier is tested for the candidate cluster, which is emitted if the test is successful;
otherwise, normal transmission of the leading nucleon is attempted.

There are at least two peculiarities of INCL++’s cluster-coalescence algorithm. First, it acts in phase space, while
many existing algorithms act in momentum space only. Second, it is dynamical, in the sense that it acts on the
instantaneous phase-space distribution of nucleons in the system, and not on the distribution of the escaping nucleons.
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28.3.2 Cascade stopping time

Stopping time is defined as the point in time when the cascade phase is finished and the excited remnant is passed to
evaporation model. In the INCL++ model the stopping time, 𝑡stop, is defined as:

𝑡stop = 𝑡0(𝐴target/208)0.16.

Here 𝐴target is the target mass number and 𝑡0 = 70 fm/𝑐. The intranuclear cascade also stops if no participants are left
in the nucleus.

28.3.3 Conservation laws

The INCL++ model generally guarantees energy and momentum conservation at the keV level, which is compatible
with the numerical accuracy of the code. It uses G4ParticleTable and G4IonTable for the masses of particles
and ions, which means that the energy balance is guaranteed to be consistent with radiation transport. However,
INCL++ can occasionally generate an event such that conservation laws cannot be exactly fulfilled; these corner cases
typically happen for very light targets.

Baryon number and charge are always conserved.

28.3.4 Initialisation of composite projectiles

In the case of composite projectiles, the projectile nucleons are initialised off their mass shell, to account for their
binding in the projectile. The sum of the four-momenta of the projectile nucleons is equal to the nominal four-
momentum of the projectile nucleus.

Given a random impact parameter, projectile nucleons are separated in geometrical spectators (those that do not enter
the calculation volume) and geometrical participants (those that do). Geometrical participant that traverse the nucleus
without undergoing any collision are coalesced with any existing geometrical spectators to form an excited projectile-
like pre-fragment. The excitation energy of the pre-fragment is generated by a simple particle-hole model. At the end
of the cascade stage, the projectile-like pre-fragment is handed over to G4ExcitationHandler.

28.3.5 Two meson resonances implemented: 𝜂 and 𝜔

The mesons 𝜂 and 𝜔 can be produced and emitted during the intranuclear cascade phase. The cross sections taken
into account are listed in section Generalities of the INCL++ cascade. By default in GEANT4 the 𝜂 meson emitted is
not decayed by INCL++, while that is the case for the 𝜔 meson (then only the decay products (𝜋 and 𝛾) are given to
GEANT4). More details will be available in a paper published soon.

28.3.6 Strangeness added: Kaon, Λ and Σ

Strangeness degree of freedom is available in INCL++ with production, scattering and absorption of eight new parti-
cles (the four kaons, the Λ and the three Σ). The cross sections taken into account are listed in section Generalities of
the INCL++ cascade. In this first version hyperons are forced to decay at the end of the cascade. More details will be
available in a paper published soon.

28.3.7 De-excitation phase

The INCL++ model simulates only the first part of the nuclear reaction; the de-excitation of the cascade remnant
is simulated by default by G4ExcitationHandler. As an alternative, the ABLA++ model (Chapter ABLA++
evaporation/fission model) can be used instead, by employing the technique described in the Application Developer
Guide, section “hadronic interactions”.
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28.4 Physics performance

Fig. 28.2: Left: double-differential cross sections for the production of charged pions in 730-MeV 𝑝+Cu.
Right: double-differential cross sections for the production of neutrons in 290-𝐴MeV 12C+12C. Predictions of the
INCL++ and Binary-Cascade models are compared with experimental data from Refs. [CDG+72] and [IMS+01].

INCL++ (coupled with G4ExcitationHandler) provides an accurate modeling tool for spallation studies in the
tens of MeV–15 GeV energy range. The INCL++-ABLA07 [KAH08] model was recognized as one of the best on the
market by the IAEA Benchmark of Spallation Models [IAE] (note that the ABLA07 de-excitation model is presently
available in GEANT4 as ABLA++).

As a sample of the quality of the model predictions of INCL++-G4ExcitationHandler for nucleon-induced
reactions, the left panel of Fig. 28.2 presents a comparison of double-differential cross sections for pion production
in 730-MeV 𝑝+Cu, compared with the predictions of the Binary-Cascade model (chapter The Binary Cascade Model)
and with experimental data.

Reactions induced by light-ion projectiles up to 𝐴 = 18 are also treated by the model. The right panel of Fig. 28.2
shows double-differential cross sections for neutron production in 290-𝐴MeV 12C+12C. Fig. 28.3 shows excitation
curves for 209Bi(𝛼, 𝑥𝑛) reactions at very low energy. We stress here that intranuclear-cascade models are supposedly
not valid below ∼ 150 𝐴MeV. The very good agreement presented in Fig. 28.3 is due to the complete-fusion model
that smoothly replaces INCL++ at low energy.

INCL++ is continuously updated and validated against experimental data.
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Fig. 28.3: Excitation functions for (𝛼, 𝑥𝑛) cross sections on 209Bi. The predictions of INCL++-
G4ExcitationHandler are represented by the solid line and are compared to experimental data
[AH05][BL74][KSegre49][DL74][PatelShahSingh99][RBAC90][SH74][SMS94][LM85].
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CHAPTER

TWENTYNINE

PRECOMPOUND MODEL

29.1 Reaction initial state.

The GEANT4 precompound model is considered as an extension of the hadron kinetic model. It gives a possibility
to extend the low energy range of the hadron kinetic model for nucleon-nucleus inelastic collision and it provides a
“smooth” transition from kinetic stage of reaction described by the hadron kinetic model to the equilibrium stage of
reaction described by the equilibrium deexcitation models.

The initial information for calculation of pre-compound nuclear stage consists from the atomic mass number𝐴, charge
𝑍 of residual nucleus, its four momentum 𝑃0, excitation energy 𝑈 and number of excitons 𝑛 equals the sum of number
of particles 𝑝 (from them 𝑝𝑍 are charged) and number of holes ℎ.

At the preequilibrium stage of reaction, we following the [GMT83] approach, take into account all possible nuclear
transition the number of excitons 𝑛 with ∆𝑛 = +2,−2, 0 [GMT83], which defined by transition probabilities. Only
emission of neutrons, protons, deutrons, thritium and helium nuclei are taken into account.

29.2 Simulation of pre-compound reaction

The precompound stage of nuclear reaction is considered until nuclear system is not an equilibrium state. Further
emission of nuclear fragments or photons from excited nucleus is simulated using an equilibrium model (see Section
Sampling procedure).

29.2.1 Statistical equilibrium condition

In the state of statistical equilibrium, which is characterized by an eqilibrium number of excitons 𝑛𝑒𝑞 , all three type of
transitions are equiprobable. Thus 𝑛𝑒𝑞 is fixed by 𝜔+2(𝑛𝑒𝑞, 𝑈) = 𝜔−2(𝑛𝑒𝑞, 𝑈). From this condition we can get

𝑛𝑒𝑞 =
√︀

2𝑔𝑈. (29.1)

29.2.2 Level density of excited (n-exciton) states

To obtain Eq.(29.1) it was assumed an equidistant scheme of single-particle levels with the density 𝑔 ≈ 0.595𝑎𝐴,
where 𝑎 is the level density parameter, when we have the level density of the 𝑛-exciton state as

𝜌𝑛(𝑈) =
𝑔(𝑔𝑈)𝑛−1

𝑝!ℎ!(𝑛− 1)!
. (29.2)
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29.2.3 Transition probabilities

The partial transition probabilities changing the exciton number by ∆𝑛 is determined by the squared matrix element
averaged over allowed transitions < ⟨𝑀 |2⟩ and the density of final states 𝜌Δ𝑛(𝑛,𝑈), which are really accessible in
this transition. It can be defined as following:

𝜔Δ𝑛(𝑛,𝑈) =
2𝜋

ℎ
⟨|𝑀 |2⟩𝜌Δ𝑛(𝑛,𝑈). (29.3)

The density of final states 𝜌Δ𝑛(𝑛,𝑈) were derived in paper [Wil70] using the Eq.(29.2) for the level density of the
𝑛-exciton state and later corrected for the Pauli principle and indistinguishability of identical excitons in paper [eal73]:

𝜌Δ𝑛=+2(𝑛,𝑈) =
1

2
𝑔

[𝑔𝑈 − 𝐹 (𝑝+ 1, ℎ+ 1)]2

𝑛+ 1
[
𝑔𝑈 − 𝐹 (𝑝+ 1, ℎ+ 1)

𝑔𝑈 − 𝐹 (𝑝, ℎ)
]𝑛−1,

𝜌Δ𝑛=0(𝑛,𝑈) =
1

2
𝑔

[𝑔𝑈 − 𝐹 (𝑝, ℎ)]

𝑛
[𝑝(𝑝− 1) + 4𝑝ℎ+ ℎ(ℎ− 1)]

𝜌Δ𝑛=−2(𝑛,𝑈) =
1

2
𝑔𝑝ℎ(𝑛− 2),

where 𝐹 (𝑝, ℎ) = (𝑝2 + ℎ2 + 𝑝− ℎ)/4 − ℎ/2 and it was taken to be equal zero. To avoid calculation of the averaged
squared matrix element ⟨|𝑀 |2⟩ it was assumed [GMT83] that transition probability 𝜔Δ𝑛=+2(𝑛,𝑈) is the same as the
probability for quasi-free scattering of a nucleon above the Fermi level on a nucleon of the target nucleus, i. e.

𝜔Δ𝑛=+2(𝑛,𝑈) =
⟨𝜎(𝑣𝑟𝑒𝑙)𝑣𝑟𝑒𝑙⟩

𝑉𝑖𝑛𝑡
. (29.4)

In Eq.(29.4) the interaction volume is estimated as 𝑉𝑖𝑛𝑡 = 4
3𝜋(2𝑟𝑐 + 𝜆/2𝜋)3, with the De Broglie wave length 𝜆/2𝜋

corresponding to the relative velocity ⟨𝑣𝑟𝑒𝑙⟩ =
√︀

2𝑇𝑟𝑒𝑙/𝑚, where 𝑚 is nucleon mass and 𝑟𝑐 = 0.6 fm.

The averaging in ⟨𝜎(𝑣𝑟𝑒𝑙)𝑣𝑟𝑒𝑙⟩ is further simplified by

⟨𝜎(𝑣𝑟𝑒𝑙)𝑣𝑟𝑒𝑙⟩ = ⟨𝜎(𝑣𝑟𝑒𝑙)⟩⟨𝑣𝑟𝑒𝑙⟩.

For 𝜎(𝑣𝑟𝑒𝑙) we take approximation:

𝜎(𝑣𝑟𝑒𝑙) = 0.5[𝜎𝑝𝑝(𝑣𝑟𝑒𝑙) + 𝜎𝑝𝑛(𝑣𝑟𝑒𝑙)]𝑃 (𝑇𝐹 /𝑇𝑟𝑒𝑙),

where factor 𝑃 (𝑇𝐹 /𝑇𝑟𝑒𝑙) was introduced to take into account the Pauli principle. It is given by

𝑃 (𝑇𝐹 /𝑇𝑟𝑒𝑙) = 1 − 7

5

𝑇𝐹
𝑇𝑟𝑒𝑙

for 𝑇𝐹

𝑇𝑟𝑒𝑙
≤ 0.5 and

𝑃 (𝑇𝐹 /𝑇𝑟𝑒𝑙) = 1 − 7

5

𝑇𝐹
𝑇𝑟𝑒𝑙

+
2

5

𝑇𝐹
𝑇𝑟𝑒𝑙

(︂
2 − 𝑇𝑟𝑒𝑙

𝑇𝐹

)︂5/2

for 𝑇𝐹

𝑇𝑟𝑒𝑙
> 0.5.

The free-particle proton-proton 𝜎𝑝𝑝(𝑣𝑟𝑒𝑙) and proton-neutron 𝜎𝑝𝑛(𝑣𝑟𝑒𝑙) interaction cross sections are estimated using
the equations [MBS58]:

𝜎𝑝𝑝(𝑣𝑟𝑒𝑙) =
10.63

𝑣2𝑟𝑒𝑙
− 29.93

𝑣𝑟𝑒𝑙
+ 42.9

and

𝜎𝑝𝑛(𝑣𝑟𝑒𝑙) =
34.10

𝑣2𝑟𝑒𝑙
− 82.2

𝑣𝑟𝑒𝑙
+ 82.2,
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where cross sections are given in mbarn.

The mean relative kinetic energy 𝑇𝑟𝑒𝑙 is needed to calculate ⟨𝑣𝑟𝑒𝑙⟩ and the factor 𝑃 (𝑇𝐹 /𝑇𝑟𝑒𝑙) was computed as
𝑇𝑟𝑒𝑙 = 𝑇𝑝+𝑇𝑛, where mean kinetic energies of projectile nucleons 𝑇𝑝 = 𝑇𝐹 +𝑈/𝑛 and target nucleons 𝑇𝑁 = 3𝑇𝐹 /5,
respectively.

Combining Eqs. (29.3) - (29.4) and assuming that ⟨|𝑀 |2⟩ are the same for transitions with ∆𝑛 = 0 and ∆𝑛 = ±2 we
obtain for another transition probabilities:

𝜔Δ𝑛=0(𝑛,𝑈) =
⟨𝜎(𝑣𝑟𝑒𝑙)𝑣𝑟𝑒𝑙⟩

𝑉𝑖𝑛𝑡

𝑛+ 1

𝑛

[︂
𝑔𝑈 − 𝐹 (𝑝, ℎ)

𝑔𝑈 − 𝐹 (𝑝+ 1, ℎ+ 1)

]︂𝑛+1
𝑝(𝑝− 1) + 4𝑝ℎ+ ℎ(ℎ− 1)

𝑔𝑈 − 𝐹 (𝑝, ℎ)

and

𝜔Δ𝑛=−2(𝑛,𝑈) =
⟨𝜎(𝑣𝑟𝑒𝑙)𝑣𝑟𝑒𝑙⟩

𝑉𝑖𝑛𝑡

[︂
𝑔𝑈 − 𝐹 (𝑝, ℎ)

𝑔𝑈 − 𝐹 (𝑝+ 1, ℎ+ 1)

]︂𝑛+1
𝑝ℎ(𝑛+ 1)(𝑛− 2)

[𝑔𝑈 − 𝐹 (𝑝, ℎ)]2
.

29.2.4 Emission probabilities for nucleons

Emission process probability has been choosen similar as in the classical equilibrium Weisskopf-Ewing model
[WE40]. Probability to emit nucleon 𝑏 in the energy interval (𝑇𝑏, 𝑇𝑏 + 𝑑𝑇𝑏) is given

𝑊𝑏(𝑛,𝑈, 𝑇𝑏) = 𝜎𝑏(𝑇𝑏)
(2𝑠𝑏 + 1)𝜇𝑏

𝜋2ℎ3
𝑅𝑏(𝑝, ℎ)

𝜌𝑛−𝑏(𝐸)

𝜌𝑛(𝑈)
𝑇𝑏, (29.5)

where 𝜎𝑏(𝑇𝑏) is the inverse (absorption of nucleon 𝑏) reaction cross section, 𝑠𝑏 and 𝑚𝑏 are nucleon spin and reduced
mass, the factor 𝑅𝑏(𝑝, ℎ) takes into account the condition for the exciton to be a proton or neutron, 𝜌𝑛−𝑏(𝐸

*) and
𝜌𝑛(𝑈) are level densities of nucleus after and before nucleon emission are defined in the evaporation model, respec-
tively and 𝐸* = 𝑈 −𝑄𝑏 − 𝑇𝑏 is the excitation energy of nucleus after fragment emission.

29.2.5 Emission probabilities for complex fragments

It was assumed [GMT83] that nucleons inside excited nucleus are able to “condense” forming complex fragment. The
“condensation” probability to create fragment consisting from 𝑁𝑏 nucleons inside nucleus with 𝐴 nucleons is given
by

𝛾𝑁𝑏
= 𝑁3

𝑏 (𝑉𝑏/𝑉 )𝑁𝑏−1 = 𝑁3
𝑏 (𝑁𝑏/𝐴)𝑁𝑏−1,

where 𝑉𝑏 and 𝑉 are fragment 𝑏 and nucleus volumes, respectively. The last equation was estimated [GMT83] as the
overlap integral of (constant inside a volume) wave function of independent nucleons with that of the fragment.

During the prequilibrium stage a “condense” fragment can be emitted. The probability to emit a fragment can be
written as [GMT83]

𝑊𝑏(𝑛,𝑈, 𝑇𝑏) = 𝛾𝑁𝑏
𝑅𝑏(𝑝, ℎ)

𝜌(𝑁𝑏, 0, 𝑇𝑏 +𝑄𝑏)

𝑔𝑏(𝑇𝑏)
𝜎𝑏(𝑇𝑏)

(2𝑠𝑏 + 1)𝜇𝑏

𝜋2ℎ3
𝜌𝑛−𝑏(𝐸

*)

𝜌𝑛(𝑈)
𝑇𝑏, (29.6)

where

𝑔𝑏(𝑇𝑏) =
𝑉𝑏(2𝑠𝑏 + 1)(2𝜇𝑏)

3/2

4𝜋2ℎ3
(𝑇𝑏 +𝑄𝑏)

1/2

is the single-particle density for complex fragment 𝑏, which is obtained by assuming that complex fragment moves
inside volume 𝑉𝑏 in the uniform potential well whose depth is equal to be𝑄𝑏, and the factor𝑅𝑏(𝑝, ℎ) garantees correct
isotopic composition of a fragment 𝑏.
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29.2.6 The total probability

This probability is defined as

𝑊𝑡𝑜𝑡(𝑛,𝑈) =
∑︁

Δ𝑛=+2,0,−2

𝜔Δ𝑛(𝑛,𝑈) +

6∑︁
𝑏=1

𝑊𝑏(𝑛,𝑈),

where total emission 𝑊𝑏(𝑛,𝑈) probabilities to emit fragment 𝑏 can be obtained from Eqs.(29.5) and (29.6) by inte-
gration over 𝑇𝑏:

𝑊𝑏(𝑛,𝑈) =

∫︁ 𝑈−𝑄𝑏

𝑉𝑏

𝑊𝑏(𝑛,𝑈, 𝑇𝑏)𝑑𝑇𝑏.

29.2.7 Calculation of kinetic energies for emitted particle

The equations (29.5) and (29.6) are used to sample kinetic energies of emitted fragment.

29.2.8 Parameters of residual nucleus

After fragment emission we update parameter of decaying nucleus:

𝐴𝑓 = 𝐴−𝐴𝑏;𝑍𝑓 = 𝑍 − 𝑍𝑏;𝑃𝑓 = 𝑃0 − 𝑝𝑏;

𝐸*
𝑓 =

√︁
𝐸2

𝑓 − 𝑃 2
𝑓 −𝑀(𝐴𝑓 , 𝑍𝑓 ).

Here 𝑝𝑏 is the evaporated fragment four momentum.

338 Chapter 29. Precompound model



CHAPTER

THIRTY

EVAPORATION MODEL

30.1 Introduction

At the end of the pre-equilibrium stage, or a thermalizing process, the residual nucleus is supposed to be left in an
equilibrium state, in which the excitation energy 𝐸* is shared by a large number of nucleons. Such an equilibrated
compound nucleus is characterized by its mass, charge and excitation energy with no further memory of the steps
which led to its formation. If the excitation energy is higher than the separation energy, it can still eject nucleons and
fragments (d, t, 3He, 𝛼, others). These constitute the low energy and most abundant part of the emitted particles in the
rest system of the residual nucleus. The emission of particles by an excited compound nucleus has been successfully
described by comparing the nucleus with the evaporation of molecules from a fluid [Fre36]. The first statistical theory
of compound nuclear decay is due to Weisskopf and Ewing [WE40].

30.2 Evaporation model

The Weisskopf treatment is an application of the detailed balance principle that relates the probabilities to go from a
state 𝑖 to another 𝑑 and viceversa through the density of states in the two systems:

𝑃𝑖→𝑑𝜌(𝑖) = 𝑃𝑑→𝑖𝜌(𝑑)

where 𝑃𝑑→𝑖 is the probability per unit of time of a nucleus 𝑑 captures a particle 𝑗 and form a compound nucleus 𝑖
which is proportional to the compound nucleus cross section 𝜎inv. Thus, the probability that a parent nucleus 𝑖 with
an excitation energy 𝐸* emits a particle 𝑗 in its ground state with kinetic energy 𝜀 is

𝑃𝑗(𝜀)d𝜀 = 𝑔𝑗𝜎inv(𝜀)
𝜌𝑑(𝐸max − 𝜀)

𝜌𝑖(𝐸*)
𝜀d𝜀 (30.1)

where 𝜌𝑖(𝐸*) is the level density of the evaporating nucleus, 𝜌𝑑(𝐸max − 𝜀) that of the daugther (residual) nucleus
after emission of a fragment 𝑗 and 𝐸max is the maximum energy that can be carried by the ejectile. With the spin 𝑠𝑗
and the mass 𝑚𝑗 of the emitted particle, 𝑔𝑗 is expressed as 𝑔𝑗 = (2𝑠𝑗 + 1)𝑚𝑗/𝜋

2~2.

This formula must be implemented with a suitable form for the level density and inverse reaction cross section. We
have followed, like many other implementations, the original work of Dostrovsky et al. [DFF59] (which represents
the first Monte Carlo code for the evaporation process) with slight modifications. The advantage of the Dostrovsky
model is that it leds to a simple expression for equation (30.1) that can be analytically integrated and used for Monte
Carlo sampling.

30.2.1 Cross sections for inverse reactions

The cross section for inverse reaction is expressed by means of empirical equation [DFF59]

𝜎inv(𝜀) = 𝜎𝑔𝛼

(︂
1 +

𝛽

𝜀

)︂
(30.2)
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where 𝜎𝑔 = 𝜋𝑅2 is the geometric cross section.

In the case of neutrons, 𝛼 = 0.76 + 2.2𝐴− 1
3 and 𝛽 = (2.12𝐴− 2

3 − 0.050)/𝛼 MeV. This equation gives a good
agreement to those calculated from continuum theory [BW52] for intermediate nuclei down to 𝜀 ∼ 0.05 MeV. For
lower energies 𝜎inv,𝑛(𝜀) tends toward infinity, but this causes no difficulty because only the product 𝜎inv,𝑛(𝜀)𝜀 enters
in equation (30.1). It should be noted, that the inverse cross section needed in (30.1) is that between a neutron of
kinetic energy 𝜀 and a nucleus in an excited state.

For charged particles (p, d, t, 3He and 𝛼), 𝛼 = (1 + 𝑐𝑗) and 𝛽 = −𝑉𝑗 , where 𝑐𝑗 is a set of parameters calculated by
Shapiro [Sha53] in order to provide a good fit to the continuum theory [BW52] cross sections and 𝑉𝑗 is the Coulomb
barrier.

30.2.2 Coulomb barriers

Coulomb repulsion, as calculated from elementary electrostatics are not directly applicable to the computation of reac-
tion barriers but must be corrected in several ways. The first correction is for the quantum mechanical phenomenoon
of barrier penetration. The proper quantum mechanical expressions for barrier penetration are far too complex to
be used if one wishes to retain equation (30.1) in an integrable form. This can be approximately taken into account
by multiplying the electrostatic Coulomb barrier by a coefficient 𝑘𝑗 designed to reproduce the barrier penetration
approximately whose values are tabulated [Sha53].

𝑉𝑗 = 𝑘𝑗
𝑍𝑗𝑍𝑑𝑒

2

𝑅𝑐

The second correction is for the separation of the centers of the nuclei at contact,𝑅𝑐. We have computed this separation
as 𝑅𝑐 = 𝑅𝑗 +𝑅𝑑 where 𝑅𝑗,𝑑 = 𝑟𝑐𝐴

1/3
𝑗,𝑑 and 𝑟𝑐 is given [ASIP94] by

𝑟𝑐 = 2.173
1 + 0.006103𝑍𝑗𝑍𝑑

1 + 0.009443𝑍𝑗𝑍𝑑

30.2.3 Level densities

The simplest and most widely used level density based on the Fermi gas model are those of Weisskopf [Wei37] for a
completely degenerate Fermi gas. We use this approach with the corrections for nucleon pairing proposed by Hurwitz
and Bethe [HB51] which takes into account the displacements of the ground state:

𝜌(𝐸) = 𝐶 exp
(︁

2
√︀
𝑎(𝐸 − 𝛿)

)︁
(30.3)

where𝐶 is considered as constant and does not need to be specified since only ratios of level densities enter in equation
(30.1). 𝛿 is the pairing energy correction of the daughter nucleus evaluated by Cook et al. [CFdLM67] and Gilbert and
Cameron [GC65] for those values not evaluated by Cook et al.. The level density parameter is calculated according
to:

𝑎(𝐸,𝐴,𝑍) = �̃�(𝐴)

{︂
1 +

𝛿

𝐸
[1 − exp(−𝛾𝐸)]

}︂
and the parameters calculated by Iljinov et al. [IMB+92] and shell corrections of Truran, Cameron and Hilf [TCH70].

30.2.4 Maximum energy available for evaporation

The maximum energy avilable for the evaporation process (i.e. the maximum kinetic energy of the outgoing fragment)
is usually computed like 𝐸* − 𝛿 − 𝑄𝑗 where is the separation energy of the fragment 𝑗: 𝑄𝑗 = 𝑀𝑖 −𝑀𝑑 −𝑀𝑗 and
𝑀𝑖, 𝑀𝑑 and 𝑀𝑗 are the nclear masses of the compound, residual and evporated nuclei respectively. However, that
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expression does not consider the recoil energy of the residual nucleus. In order to take into account the recoil energy
we use the expression

𝜀max
𝑗 =

(𝑀𝑖 + 𝐸* − 𝛿)2 +𝑀2
𝑗 −𝑀2

𝑑

2(𝑀𝑖 + 𝐸* − 𝛿)
−𝑀𝑗

30.2.5 Total decay width

The total decay width for evaporation of a fragment 𝑗 can be obtained by integrating equation (30.1) over kinetic
energy

Γ𝑗 = ~
∫︁ 𝜀max

𝑗

𝑉𝑗

𝑃 (𝜀𝑗)d𝜀𝑗

This integration can be performed analiticaly if we use equation (30.3) for level densities and equation (30.2) for
inverse reaction cross section. Thus, the total width is given by

Γ𝑗 =
𝑔𝑗𝑚𝑗𝑅

2
𝑑

2𝜋~2
𝛼

𝑎2𝑑
×

⎧⎪⎪⎪⎪⎩{︂(︂𝛽𝑎𝑑 − 3

2

)︂
+ 𝑎𝑑(𝜀max

𝑗 − 𝑉𝑗)

}︂
exp

{︁
−
√︀
𝑎𝑖(𝐸* − 𝛿𝑖)

}︁
+{︂

(2𝛽𝑎𝑑 − 3)
√︁
𝑎𝑑(𝜀max

𝑗 − 𝑉𝑗) + 2𝑎𝑑(𝜀max
𝑗 − 𝑉𝑗)

}︂
×

exp
{︁

2
[︁√︁

𝑎𝑑(𝜀max
𝑗 − 𝑉𝑗) −

√︀
𝑎𝑖(𝐸* − 𝛿𝑖)

]︁}︁⎫⎪⎪⎪⎪⎭
where 𝑎𝑑 = 𝑎(𝐴𝑑, 𝑍𝑑, 𝜀

max
𝑗 ) and 𝑎𝑖 = 𝑎(𝐴𝑖, 𝑍𝑖, 𝐸

*).

30.3 GEM model

As an alternative model we have implemented the generalized evaporation model (GEM) by Furihata [Fur00]. This
model considers emission of fragments heavier than 𝛼 particles and uses a more accurate level density function for
total decay width instead of the approximation used by Dostrovsky. We use the same set of parameters but for heavy
ejectiles the parameters determined by Matsuse et al. [MAL82] are used.

Based on the Fermi gas model, the level density function is expressed as

𝜌(𝐸) =

{︃ √
𝜋

12
𝑒2

√
𝑎(𝐸−𝛿)

𝑎1/4(𝐸−𝛿)5/4
for E ≥ Ex

1
𝑇 𝑒

(𝐸−𝐸0)/𝑇 for E < Ex

(30.4)

where 𝐸𝑥 = 𝑈𝑥 + 𝛿 and 𝑈𝑥 = 150/𝑀𝑑 + 2.5 (𝑀𝑑 is the mass of the daughter nucleus). Nuclear temperature 𝑇 is
given as 1/𝑇 =

√︀
𝑎/𝑈𝑥 − 1.5𝑈𝑥, and 𝐸0 is defined as 𝐸0 = 𝐸𝑥 − 𝑇 (log 𝑇 − log 𝑎/4 − (5/4) log𝑈𝑥 + 2

√
𝑎𝑈𝑥).

By substituting equation (30.4) into equation (30.1) and integrating over kinetic energy can be obtained the following
expression

Γ𝑗 =

√
𝜋𝑔𝑗𝜋𝑅

2
𝑑𝛼

12𝜌(𝐸*)
×

⎧⎨⎩
{𝐼1(𝑡, 𝑡) + (𝛽 + 𝑉 )𝐼0(𝑡)} for 𝜀max

j − Vj < Ex

{𝐼1(𝑡, 𝑡𝑥) + 𝐼3(𝑠, 𝑠𝑥)𝑒𝑠+
(𝛽 + 𝑉 )(𝐼0(𝑡𝑥) + 𝐼2(𝑠, 𝑠𝑥)𝑒𝑠)} for 𝜀max

j − Vj ≥ Ex.
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𝐼0(𝑡), 𝐼1(𝑡, 𝑡𝑥), 𝐼2(𝑠, 𝑠𝑥), and 𝐼3(𝑠, 𝑠𝑥) are expressed as:

𝐼0(𝑡) = 𝑒−𝐸0/𝑇 (𝑒𝑡 − 1)

𝐼1(𝑡, 𝑡𝑥) = 𝑒−𝐸0/𝑇𝑇{(𝑡− 𝑡𝑥 + 1)𝑒𝑡𝑥 − 𝑡− 1}

𝐼2(𝑠, 𝑠𝑥) = 2
√

2

{︂
𝑠−3/2 + 1.5𝑠−5/2 + 3.75𝑠−7/2−

(𝑠−3/2
𝑥 + 1.5𝑠−5/2

𝑥 + 3.75𝑠−7/2
𝑥 )

}︂
𝐼3(𝑠, 𝑠𝑥) =

1

2
√

2

[︃
2𝑠−1/2 + 4𝑠−3/2 + 13.5𝑠−5/2 + 60.0𝑠−7/2+

325.125𝑠−9/2 −
{︂

(𝑠2 − 𝑠2𝑥)𝑠−3/2
𝑥 + (1.5𝑠2 + 0.5𝑠2𝑥)𝑠−5/2

𝑥 +

(3.75𝑠2 + 0.25𝑠2𝑥)𝑠−7/2
𝑥 + (12.875𝑠2 + 0.625𝑠2𝑥)𝑠−9/2

𝑥 +

(59.0625𝑠2 + 0.9375𝑠2𝑥)𝑠−11/2
𝑥 +

(324.8𝑠2 + 3.28𝑠2𝑥)𝑠−13/2
𝑥 +

}︂]︃

where 𝑡 = (𝜀max
𝑗 − 𝑉𝑗)/𝑇 , 𝑡𝑥 = 𝐸𝑥/𝑇 , 𝑠 = 2

√︁
𝑎(𝜀max

𝑗 − 𝑉𝑗 − 𝛿𝑗) and 𝑠𝑥 = 2
√︀
𝑎(𝐸𝑥 − 𝛿).

Besides light fragments, 60 nuclides up to 28Mg are considered, not only in their ground states but also in their exited
states, are considered. The excited state is assumed to survive if its lifetime 𝑇1/2 is longer than the decay time, i. e.,
𝑇1/2/ ln 2 > ~/Γ*

𝑗 , where Γ*
𝑗 is the emission width of the resonance calculated in the same manner as for ground state

particle emission. The total emission width of an ejectile 𝑗 is summed over its ground state and all its excited states
which satisfy the above condition.

30.4 Nuclear fission

The fission decay channel (only for nuclei with 𝐴 > 65) is taken into account as a competitor for fragment and photon
evaporation channels.

30.4.1 The fission total probability

The fission probability (per unit time) 𝑊𝑓𝑖𝑠 in the Bohr and Wheeler theory of fission [BW39] is proportional to the
level density 𝜌𝑓𝑖𝑠(𝑇 ) (approximation Eq. (30.3)) is used) at the saddle point, i.e.

𝑊𝑓𝑖𝑠 =
1

2𝜋~𝜌𝑓𝑖𝑠(𝐸*)

∫︁ 𝐸*−𝐵𝑓𝑖𝑠

0

𝜌𝑓𝑖𝑠(𝐸
* −𝐵𝑓𝑖𝑠 − 𝑇 )𝑑𝑇

=
1 + (𝐶𝑓 − 1) exp (𝐶𝑓 )

4𝜋𝑎𝑓𝑖𝑠 exp (2
√
𝑎𝐸*)

,

where 𝐵𝑓𝑖𝑠 is the fission barrier height. The value of 𝐶𝑓 = 2
√︀
𝑎𝑓𝑖𝑠(𝐸* −𝐵𝑓𝑖𝑠) and 𝑎, 𝑎𝑓𝑖𝑠 are the level density

parameters of the compound and of the fission saddle point nuclei, respectively.

The value of the level density parameter is large at the saddle point, when excitation energy is given by initial excitation
energy minus the fission barrier height, than in the ground state, i. e. 𝑎𝑓𝑖𝑠 > 𝑎. 𝑎𝑓𝑖𝑠 = 1.08𝑎 for𝑍 < 85, 𝑎𝑓𝑖𝑠 = 1.04𝑎
for 𝑍 ≥ 89 and 𝑎𝑓 = 𝑎[1.04 + 0.01(89.− 𝑍)] for 85 ≤ 𝑍 < 89 is used.
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30.4.2 The fission barrier

The fission barrier is determined as difference between the saddle-point and ground state masses.

We use simple semiphenomenological approach was suggested by Barashenkov and Gereghi [BITG73]. In their
approach fission barrier 𝐵𝑓𝑖𝑠(𝐴,𝑍) is approximated by

𝐵𝑓𝑖𝑠 = 𝐵0
𝑓𝑖𝑠 + ∆𝑔 + ∆𝑝.

The fission barrier height 𝐵0
𝑓𝑖𝑠(𝑥) varies with the fissility parameter 𝑥 = 𝑍2/𝐴. 𝐵0

𝑓𝑖𝑠(𝑥) is given by

𝐵0
𝑓𝑖𝑠(𝑥) = 12.5 + 4.7(33.5 − 𝑥)0.75

for 𝑥 ≤ 33.5 and

𝐵0
𝑓𝑖𝑠(𝑥) = 12.5 − 2.7(𝑥− 33.5)2/3

for 𝑥 > 33.5. The ∆𝑔 = ∆𝑀(𝑁)+∆𝑀(𝑍), where ∆𝑀(𝑁) and ∆𝑀(𝑍) are shell corrections for Cameron’s liquid
drop mass formula [Cam57][Cam58] and the pairing energy corrections: ∆𝑝 = 1 for odd-odd nuclei, ∆𝑝 = 0 for
odd-even nuclei, ∆𝑝 = 0.5 for even-odd nuclei and ∆𝑝 = −0.5 for even-even nuclei.

30.5 Photon evaporation

Photon evaporation main be simulated as a continium gamma transition using dipole approximation and via discrete
gamma transition using evaluated database on nuclear gamma transitions.

30.5.1 Computation of probability

As the first approximation we assume that dipole 𝐸1–transitions is the main source of 𝛾–quanta from highly–excited
nuclei [IMB+92]. The probability to evaporate 𝛾 in the energy interval (𝜖𝛾 , 𝜖𝛾 + 𝑑𝜖𝛾) per unit of time is given

𝑊𝛾(𝜖𝛾) =
1

𝜋2(~𝑐)3
𝜎𝛾(𝜖𝛾)

𝜌(𝐸* − 𝜖𝛾)

𝜌(𝐸*)
𝜖2𝛾 , (30.5)

where 𝜎𝛾(𝜖𝛾) is the inverse (absorption of 𝛾) reaction cross section, 𝜌 is a nucleus level density is defined by Eq. (??).

The photoabsorption reaction cross section is given by the expression

𝜎𝛾(𝜖𝛾) =
𝜎0𝜖

2
𝛾Γ2

𝑅

(𝜖2𝛾 − 𝐸2
𝐺𝐷𝑃 )2 + Γ2

𝑅𝜖
2
𝛾

,

where 𝜎0 = 2.5𝐴 mb, Γ𝑅 = 0.3𝐸𝐺𝐷𝑃 and 𝐸𝐺𝐷𝑃 = 40.3𝐴−1/5 MeV are empirical parameters of the giant dipole
resonance [IMB+92]. The total radiation probability is

𝑊𝛾 =
1

𝜋2(~𝑐)3

∫︁ 𝐸*

0

𝜎𝛾(𝜖𝛾)
𝜌(𝐸* − 𝜖𝛾)

𝜌(𝐸*)
𝜖2𝛾𝑑𝜖𝛾 .

The integration is performed numericaly. The energy of 𝛾-quantum is sampled according to the Eq.(30.5) distribution.
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30.5.2 Discrete photon evaporation

The last step of evaporation cascade consists of evaporation of photons with discrete energies. The competition
between photons and fragments as well as giant resonance photons is neglected at this step. We consider the discrete
E1, M1 and E2 photon transitions from tabulated isotopes. There are a large number of isotopes [had] with the
experimentally measured exited level energies, spins, parities and relative transitions probabilities. This information
is uploaded for each excited state in run time when corresponding excited state first created.

The list of isotopes included in the photon evaporation data base has been extended from 𝐴 <= 240 to 𝐴 <= 250.
The highest atomic number included is 𝑍 = 98 (this ensures that Americium sources can now be simulated).

30.5.3 Internal conversion electron emission

An important conpetitive channel to photon emission is internal conversion. To take this into account, the photon
evaporation data-base was entended to include internal conversion coeffficients.

The above constitute the first six columns of data in the photon evaporation files. The new version of the data base
adds eleven new columns corresponding to:

• 7. ratio of internal conversion to gamma-ray emmission probability

• (8–17) internal conversion coefficients for shells K, L1, L2, L3, M1, M2, M3, M4, M5 and N+ respectively.
These coefficients are normalised to 1.0

The calculation of the Internal Conversion Coefficients (ICCs) is done by a cubic spline interpolation of tabulalted
data for the corresponding transition energy. These ICC tables, which we shall label Band [BTL76][BT78], Rösel
[RFAP78] and Hager-Seltzer [HS68], are widely used and were provided in electronic format by staff at LBNL. The
reliability of these tabulated data has been reviewed in Ref. [RD00]. From tests carried out on these data we find
that the ICCs calculated from all three tables are comparable within a 10% uncertainty, which is better than what
experimetal measurements are reported to be able to achieve.

The range in atomic number covered by these tables is Band: 1 <= 𝑍 <= 80; Rösel: 30 <= 𝑍 <= 104 and
Hager-Seltzer: 3, 6, 10, 14 <= 𝑍 <= 103. For simplicity and taking into account the completeness of the tables, we
have used the Band table for 𝑍 <= 80 and Rösel for 81 <= 𝑍 <= 98.

The Band table provides a higher resolution of the ICC curves used in the interpolation and covers ten multipolarities
for all elements up to 𝑍 = 80, but it only includes ICCs for shells up to M5. In order to calculate the ICC of the N+
shell, the ICCs of all available M shells are added together and the total divided by 3. This is the scheme adopted in
the LBNL ICC calculation code when using the Band table. The Rösel table includes ICCs for all shells in every atom
and for 𝑍 > 80 the N+ shell ICC is calculated by adding together the ICCs of all shells above M5. In this table only
eight multipolarities have ICCs calculated for.

For the production of an internal conversion electron, the energy of the transition must be at least the binding energy
of the shell the electron is being released from. The binding energy corresponding to the various shells in all isotopes
used in the ICC calculation has been taken from the GEANT4 file G4AtomicShells.hh.

The ENSDF data provides information on the multipolarity of the transition. The ICCs included in the photon evap-
oration data base refer to the multipolarity indicated in the ENSDF file for that transition. Only one type of mixed
mulltipolarity is considered (M1+E2) and whenever the mixing ratio is provided in the ENSDF file, it is used to
calculate the ICCs corresponding to the mixed multipolarity according to the formula:

• fraction in 𝑀1 = 1/(1 + 𝛿2)

• fraction in 𝐸2 = 𝛿2/(1 + 𝛿2)

where 𝛿 is the mixing ratio.
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30.6 Sampling procedure

The evaporation model algorithm consists from repeating steps on decay channels. The stack of excited nuclear
fragments is created and initial excited fragent is stored there. For the each fragment from the stack decay chain is
sampled via loop of actions:

1. switch to the next excited fragment in the stack;

2. check if Fermi break-up model [FBU] is applicable and apply this model if it is the case;

3. sort out decay products between store of excited fragments and the list of final products;

4. if Fermi break up is not applicable compute probabilities of all evaporation channels;

5. randomly select of a break-up channel and sample final state for the selected channel;

6. sort out decay products between store of excited fragments and the list of final products;

7. check if the residual fragment is stable, stop the loop if it is the case and store residual fragment to the list of
final products;

8. if the fragment is not stable check if Fermi break-up is applicable, if yes then store this residual into the stack of
excited fragments, else repeat from (4).

30.6. Sampling procedure 345
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CHAPTER

THIRTYONE

FISSION MODEL

31.1 Reaction initial state.

The GEANT4 fission model is capable to predict final excited fragments as result of an excited nucleus symmetric or
asymmetric fission. The fission process (only for nuclei with atomic number𝐴 ≥ 65) is considered as a competitor for
evaporation process, when nucleus transits from an excited state to the ground state. Here we describe the final state
generation. The calculation of the relative probability of fission with respect to the evaporation channels are described
in the chapter concerning evaporation.

The initial information for calculation of fission decay consists from the atomic mass number 𝐴, charge 𝑍 of excited
nucleus, its four momentum 𝑃0 and excitation energy 𝑈 .

31.2 Fission process simulation.

31.2.1 Atomic number distribution of fission products.

As follows from experimental data [VR73] mass distribution of fission products consists of the symmetric and the
asymmetric components:

𝐹 (𝐴𝑓 ) = 𝐹𝑠𝑦𝑚(𝐴𝑓 ) + 𝜔𝐹𝑎𝑠𝑦𝑚(𝐴𝑓 ),

where 𝜔(𝑈,𝐴,𝑍) defines relative contribution of each component and it depends from excitation energy 𝑈 and 𝐴,𝑍
of fissioning nucleus. It was found in [eal93] that experimental data can be approximated with a good accuracy, if one
take

𝐹𝑠𝑦𝑚(𝐴𝑓 ) = exp

[︂
− (𝐴𝑓 −𝐴𝑠𝑦𝑚)2

2𝜎2
𝑠𝑦𝑚

]︂
and

𝐹𝑎𝑠𝑦𝑚(𝐴𝑓 ) = exp

[︂
− (𝐴𝑓 −𝐴2)2

2𝜎2
2

]︂
+ exp

[︂
−𝐴𝑓 − (𝐴−𝐴2)2

2𝜎2
2

]︂
+

+ 𝐶𝑎𝑠𝑦𝑚

{︂
exp

[︂
− (𝐴𝑓 −𝐴1)2

2𝜎2
1

]︂
+ exp

[︂
−𝐴𝑓 − (𝐴−𝐴1)2

2𝜎2
2

]︂}︂
,

where𝐴𝑠𝑦𝑚 = 𝐴/2, 𝐴1 and𝐴2 are the mean values and 𝜎2
𝑠𝑖𝑚, 𝜎2

1 and 𝜎2
2 are dispersion of the Gaussians respectively.

From an analysis of experimental data [eal93] the parameter 𝐶𝑎𝑠𝑦𝑚 ≈ 0.5 was defined and the next values for
dispersions:

𝜎2
𝑠𝑦𝑚 = exp (0.00553𝑈 + 2.1386),
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where 𝑈 in MeV,

2𝜎1 = 𝜎2 = 5.6 MeV

for 𝐴 ≤ 235 and

2𝜎1 = 𝜎2 = 5.6 + 0.096(𝐴− 235) MeV

for 𝐴 > 235 were found.

The weight 𝜔(𝑈,𝐴,𝑍) was approximated as follows

𝜔 =
𝜔𝑎 − 𝐹𝑎𝑠𝑦𝑚(𝐴𝑠𝑦𝑚)

1 − 𝜔𝑎𝐹𝑠𝑦𝑚((𝐴1 +𝐴2)/2)
.

The values of 𝜔𝑎 for nuclei with 96 ≥ 𝑍 ≥ 90 were approximated by

𝜔𝑎(𝑈) = exp (0.538𝑈 − 9.9564)

for 𝑈 ≤ 16.25 MeV,

𝜔𝑎(𝑈) = exp (0.09197𝑈 − 2.7003)

for 𝑈 > 16.25 MeV and

𝜔𝑎(𝑈) = exp (0.09197𝑈 − 1.08808)

for 𝑧 = 89. For nuclei with 𝑍 ≤ 88 the authors of [eal93] constracted the following approximation:

𝜔𝑎(𝑈) = exp [0.3(227 − 𝑎)] exp {0.09197[𝑈 − (𝐵𝑓𝑖𝑠 − 7.5)] − 1.08808},

where for 𝐴 > 227 and 𝑈 < 𝐵𝑓𝑖𝑠 − 7.5 the corresponding factors occuring in exponential functions vanish.

31.2.2 Charge distribution of fission products.

At given mass of fragment 𝐴𝑓 the experimental data [VR73] on the charge 𝑍𝑓 distribution of fragments are well
approximated by Gaussian with dispertion 𝜎2

𝑧 = 0.36 and the average ⟨𝑍𝑓 ⟩ is described by expression:

⟨𝑍𝑓 ⟩ =
𝐴𝑓

𝐴
𝑍 + ∆𝑍,

when parameter ∆𝑍 = −0.45 for 𝐴𝑓 ≥ 134, ∆𝑍 = −0.45(𝐴𝑓 −𝐴/2)/(134 −𝐴/2) for 𝐴− 134 < 𝐴𝑓 < 134 and
∆𝑍 = 0.45 for 𝐴 ≤ 𝐴− 134.

After sampling of fragment atomic masses numbers and fragment charges, we have to check that fragment ground
state masses do not exceed initial energy and calculate the maximal fragment kinetic energy

𝑇𝑚𝑎𝑥 < 𝑈 +𝑀(𝐴,𝑍) −𝑀1(𝐴𝑓1, 𝑍𝑓1) −𝑀2(𝐴𝑓2, 𝑍𝑓2),

where 𝑈 and 𝑀(𝐴,𝑍) are the excitation energy and mass of initial nucleus, 𝑀1(𝐴𝑓1, 𝑍𝑓1), and 𝑀2(𝐴𝑓2, 𝑍𝑓2) are
masses of the first and second fragment, respectively.
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31.2.3 Kinetic energy distribution of fission products.

We use the empirically defined [EKM85] dependence of the average kinetic energy < 𝑇𝑘𝑖𝑛 > (in MeV) of fission
fragments on the mass and the charge of a fissioning nucleus:

⟨𝑇𝑘𝑖𝑛⟩ = 0.1178𝑍2/𝐴1/3 + 5.8.

This energy is distributed differently in cases of symmetric and asymmetric modes of fission. It follows from the
analysis of data [eal93] that in the asymmetric mode, the average kinetic energy of fragments is higher than that in
the symmetric one by approximately 12.5 MeV. To approximate the average numbers of kinetic energies ⟨𝑇 𝑠𝑦𝑚

𝑘𝑖𝑛 ⟩ and
⟨𝑇 𝑎𝑠𝑦𝑚

𝑘𝑖𝑛 ⟩ for the symmetric and asymmetric modes of fission the authors of [eal93] suggested empirical expressions:

⟨𝑇 𝑠𝑦𝑚
𝑘𝑖𝑛 ⟩ = ⟨𝑇𝑘𝑖𝑛⟩ − 12.5𝑊𝑎𝑠𝑖𝑚,

⟨𝑇 𝑎𝑠𝑦𝑚
𝑘𝑖𝑛 ⟩ = ⟨𝑇𝑘𝑖𝑛⟩ + 12.5𝑊𝑠𝑖𝑚,

where

𝑊𝑠𝑖𝑚 = 𝜔

∫︁
𝐹𝑠𝑖𝑚(𝐴)𝑑𝐴

⧸︂∫︁
𝐹 (𝐴)𝑑𝐴

and

𝑊𝑎𝑠𝑖𝑚 =

∫︁
𝐹𝑎𝑠𝑖𝑚(𝐴)𝑑𝐴

⧸︂∫︁
𝐹 (𝐴)𝑑𝐴,

respectively. In the symmetric fission the experimental data for the ratio of the average kinetic energy of fission
fragments ⟨𝑇𝑘𝑖𝑛(𝐴𝑓 )⟩ to this maximum energy ⟨𝑇𝑚𝑎𝑥

𝑘𝑖𝑛 ⟩ as a function of the mass of a larger fragment 𝐴𝑚𝑎𝑥 can be
approximated by expressions

⟨𝑇𝑘𝑖𝑛(𝐴𝑓 )⟩/⟨𝑇𝑚𝑎𝑥
𝑘𝑖𝑛 ⟩ = 1 − 𝑘[(𝐴𝑓 −𝐴𝑚𝑎𝑥)/𝐴]2

for 𝐴𝑠𝑖𝑚 ≤ 𝐴𝑓 ≤ 𝐴𝑚𝑎𝑥 + 10 and

⟨𝑇𝑘𝑖𝑛(𝐴𝑓 )⟩/⟨𝑇𝑚𝑎𝑥
𝑘𝑖𝑛 ⟩ = 1 − 𝑘(10/𝐴)2 − 2(10/𝐴)𝑘(𝐴𝑓 −𝐴𝑚𝑎𝑥 − 10)/𝐴

for 𝐴𝑓 > 𝐴𝑚𝑎𝑥 + 10, where 𝐴𝑚𝑎𝑥 = 𝐴𝑠𝑖𝑚 and 𝑘 = 5.32 and 𝐴𝑚𝑎𝑥 = 134 and 𝑘 = 23.5 for symmetric and
asymmetric fission respectively. For both modes of fission the distribution over the kinetic energy of fragments 𝑇𝑘𝑖𝑛
is choosen Gaussian with their own average values ⟨𝑇𝑘𝑖𝑛(𝐴𝑓 )⟩ = ⟨𝑇 𝑠𝑦𝑚

𝑘𝑖𝑛 (𝐴𝑓 )⟩ or ⟨𝑇𝑘𝑖𝑛(𝐴𝑓 )⟩ = ⟨𝑇 𝑎𝑠𝑦𝑚
𝑘𝑖𝑛 (𝐴𝑓 )⟩ and

dispersions 𝜎2
𝑘𝑖𝑛 equal 82 MeV2 or 102 MeV2 for symmetrical and asymmetrical modes, respectively.

31.2.4 Calculation of the excitation energy of fission products.

The total excitation energy of fragments 𝑈𝑓𝑟𝑎𝑔 can be defined according to equation:

𝑈𝑓𝑟𝑎𝑔 = 𝑈 +𝑀(𝐴,𝑍) −𝑀1(𝐴𝑓1, 𝑍𝑓1) −𝑀2(𝐴𝑓2, 𝑍𝑓2) − 𝑇𝑘𝑖𝑛,

where 𝑈 and 𝑀(𝐴,𝑍) are the excitation energy and mass of initial nucleus, 𝑇𝑘𝑖𝑛 is the fragments kinetic energy,
𝑀1(𝐴𝑓1, 𝑍𝑓1), and 𝑀2(𝐴𝑓2, 𝑍𝑓2) are masses of the first and second fragment, respectively.

The value of excitation energy of fragment 𝑈𝑓 determines the fragment temperature (𝑇 =
√︀
𝑈𝑓/𝑎𝑓 , where 𝑎𝑓 ∼ 𝐴𝑓

is the parameter of fragment level density). Assuming that after disintegration fragments have the same temperature
as initial nucleus than the total excitation energy will be distributed between fragments in proportion to their mass
numbers one obtains

𝑈𝑓 = 𝑈𝑓𝑟𝑎𝑔
𝐴𝑓

𝐴
.
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31.2.5 Excited fragment momenta.

Assuming that fragment kinetic energy 𝑇𝑓 = 𝑃 2
𝑓 /(2(𝑀(𝐴𝑓 , 𝑍𝑓 + 𝑈𝑓 ) we are able to calculate the absolute value of

fragment c.m. momentum

𝑃𝑓 =
(𝑀1(𝐴𝑓1, 𝑍𝑓1 + 𝑈𝑓1)(𝑀2(𝐴𝑓2, 𝑍𝑓2 + 𝑈𝑓2)

𝑀1(𝐴𝑓1, 𝑍𝑓1) + 𝑈𝑓1 +𝑀2(𝐴𝑓2, 𝑍𝑓2) + 𝑈𝑓2
𝑇𝑘𝑖𝑛.

and its components, assuming fragment isotropical distribution.
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CHAPTER

THIRTYTWO

FERMI BREAK-UP MODEL

32.1 Fermi break-up simulation for light nuclei

For light nuclei the values of excitation energy per nucleon are often comparable with nucleon binding energy.
Thus a light excited nucleus breaks into two or more fragments with branching given by available phase space. To
describe a process of nuclear disassembling the so-called Fermi break-up model is formulated [Fer50], [Kre61],
[EpherreElieG67][EGKR69], [BBI+95]. This statistical approach was first used by Fermi [Fer50] to describe the
multiple production in high energy nucleon collision. The GEANT4 Fermi break-up model is capable to predict final
states as result of an excited nucleus with 𝑍 < 9 and 𝐴 < 17 statistical break-up.

32.1.1 Allowed channels

The channel will be allowed for decay, if the total kinetic energy 𝐸𝑘𝑖𝑛 of all fragments of the given channel at the
moment of break-up is positive. This energy can be calculated according to equation:

𝐸𝑘𝑖𝑛 = 𝑈 +𝑀(𝐴,𝑍) − 𝐸𝐶𝑜𝑢𝑙𝑜𝑚𝑏 −
𝑛∑︁

𝑏=1

(𝑚𝑏 + 𝜖𝑏), (32.1)

𝑈 is primary fragment excitation, 𝑚𝑏 and 𝜖𝑏 are masses and excitation energies of fragments, respectively, 𝐸𝐶𝑜𝑢𝑙𝑜𝑚𝑏

is the Coulomb barrier for a given channel. It is approximated by

𝐸𝐶𝑜𝑢𝑙𝑜𝑚𝑏 =
3

5

𝑒2

𝑟0

(︂
1 +

𝑉

𝑉0

)︂−1/3
(︃

𝑍2

𝐴1/3
−

𝑛∑︁
𝑏=1

𝑍2

𝐴
1/3
𝑏

)︃
,

where 𝑉0 is the volume of the system corresponding to the normal nuclear matter density

𝑉0 = 4𝜋𝑅3/3 = 4𝜋𝑟30𝐴/3,

where 𝑟0 = 1.3 fm is used. Free parameter of the model is the ratio of the effective volume 𝑉 to the normal volume,
currently

𝜅 =
𝑉

𝑉0
= 6.

32.1.2 Break-up probability

The total probability for nucleus to break-up into 𝑛 componets (nucleons, deutrons, tritons, alphas etc) in the final
state is given by

𝑊 (𝐸,𝑛) = (𝑉/Ω)𝑛−1𝜌𝑛(𝐸),
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where 𝜌𝑛(𝐸) is the density of a number of final states, Ω = (2𝜋~)3 is the normalization volume. The density 𝜌𝑛(𝐸)
can be defined as a product of three factors:

𝜌𝑛(𝐸) = 𝑀𝑛(𝐸)𝑆𝑛𝐺𝑛.

The first one is the phase space factor defined as

𝑀𝑛 =

∫︁ +∞

−∞
...

∫︁ +∞

−∞
𝛿

(︃
𝑛∑︁

𝑏=1

pb

)︃
𝛿

(︃
𝐸 −

𝑛∑︁
𝑏=1

√︁
𝑝2 +𝑚2

𝑏

)︃
𝑛∏︁

𝑏=1

𝑑3𝑝𝑏, (32.2)

where pb is fragment 𝑏 momentum. The second one is the spin factor

𝑆𝑛 =

𝑛∏︁
𝑏=1

(2𝑠𝑏 + 1),

which gives the number of states with different spin orientations. The last one is the permutation factor

𝐺𝑛 =

𝑘∏︁
𝑗=1

1

𝑛𝑗 !
,

which takes into account identity of components in final state. 𝑛𝑗 is a number of components of 𝑗- type particles and
𝑘 is defined by 𝑛 =

∑︀𝑘
𝑗=1 𝑛𝑗).

In non-relativistic case (Eq. (32.4) the integration in Eq. (32.2) can be evaluated analiticaly (see e. g.
[BarasenkovBarbasevB58]). The probability for a nucleus with energy 𝐸 disassembling into 𝑛 fragments with masses
𝑚𝑏, where 𝑏 = 1, 2, 3, ..., 𝑛 equals

𝑊 (𝐸𝑘𝑖𝑛, 𝑛) = 𝑆𝑛𝐺𝑛

(︂
𝑉

Ω

)︂𝑛−1
(︃

1∑︀𝑛
𝑏=1𝑚𝑏

𝑛∏︁
𝑏=1

𝑚𝑏

)︃3/2
(2𝜋)3(𝑛−1)/2

Γ(3(𝑛− 1)/2)
𝐸

3𝑛/2−5/2
𝑘𝑖𝑛 , (32.3)

where Γ(𝑥) is the gamma function.

32.1.3 Fragment characteristics

We take into account the formation of fragments in their ground and low-lying excited states, which are stable for
nucleon emission. However, several unstable fragments with large lifetimes: 5He, 5Li, 8Be, 9B etc. are also consid-
ered. Fragment characteristics 𝐴𝑏, 𝑍𝑏, 𝑠𝑏 and 𝜖𝑏 are taken from [AS81][AS82][AS83][Err83][AS84][Err84][AS85].
Recently nuclear level energies were changed to be identical with nuclear levels in the gamma evaporation database
(see Section Photon evaporation).

32.1.4 Sampling procedure

The nucleus break-up is described by the Monte Carlo (MC) procedure. We randomly (according to probability Eq.
(32.3) and condition Eq. (32.1) select decay channel. Then for given channel we calculate kinematical quantities of
each fragment according to 𝑛-body phase space distribution:

𝑀𝑛 =

∫︁ +∞

−∞
...

∫︁ +∞

−∞
𝛿

(︃
𝑛∑︁

𝑏=1

pb

)︃
𝛿

(︃
𝑛∑︁

𝑏=1

𝑝2𝑏
2𝑚𝑏

− 𝐸𝑘𝑖𝑛

)︃
𝑛∏︁

𝑏=1

𝑑3𝑝𝑏. (32.4)

The Kopylov’s sampling procedure [I70][Kop73][Kop85] is applied. The angular distributions for emitted fragments
are considered to be isotropical.
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CHAPTER

THIRTYTHREE

MULTIFRAGMENTATION MODEL

33.1 Multifragmentation process simulation

The GEANT4 multifragmentation model is capable of predicting final states as result of an highly excited nucleus
statistical break-up.

The initial information for calculation of multifragmentation stage consists from the atomic mass number 𝐴, charge
𝑍 of excited nucleus and its excitation energy 𝑈 . At high excitation energies 𝑈/𝐴 > 3 MeV the multifragmentation
mechanism, when nuclear system can eventually breaks down into fragments, becomes the dominant. Later on the
excited primary fragments propagate independently in the mutual Coulomb field and undergo de-excitation. Detailed
description of multifragmentation mechanism and model can be found in review [BBI+95].

33.1.1 Multifragmentation probability

The probability of a breakup channel 𝑏 is given by the expression (in the so-called microcanonical approach
[BBI+95][eal87]):

𝑊𝑏(𝑈,𝐴,𝑍) =
1∑︀

𝑏 exp[𝑆𝑏(𝑈,𝐴,𝑍)]
exp[𝑆𝑏(𝑈,𝐴,𝑍)], (33.1)

where 𝑆𝑏(𝑈,𝐴,𝑍) is the entropy of a multifragment state corresponding to the breakup channel 𝑏. The channels {𝑏}
can be parametrized by set of fragment multiplicities 𝑁𝐴𝑓 ,𝑍𝑓

for fragment with atomic number 𝐴𝑓 and charge 𝑍𝑓 .
All partitions {𝑏} should satisfy constraints on the total mass and charge:∑︁

𝑓

𝑁𝐴𝑓 ,𝑍𝑓
𝐴𝑓 = 𝐴

and ∑︁
𝑓

𝑁𝐴𝑓 ,𝑍𝑓
𝑍𝑓 = 𝑍.

It is assumed [eal87] that thermodynamic equilibrium is established in every channel, which can be characterized by
the channel temperature 𝑇𝑏.

The channel temperature 𝑇𝑏 is determined by the equation constraining the average energy 𝐸𝑏(𝑇𝑏, 𝑉 ) associated with
partition 𝑏:

𝐸𝑏(𝑇𝑏, 𝑉 ) = 𝑈 + 𝐸𝑔𝑟𝑜𝑢𝑛𝑑 = 𝑈 +𝑀(𝐴,𝑍), (33.2)

where 𝑉 is the system volume, 𝐸𝑔𝑟𝑜𝑢𝑛𝑑 is the ground state (at 𝑇𝑏 = 0) energy of system and 𝑀(𝐴,𝑍) is the mass of
nucleus.
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According to the conventional thermodynamical formulae the average energy of a partitition 𝑏 is expressed through
the system free energy 𝐹𝑏 as follows

𝐸𝑏(𝑇𝑏, 𝑉 ) = 𝐹𝑏(𝑇𝑏, 𝑉 ) + 𝑇𝑏𝑆𝑏(𝑇𝑏, 𝑉 ). (33.3)

Thus, if free energy 𝐹𝑏 of a partition 𝑏 is known, we can find the channel temperature 𝑇𝑏 from Eqs.(33.2) and (33.3),
then the entropy 𝑆𝑏 = −𝑑𝐹𝑏/𝑑𝑇𝑏 and hence, decay probability 𝑊𝑏 defined by Eq.(33.1) can be calculated.

Calculation of the free energy is based on the use of the liquid-drop description of individual fragments [eal87]. The
free energy of a partition 𝑏 can be splitted into several terms:

𝐹𝑏(𝑇𝑏, 𝑉 ) =
∑︁
𝑓

𝐹𝑓 (𝑇𝑏, 𝑉 ) + 𝐸𝐶(𝑉 ),

where 𝐹𝑓 (𝑇𝑏, 𝑉 ) is the average energy of an individual fragment including the volume

𝐹𝑉
𝑓 = [−𝐸0 − 𝑇 2

𝑏 /𝜖(𝐴𝑓 )]𝐴𝑓 ,

surface

𝐹𝑆𝑢𝑟
𝑓 = 𝛽0[(𝑇 2

𝑐 − 𝑇 2
𝑏 )/(𝑇 2

𝑐 + 𝑇 2
𝑏 )]5/4𝐴

2/3
𝑓 = 𝛽(𝑇𝑏)𝐴

2/3
𝑓 , (33.4)

symmetry

𝐹𝑆𝑖𝑚
𝑓 = 𝛾(𝐴𝑓 − 2𝑍𝑓 )2/𝐴𝑓 ,

Coulomb

𝐹𝐶
𝑓 =

3

5

𝑍2
𝑓𝑒

2

𝑟0𝐴
1/3
𝑓

[1 − (1 + 𝜅𝐶)−1/3]

and translational

𝐹 𝑡
𝑓 = −𝑇𝑏 ln (𝑔𝑓𝑉𝑓/𝜆

3
𝑇𝑏

) + 𝑇𝑏 ln (𝑁𝐴𝑓 ,𝑍𝑓
!)/𝑁𝐴𝑓 ,𝑍𝑓

terms and the last term

𝐸𝐶(𝑉 ) =
3

5

𝑍2𝑒2

𝑅

is the Coulomb energy of the uniformly charged sphere with charge 𝑍𝑒 and the radius𝑅 = (3𝑉/4𝜋)1/3 = 𝑟0𝐴
1/3(1+

𝜅𝐶)1/3, where 𝜅𝐶 = 2 [eal87].

Parameters 𝐸0 = 16 MeV, 𝛽0 = 18 MeV, 𝛾 = 25 MeV are the coefficients of the Bethe-Weizsacker mass formula
at 𝑇𝑏 = 0. 𝑔𝑓 = (2𝑆𝑓 + 1)(2𝐼𝑓 + 1) is a spin 𝑆𝑓 and isospin 𝐼𝑓 degeneracy factor for fragment ( fragments with
𝐴𝑓 > 1 are treated as the Boltzmann particles), 𝜆𝑇𝑏

= (2𝜋ℎ2/𝑚𝑁𝑇𝑏)
1/2 is the thermal wavelength, 𝑚𝑁 is the

nucleon mass, 𝑟0 = 1.17 fm, 𝑇𝑐 = 18 MeV is the critical temperature, which corresponds to the liquid-gas phase
transition. 𝜖(𝐴𝑓 ) = 𝜖0[1 + 3/(𝐴𝑓 − 1)] is the inverse level density of the mass 𝐴𝑓 fragment and 𝜖0 = 16 MeV is
considered as a variable model parameter, whose value depends on the fraction of energy transferred to the internal
degrees of freedom of fragments [eal87]. The free volume 𝑉𝑓 = 𝜅𝑉 = 𝜅 4

3𝜋𝑟
4
0𝐴 available to the translational motion

of fragment, where 𝜅 ≈ 1 and its dependence on the multiplicity of fragments was taken from [eal87]:

𝜅 =

[︂
1 +

1.44

𝑟0𝐴1/3
(𝑀1/3 − 1)

]︂3
− 1.

For 𝑀 = 1 𝜅 = 0.

The light fragments with𝐴𝑓 < 4, which have no excited states, are considered as elementary particles characterized by
the empirical masses 𝑀𝑓 , radii 𝑅𝑓 , binding energies 𝐵𝑓 , spin degeneracy factors 𝑔𝑓 of ground states. They contribute
to the translation free energy and Coulomb energy.

354 Chapter 33. Multifragmentation Model



Physics Reference Manual, Release 10.4

33.1.2 Direct simulation of the low multiplicity multifragment disintegration

At comparatively low excitation energy (temperature) system will disintegrate into a small number of fragments 𝑀 ≤
4 and number of channel is not huge. For such situation a direct (microcanonical) sorting of all decay channels can be
performed. Then, using Eq.(33.1), the average multiplicity value ⟨𝑀⟩ can be found. To check that we really have the
situation with the low excitation energy, the obtained value of ⟨𝑀⟩ is examined to obey the inequality ⟨𝑀⟩ ≤ 𝑀0,
where 𝑀0 = 3.3 and 𝑀0 = 2.6 for 𝐴 ∼ 100 and for 𝐴 ∼ 200, respectively [eal87]. If the discussed inequality is
fulfilled, then the set of channels under consideration is belived to be able for a correct description of the break up.
Then using calculated according Eq.(33.1) probabilities we can randomly select a specific channel with given values
of 𝐴𝑓 and 𝑍𝑓 .

33.1.3 Fragment multiplicity distribution

The individual fragment multiplicities 𝑁𝐴𝑓 ,𝑍𝑓
in the so-called macrocanonical ensemble [BBI+95] are distributed

according to the Poisson distribution:

𝑃 (𝑁𝐴𝑓 ,𝑍𝑓
) = exp (−𝜔𝐴𝑓 ,𝑍𝑓

)
𝜔
𝑁𝐴𝑓 ,𝑍𝑓

𝐴𝑓 ,𝑍𝑓

𝑁𝐴𝑓 ,𝑍𝑓
!

(33.5)

with mean value ⟨𝑁𝐴𝑓 ,𝑍𝑓
⟩ = 𝜔𝐴𝑓 ,𝑍𝑓

defined as

⟨𝑁𝐴𝑓 ,𝑍𝑓
⟩ = 𝑔𝑓𝐴

3/2
𝑓

𝑉𝑓
𝜆3𝑇𝑏

exp

[︂
1

𝑇𝑏
(𝐹𝑓 (𝑇𝑏, 𝑉 ) − 𝐹 𝑡

𝑓 (𝑇𝑏, 𝑉 ) − 𝜇𝐴𝑓 − 𝜈𝑍𝑓 )

]︂
, (33.6)

where 𝜇 and 𝜈 are chemical potentials. The chemical potential are found by substituting Eq.(33.6) into the system of
constraints: ∑︁

𝑓

⟨𝑁𝐴𝑓 ,𝑍𝑓
⟩𝐴𝑓 = 𝐴

and ∑︁
𝑓

⟨𝑁𝐴𝑓 ,𝑍𝑓
⟩𝑍𝑓 = 𝑍 (33.7)

and solving it by iteration.

33.1.4 Atomic number distribution of fragments

Fragment atomic numbers 𝐴𝑓 > 1 are also distributed according to the Poisson distribution [BBI+95] (see Eq.(33.5)
with mean value ⟨𝑁𝐴𝑓

⟩ defined as

⟨𝑁𝐴𝑓
⟩ = 𝐴

3/2
𝑓

𝑉𝑓
𝜆3𝑇𝑏

exp

[︂
1

𝑇𝑏
(𝐹𝑓 (𝑇𝑏, 𝑉 ) − 𝐹 𝑡

𝑓 (𝑇𝑓 , 𝑉 ) − 𝜇𝐴𝑓 − 𝜈⟨𝑍𝑓 ⟩)
]︂
,

where calculating the internal free energy 𝐹𝑓 (𝑇𝑏, 𝑉 ) − 𝐹 𝑡
𝑓 (𝑇𝑏, 𝑉 ) one has to substitute 𝑍𝑓 → ⟨𝑍𝑓 ⟩. The average

charge ⟨𝑍𝑓 ⟩ for fragment having atomic number 𝐴𝑓 is given by

⟨𝑍𝑓 (𝐴𝑓 )⟩ =
(4𝛾 + 𝜈)𝐴𝑓

8𝛾 + 2[1 − (1 + 𝜅)−1/3]𝐴
2/3
𝑓

.
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33.1.5 Charge distribution of fragments

At given mass of fragment 𝐴𝑓 > 1 the charge 𝑍𝑓 distribution of fragments are described by Gaussian

𝑃 (𝑍𝑓 (𝐴𝑓 )) ∼ exp

[︂
− (𝑍𝑓 (𝐴𝑓 ) − ⟨𝑍𝑓 (𝐴𝑓 )⟩)2

2(𝜎𝑍𝑓
(𝐴𝑓 ))2

]︂
with dispersion

𝜎𝑍𝑓 (𝐴𝑓 ) =

√︃
𝐴𝑓𝑇𝑏

8𝛾 + 2[1 − (1 + 𝜅)−1/3]𝐴
2/3
𝑓

≈

√︃
𝐴𝑓𝑇𝑏

8𝛾
.

and the average charge ⟨𝑍𝑓 (𝐴𝑓 )⟩ defined by Eq. (33.7).

33.1.6 Kinetic energy distribution of fragments

It is assumed [eal87] that at the instant of the nucleus break-up the kinetic energy of the fragment 𝑇 𝑓
𝑘𝑖𝑛 in the rest of

nucleus obeys the Boltzmann distribution at given temperature 𝑇𝑏:

𝑑𝑃 (𝑇 𝑓
𝑘𝑖𝑛)

𝑑𝑇 𝑓
𝑘𝑖𝑛

∼
√︁
𝑇 𝑓
𝑘𝑖𝑛 exp (−𝑇 𝑓

𝑘𝑖𝑛/𝑇𝑏).

Under assumption of thermodynamic equilibrium the fragment have isotropic velocities distribution in the rest frame
of nucleus. The total kinetic energy of fragments should be equal 3

2𝑀𝑇𝑏, where 𝑀 is fragment multiplicity, and the
total fragment momentum should be equal zero. These conditions are fullfilled by choosing properly the momenta of
two last fragments.

The initial conditions for the divergence of the fragment system are determined by random selection of fragment
coordinates distributed with equal probabilities over the break-up volume 𝑉𝑓 = 𝜅𝑉 . It can be a sphere or prolongated
ellipsoid. Then Newton’s equations of motion are solved for all fragments in the self-consistent time-dependent
Coulomb field [eal87]. Thus the asymptotic energies of fragments determined as result of this procedure differ from
the initial values by the Coulomb repulsion energy.

33.1.7 Calculation of the fragment excitation energies

The temparature 𝑇𝑏 determines the average excitation energy of each fragment:

𝑈𝑓 (𝑇𝑏) = 𝐸𝑓 (𝑇𝑏) − 𝐸𝑓 (0) =
𝑇 2
𝑏

𝜖0
𝐴𝑓 +

[︂
𝛽(𝑇𝑏) − 𝑇𝑏

𝑑𝛽(𝑇𝑏)

𝑑𝑇𝑏
− 𝛽0

]︂
𝐴

2/3
𝑓 ,

where 𝐸𝑓 (𝑇𝑏) is the average fragment energy at given temperature 𝑇𝑏 and 𝛽(𝑇𝑏) is defined in Eq.(33.4). There is no
excitation for fragment with 𝐴𝑓 < 4, for 4He excitation energy was taken as 𝑈4He = 4𝑇 2

𝑏 /𝜖𝑜.
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THIRTYFOUR

ABLA++ EVAPORATION/FISSION MODEL

34.1 Introduction

The ABLA++ evaporation model takes excited nucleus parameters, excitation energy, mass number, atomic number
and nucleus spin, as input. This model is a translation to C++ of the fortran code ABLA07 developed at GSI by Kelic
and collaborators [KAH08]. Both codes contain the same physics and input parameters [RodriguezSKHB+16].

34.2 Evaporation

These models calculate the probabilities for emitting 𝛾−rays, neutrons, light-charged particles, and intermediate-mass
fragments (IMFs) according to Weisskopf’s formalism [WE40]. For a more realistic description of the deexcitation,
the separation energies and the Coulomb barriers for charged particles are also considered according to the atomic
mass evaluation from 2003 [WAT03] and the Bass potential [Bas80], respectively.

The probabilities for emission of particle type 𝑗 are calculated using formula‘‘:

𝑊𝑗(𝑁,𝑍,𝐸) =
Γ𝑗(𝑁,𝑍,𝐸)∑︀
𝑘 Γ𝑘(𝑁,𝑍,𝐸)

, (34.1)

where Γ𝑗 is emission width for particle 𝑗, 𝑁 is neutron number, 𝑍 charge number and 𝐸 excitation energy. Possible
emitted particles are 𝛾, 𝑛, 𝑝, 𝑑, 𝑡, 3𝐻𝑒, 𝛼 and IMFs. Emission widths are calculated using the following formula:

Γ𝑗 =
1

2𝜋𝜌𝑐(𝐸)

4𝑚𝑗𝑅
2

~2
𝑇 2
𝑗 𝜌𝑗(𝐸 − 𝑆𝑗 −𝐵𝑗), (34.2)

where 𝜌𝑐(𝐸) and 𝜌𝑗(𝐸 − 𝑆𝑗 −𝐵𝑗) are the level densities of the compound nucleus and the exit channel, respectively.
𝐵𝑗 is the height of the Coulomb barrier, 𝑆𝑗 the separation energy,𝑅 is the radius and 𝑇𝑗 the temperature of the remnant
nucleus after emission and 𝑚𝑗 the mass of the emitted particle. For 𝛾 emission, see Ref. [KAH08]. De-excitation by
fission is also possible if the excitation energy is higher than the fission barrier height.

The summary of GEANT4 ABLA++ implementation is represented in Table 34.1.
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Table 34.1: ABLA++ (located in the GEANT4 directory
source/processes/hadronic/models/abla) feature summary.

Requirements
External data file G4ABLA3.1 available at GEANT4 site
Environment variable G4ABLADATA
for external data
Usage
Physics list No default physics list,

see Section How to use ABLA++.
Interfaces
G4InclAblaCascadeInterface h-A
G4InclAblaLightIonInterface A-A
Supported input Excited nuclei
Output particles 𝛾, 𝑛, 𝑝, 𝑑, 𝑡, 3𝐻𝑒, 𝛼

and IMFs (2 < 𝑍 < 6)
fission products
residual nuclei
multifragmentation products

Features evaporation of 𝛾, 𝑛, 𝑝, 𝑑, 𝑡, 3𝐻𝑒, 𝛼 and IMFs
fission and multifragmentation

Misc. 5 classes, ∼ 12k lines
0.9 < speed C++/F77 < 1.1

References Key reference: [JdJC+98], see also [BGdJ+98]

34.3 Level densities

The nuclear level density is calculated according to the Fermi gas model as a funtion of the excitation energy 𝐸* and
the angular momentum 𝐽 , and is expressed as:

𝜌(𝐸*, 𝐽) =
𝐽 + 1/2√

2𝜋𝜎3
𝑒−

𝐽(𝐽+1)

2𝜎2

√
𝜋

12

𝑒𝑆̃︀𝑎1/4𝐸*5/4
(34.3)

where 𝜎2 is the spin cut-off factor given by 𝜎2 = ℑ𝑇
~2 with ℑ as the moment of inertia of the nucleus and 𝑇 the nuclear

temperture, 𝐸* is the excitacion energy of the system, 𝑆 is the entropy and ̃︀𝑎 is the level-density parameter in units of
MeV −1. Generally, this last parameter can be written as:

̃︀𝑎 = 𝛼𝑣𝐴+ 𝛼𝑠𝐵𝑠 ·𝐴2/3 + 𝛼𝑘𝐵𝑘𝐴
1/3 (34.4)

where A is the mass of the nucleus and 𝛼𝑣 , 𝛼𝑠 and 𝛼𝑘 are the coefficients that correspond to the volume, surface
and curvature components of the single-particle level densities, respectively. The values of these coefficients were
calculated by Ignatyuk [Ign00] (𝛼𝑣=0.095, 𝛼𝑠=0.073, and 𝛼𝑘=0 in units of MeV −1) and are the most-frequently used
in model calculations. In the equation, 𝐵𝑠 represents the ratio between the surface of the deformed nucleus and a
spherical nucleus while 𝐵𝑘 corresponds to the ratio between the integrated curvature of the deformed nucleus and a
spherical nucleus.

In order to account for the role of collective excitations in the decay of excited compound nuclei, the level density of
Eq. (34.3) is corrected using the vibrational and rotational enhancement factors according to:

𝜌(𝐸, 𝐽) = 𝐾𝑣𝑖𝑏𝐾𝑟𝑜𝑡𝜌(𝐸, 𝐽)𝑖𝑛𝑡 (34.5)

where 𝜌(𝐸, 𝐽)𝑖𝑛𝑡 is given by Eq. (34.3), 𝐾𝑣𝑖𝑏 represents the vibrational enhancement factor and 𝐾𝑟𝑜𝑡 corresponds to
the rotational factor. Both are calculated according to Ref. [JdJC+98].
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34.4 Fission

The fission decay width is described by the Bohr-Wheeler transition-state model [BW39] following the formulation
given by Moretto [Mor75]:

Γ𝐵𝑊
𝑓 =

𝑇

2𝜋

𝜌𝑠𝑝(𝐸 −𝐵𝑓 , 𝐽)

𝜌𝑔𝑠(𝐸, 𝐽)
;

where 𝜌𝑠𝑝(𝐸 − 𝐵𝑓 , 𝐽) and 𝜌𝑔𝑠(𝐸, 𝐽) are the level densities at the saddle-point and ground-state configurations,
respectively, and 𝐵𝑓 is the fission-barrier height obtained from the finite-range liquid-drop model of Sierk [Sie86]
taking into account the influence of angular momentum and considering the ground-state shell effects [MNMS95].

The diffussion process above the fission barrier is described by the Fokker-Planck equation, where the quasi- stationary
solution of this equation was introduced by Kramers [Kra40] and provides a reduction of the fission decay width due
to dissipation:

Γ𝐾
𝑓 =

⎡⎣√︃1 +

(︂
𝛽

2𝜔0

)︂2

− 𝛽

2𝜔0

⎤⎦Γ𝐵𝑊
𝑓 .

Here 𝛽 is the reduced dissipation coefficient and 𝜔0 is the frequency of the harmonic oscillator describing the inverted
potential at the fission barrier, calculated according to the liquid-drop model. This equation provides the asymptotic
value of the fission decay width.

The analytical approximation to the solution of the one-dimensional Fokker-Planck equation for the time-dependent
fission-decay width was developed by Jurado and collaborators in Refs. [JSB03][JSS+05], using a Gaussian dis-
tribution centred at the spherical shape as initial condition. The mean values and the widths of the initial Gaussian
distributions in space and momentum are given by the entrance channel. In this approximation, the time-dependent
fission-decay width is defined as:

Γ𝑓 (𝑡) =
𝑊𝑛(𝑥 = 𝑥𝑏; 𝑡, 𝛽)

𝑊𝑛(𝑥 = 𝑥𝑏; 𝑡→ ∞, 𝛽)
Γ𝐾
𝑓 ;

where W(x; t, 𝛽) is the normalized probability distribution at the saddle-point deformation 𝑥𝑏. The saddle-point
deformations are calculated according to Ref. [HM88].

The description of the properties of the fission fragments is based on a semi-empirical model developed in Refs.
[BGdJ+98][KAB+02]. The fission channels are explained by the macroscopic and microscopic properties of the
potential-energy landscape that is determined by the characteristics of the fissioning nucleus at the saddle point. In
particular, the stiffness of the macroscopic potential along the mass-asymmetry degree of freedom is obtained from
the systematics of the width of mass distributions measured in Ref. [RIO97]. The neutron-to-proton ratio (N/Z) of
the fission fragments is assumed to be given by the unchanged-charge distribution (UCD). This (N/Z) ratio is modified
by the charge polarization effect calculated in terms of the liquid-drop model (LDM) by assuming a two touching
spheres configuration at the scission point, and by the evaporation of particles during the descent from saddle to
scission [KAH08]. Finally, at the scission point, the two fission fragments are characterized by their atomic numbers
𝑍1,2, mass numbers 𝐴1,2, kinetic energies 𝐸1,2

𝑘𝑖𝑛, and excitation energies 𝐸1,2
𝑒𝑥𝑐. After the formation of the two fission

fragments, their corresponding deexcitation chains are followed until their excitation energies fall below the lowest
particle-emission threshold.

According to the statistical model, the widths of the mass and atomic-number distributions of the fission fragments
(𝜎𝐴 and 𝜎𝑍 respectively) are related to the temperature at the saddle point, following the equations:

𝜎2
𝐴 =

𝐴2
𝑓𝑖𝑠𝑠𝑇𝑠𝑎𝑑

16𝑑2𝑉/𝑑𝜈2
𝑎𝑛𝑑 𝜎2

𝑍 =
𝑍2
𝑓𝑖𝑠𝑠𝑇𝑠𝑎𝑑

16𝑑2𝑉/𝑑𝜈2
(34.6)

where 𝑑2𝑉/𝑑𝜈2 is the second derivative of the potential with respect to the mass-asymmetry degree of freedom at the
saddle point 𝜈 = (4/𝐴𝑓𝑖𝑠𝑠)/(𝑀 − 𝐴𝑓𝑖𝑠𝑠/2). 𝐴𝑓𝑖𝑠𝑠 and 𝑍𝑓𝑖𝑠𝑠 correspond to the mass and atomic numbers of the
fissioning nucleus, respectively, and M represents the mass number of the corresponding fragment.
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The kinetic energies of the fission fragments are calculated according to the semi-statistical scission point model of
Wilkins and collaborators [WSC76]. The main contribution to the total kinetic energies released in the fission process
comes from the Coulomb repulsion of the two fission fragments at the scission point and, therefore, this total kinetic
energy is given by:

𝑇𝐾𝐸 ∼ 𝑍1𝑍2

𝐷
(34.7)

where 𝑍1 and 𝑍2 refer to the atomic number of the two fission fragments, and 𝐷 is the distance between the two
uniformly-charged spheroids representing the fission fragments. This distance is parametrized as:

𝐷 = 𝑟0𝐴
*1/3
1

(︂
1 +

2𝛽1
3

)︂
+ 𝑟0𝐴

*1/3
2

(︂
1 +

2𝛽2
3

)︂
+ 𝑑 (34.8)

where 𝐴*
1 and 𝐴*

2 refer to the mass number of the two fission fragments at the scission point, 𝛽1 and 𝛽2 are their
quadrupole deformations at the scission point, 𝑟0 is the fermi radius, and 𝑑 is the distance between the tips of the two
fission fragments. Here, we take 𝑑 = 2 fm.

Fig. 34.1: ABLA calculations performed with the fortran version (ABLA07), the new one in C++ (ABLA++) and the
previous version (ABLAv3p) are compared with the atomic-number distribution of fission and evaporation residues
produced in the reactions p + 238U at 1A GeV.
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34.5 Multifragmentation

If the excitation energy acquired during the first, collision, stage is high enough, the increase of volume has a dramatic
consequence: The nucleus enters the spinodal region [CCR04] characterized by negative incompressibility. In this re-
gion, an increase in the system volume due to expansion is connected with the increase in pressure, and, consequently,
any local fluctuation in density is strongly amplified leading to a mixed phase consisting of droplets represented by a
small amount of light nuclei at normal nuclear density, and the nuclear gas represented by individual nucleons. This
process is often called “break-up”. The fragments formed in this process undergo deexcitation process and cool down.
What is finally experimentally observed are the cold fragments, normally called IMFs. The entire multifragmentation
process is scientifically very interesting for its relation to the equation-of-state of nuclear matter, in particular to the
liquid-gas phase transition.

The starting point of the multifragmentation stage in ABLA++ is a hot nuclear system –so-called “spectator”, leftover
of the initial collision stage. We assume that, if the excitation energy per nucleon of the spectator exceeds a limiting
value [KAH08], the system undergoes the break-up stage; otherwise we assume that it will directly de-excite through
sequential evaporation and/or fission.

About the limiting excitation energy per nucleon, two options are possible in ABLA++. The default option is a mass-
dependent value of the limiting excitation energy, deduced from the mass dependence of the temperature in the plateau
of the caloric curve as pointed out by Natowitz in [NWH+02]. Another possible option is to assume that the limiting
excitation energy per nucleon is constant for all nuclei; its value is fixed to 5.5 MeV.

The comparison of the new version of ABLA07 in C++ with the previous versions is shown in Fig. 34.1 for the reaction
p + 238U at 1A GeV. The calculations are also compared with the experimental data obtained at GSI [RAB+06]. This
benchmark demonstrates that the new version ABLA++ reproduces the results obtained with the fortran code and
confirms also the improvement with respect to the old version ABLAv3p.

34.6 External data file required

ABLA++ needs specific data files. These files contain ABLA++ shell corrections and nuclear masses. To enable this
data set, the environment variable G4ABLADATA needs to be set, and the relevant data should be installed on your
machine. You can download them from the GEANT4 web site or you can have CMake download them for you during
installation. For GEANT4 10.4 we use the G4ABLA3.1 data files.

34.7 How to use ABLA++

None of the stock physics lists use the ABLA++ model by default. It should also be understood that ABLA++ is a
nuclear de-excitation model and must be used as a secondary reaction stage; the first, dynamical reaction stage must
be simulated using some other model, typically an intranuclear-cascade (INC) model. The coupling of the ABLA++ to
the INCL++ model (Chapter INCL++: the Liège Intranuclear Cascade Model) has been somewhat tested and seems
to work, but no extensive benchmarking has been realized at the time of writing. Coupling to the Binary-Cascade
model (Chapter The Binary Cascade Model) should in principle be possible, but has never been tested. The technique
to realize the coupling is described in the Application Developer Guide.
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CHAPTER

THIRTYFIVE

QUANTUM MOLECULAR DYNAMICS FOR HEAVY IONS

QMD is the quantum extension of the classical molecular dynamics model and is widely used to analyze various
aspects of heavy ion reactions, especially for many-body processes, and in particular the formation of complex frag-
ments. In the previous section, we mentioned several similar and dissimilar points between Binary Cascade and QMD.
There are three major differences between them:

1. The definition of a participant particle,

2. The potential term in the Hamiltonian, and

3. Participant-participant interactions.

At first, we will explain how they are each treated in QMD. The entire nucleons in the target and projectile nucleus are
considered as participant particles in the QMD model. Therefore each nucleon has its own wave function, however the
total wave function of a system is still assumed as the direct product of them. The potential terms of the Hamiltonian
in QMD are calculated from the entire relation of particles in the system, in other words, it can be regarded as self-
generating from the system configuration. On the contrary to Binary Cascade which tracks the participant particles
sequentially, all particles in the system are tracked simultaneously in QMD. Along with the time evolution of the sys-
tem, its potential is also dynamically changed. As there is no criterion between participant particle and others in QMD,
participant-participant scatterings are naturally included. Therefore QMD accomplishes more detailed treatments of
the above three points, however with a cost of computing performance.

35.1 Equations of Motion

The basic assumption of QMD is that each nucleon state is represented by a Gaussian wave function of width 𝐿,

𝜙𝑖(r) ≡ 1

(2𝜋𝐿)3/4
exp

(︂
− (𝑟 − 𝑟𝑖)

2

4𝐿
+
𝑖

~
𝑟 · 𝑝𝑖

)︂
where 𝑟𝑖 and 𝑝𝑖 represent the center values of position and momentum of the 𝑖th particle. The total wave function is
assumed to be a direct product of them,

Ψ(r1, r2, . . . , r𝑁 ) ≡
∏︁
𝑖

𝜙𝑖(𝑟𝑖) .

Equations of the motion of particle derived on the basis of the time dependent variation principle as

�̇�𝑖 =
𝜕𝐻

𝜕𝑝𝑖
, �̇�𝑖 = −𝜕𝐻

𝜕𝑟𝑖

where 𝐻 is the Hamiltonian which consists particle energy including mass energy and the energy of the two-body
interaction.
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However, further details in the prescription of QMD differ from author to author and JAERI QMD (JQMD)
[eal95][eal99] is selected as a basis for our model. In this model, the Hamiltonian is

𝐻 =
∑︁
𝑖

√︁
𝑚2

𝑖 + 𝑝2𝑖 + 𝑉

A Skyrme type interaction, a Coulomb interaction, and a symmetry term are included in the effective Potential (𝑉 ).
The relativistic form of the energy expression is introduced in the Hamiltonian. The interaction term is a function of
the squared spatial distance:

𝑅𝑖𝑗 = (𝑅𝑖 −𝑅𝑗)
2

This is not a Lorentz scalar. In Relativistic QMD (RQMD) [SSG89], they are replaced by the squared transverse
four-dimensional distance,

−𝑞2𝑇𝑖𝑗 = −𝑞2𝑖𝑗 +
(𝑞𝑖𝑗 · 𝑝𝑖𝑗)2

𝑝2𝑖𝑗

where 𝑞𝑖𝑗 is the four-dimensional distance and 𝑝𝑖𝑗 is the sum of the four momentum. In JQMD they change the
argument by the squared distance in center of mass system of the two particles,

�̃� = 𝑅2
𝑖𝑗 + 𝛾2𝑖𝑗(𝑅𝑖𝑗 · 𝛽𝑖𝑗)2

with

𝛽𝑖𝑗 =
𝑝𝑖 + 𝑝𝑗
𝐸𝑖 + 𝐸𝑗

, 𝛾𝑖𝑗 =
1√︀

1 − 𝛽𝑖𝑗

As a result of this, the interaction term in also depends on momentum.

Recently R-JQMD, the Lorentz covariant version of JQMD, has been proposed [MNMS09]. The covariant version of
Hamiltonian is

𝐻𝐶 =
∑︁
𝑖

√︁
𝑝2𝑖 +𝑚2

𝑖 + 2𝑚𝑖𝑉𝑖

where 𝑉𝑖 is the effective potential felt by the 𝑖th particle.

With on-mass-shell constraints and a simple form of the “time fixations” constraint, the entire particle has the same
time coordinate. They justified the latter assumption with the following argument “In high-energy reactions, two-
body collisions are dominant; the purpose of the Lorentz-covariant formalism is only to describe relatively low energy
phenomena between particles in a fast-moving medium” [MNMS09].

From this assumption, they get following equation of motion together with a big improvement in CPU performance.

�̇�𝑖 =
𝑝𝑖

2𝑝0𝑖
+
∑︁
𝑗

2𝑚𝑗

2𝑝0𝑗

𝑉𝑗
𝜕𝑝𝑖

=
𝜕

𝜕𝑝𝑖

∑︁
𝑗

√︁
𝑝2𝑗 +𝑚2

𝑗 + 2𝑚𝑗𝑉

�̇�𝑖 = −
∑︁
𝑗

2𝑚𝑗

2𝑝0𝑗

𝑉𝑗
𝜕𝑟𝑖

=
𝜕

𝜕𝑟𝑖

∑︁
𝑗

√︁
𝑝2𝑗 +𝑚2

𝑗 + 2𝑚𝑗𝑉

The 𝑖th particle has an effective mass of

𝑚*
𝑖 =

√︁
𝑚2

𝑖 + 2𝑚𝑖𝑉𝑖 .

We follow their prescription and also use the same parameter values, such as the width of the Gaussian 𝐿 = 2.0 fm2

and so on.

364 Chapter 35. Quantum Molecular Dynamics for Heavy Ions



Physics Reference Manual, Release 10.4

35.2 Ion-ion Implementation

For the case of two body collisions and resonance decay, we used the same codes which the Binary Cascade uses
in GEANT4. However for the relativistic covariant kinematic case, the effective mass of 𝑖th particle depends on the
one-particle effective potential, 𝑉𝑖, which also depends on the momentum of the entire particle system. Therefore, in
R-JQMD, all the effective masses are calculated iteratively for keeping energy conservation of the whole system. We
track their treatment for this.

As already mentioned, the Binary cascade model creates detailed 3𝑟+3𝑝 dimensional nucleus at the beginning of each
reaction. However, we could not use them in our QMD code, because they are not stable enough in time evolution.
Also, a real ground state as an energy minimum state of the nucleus is not available in the framework of QMD,
because it does not have fermionic properties. However, a reasonably stable “ground state” nucleus is required for
the initial phase space distribution of nucleons in the QMD calculation. JQMD succeeded to create such a “ground
state” nucleus. We also follow their prescription of generating the ground state nucleus. And “ground state” nuclei for
target and projectile will be Lorentz-boosted (construct) to the center-of-mass system between them. By this Lorentz
transformation, additional instabilities are introduced into both nuclei in the case of the non-covariant version.

The time evolution of the QMD system will be calculated until a certain time, typically 100 fm/𝑐. The 𝛿𝑇 of the
evolution is 1 fm/𝑐. The user can modify both values from the Physics List of GEANT4. After the termination of the
time evolution, cluster identification is carried out in the phase space distribution of nucleons in the system. Each
identified cluster is considered as a fragmented nucleus from the reaction and it usually has more energy than the
ground state. Therefore, excitation energy of the nucleus is calculated and then the nucleus is passed on to other
GEANT4 models like Binary Cascade. However, unlike Binary Cascade which passes them to Precompound model
and Excitation models by calling them inside of the model, the QMD model uses Excitation models directly. There
are multiple choices of excitation model and one of them is the GEM model [Fur00] which JQMD and RJQMD use.
The default excitation model is currently this GEM model.

Figure [fig:qmd-time] shows an example of time evolution of the reaction of 290 MeV/n 56Fe ions bombarding a 208Pb
target. Because of the small Lorentz factor (~1.3), the Lorentz contractions of both nuclei are not seen clearly.

35.3 Cross Sections

Nucleus-Nucleus (NN) cross section is not a fundamental component of either QMD or Binary Light Ions Cascade
model. However without the cross section, no meaningful simulation beyond the study of the NN reaction itself can
be done. In other words, GEANT4 needs the cross section to decide where an NN reaction will happen in simulation
geometry.

Many cross section formulae for NN collisions are included in GEANT4, such as Tripathi[TCW97] and Tripathi Light
System[TCW99], Shen[SWF+89], Kox[eal87] and Sihver[STS+93]. These are empirical and parameterized formulae
with theoretical insights and give total reaction cross section of wide variety of combination of projectile and target
nucleus in fast. These cross sections are also used in the sampling of impact parameter in the QMD model.
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Fig. 35.1: Time evolution of reaction of 290 MeV/n Fe on Pb in position space. Red and Blue circle represents neutron
and proton respectively. Full scale of each panel is 50 fm.
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THIRTYSIX

ABRASION-ABLATION MODEL

36.1 Introduction

The abrasion model is a simplified macroscopic model for nuclear-nuclear interactions based largely on geometric
arguments rather than detailed consideration of nucleon-nucleon collisions. As such the speed of the simulation is
found to be faster than models such as G4BinaryCascade, but at the cost of accuracy. The version of the model im-
plemented is interpreted from the so-called abrasion-ablation model described by Wilson et al. [WTC+95][TWT+93]
together with an algorithm from Cucinotta to approximate the secondary nucleon energy spectrum [Cuc94]. By de-
fault, instead of performing an ablation process to simulate the de-excitation of the nuclear pre-fragments, the GEANT4
implementation of the abrasion model makes use of existing and more detailed nuclear de-excitation models within
GEANT4 (G4Evaporation, G4FermiBreakup, G4StatMF) to perform this function (see De-excitation of the projectile
and target nuclear pre-fragments by standard de-excitation physics). However, in some cases cross sections for the
production of fragments with large ∆A from the pre-abrasion nucleus are more accurately determined using a GEANT4
implementation of the ablation model (see De-excitation of the projectile and target nuclear pre-fragments by nuclear
ablation).

The abrasion interaction is the initial fast process in which the overlap region between the projectile and target nuclei is
sheered-off (see Fig. 36.1) The spectator nucleons in the projectile are assumed to undergo little change in momentum,
and likewise for the spectators in the target nucleus. Some of the nucleons in the overlap region do suffer a change in
momentum, and are assumed to be part of the original nucleus which then undergoes de-excitation.

Less central impacts give rise to an overlap region in which the nucleons can suffer significant momentum change, and
zones in the projectile and target outside of the overlap where the nucleons are considered as spectators to the initial
energetic interaction.

The initial description of the interaction must, however, take into consideration changes in the direction of the projectile
and target nuclei due to Coulomb effects, which can then modify the distance of closest approach compared with the
initial impact parameter. Such effects can be important for low-energy collisions.

36.2 Initial nuclear dynamics and impact parameter

For low-energy collisions, we must consider the deflection of the nuclei as a result of the Coulomb force (see Fig.
36.2). Since the dynamics are non-relativistic, the motion is governed by the conservation of energy equation:

𝐸𝑡𝑜𝑡 =
1

2
𝜇�̇�2 +

𝑙2

2𝜇𝑟2
+
𝑍𝑃𝑍𝑇 𝑒

2

𝑟
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where:

𝐸𝑡𝑜𝑡 = total energy in the centre of mass frame;
𝑟, �̇� = distance between nuclei, and rate of change of distance;
𝑙 = angular momentum;
𝜇 = reduced mass of system i.e.𝑚1𝑚2/(𝑚1 +𝑚2);

𝑒 = electric charge (units dependent upon the units for 𝐸𝑡𝑜𝑡 and 𝑟;
𝑍𝑃 , 𝑍𝑇 = charge numbers for the projectile and target nuclei.

The angular momentum is based on the impact parameter between the nuclei when their separation is large, i.e.

𝐸𝑡𝑜𝑡 =
1

2

𝑙2

𝜇𝑏2
⇒ 𝑙2 = 2𝐸𝑡𝑜𝑡𝜇𝑏

2

At the point of closest approach, �̇� = 0, therefore:

𝐸𝑡𝑜𝑡 =
𝐸𝑡𝑜𝑡𝑏

2

𝑟2
+
𝑍𝑃𝑍𝑇 𝑒

2

𝑟

𝑟2 = 𝑏2 +
𝑍𝑃𝑍𝑇 𝑒

2

𝐸𝑡𝑜𝑡
𝑟

Rearranging this equation results in the expression:

𝑏2 = 𝑟(𝑟 − 𝑟𝑚)

where:

𝑟𝑚 =
𝑍𝑃𝑍𝑇 𝑒

2

𝐸𝑡𝑜𝑡

In the implementation of the abrasion process in GEANT4, the square of the far-field impact parameter, 𝑏, is sampled
uniformly subject to the distance of closest approach, 𝑟, being no greater than 𝑟𝑃 + 𝑟𝑇 (the sum of the projectile and
target nuclear radii).

36.3 Abrasion process

In the abrasion process, as implemented by Wilson et al [WTC+95] it is assumed that the nuclear density for the
projectile is constant up to the radius of the projectile (𝑟𝑃 ) and zero outside. This is also assumed to be the case for
the target nucleus. The amount of nuclear material abraded from the projectile is given by the expression:

∆𝑎𝑏𝑟 = 𝐹𝐴𝑃

[︂
1 − exp

(︂
−𝐶𝑇

𝜆

)︂]︂
where F is the fraction of the projectile in the interaction zone, 𝜆 is the nuclear mean-free-path, assumed to be:

𝜆 =
16.6

𝐸0.26

𝐸 is the energy of the projectile in MeV/nucleon and 𝐶𝑇 is the chord-length at the position in the target nucleus for
which the interaction probability is maximum. For cases where the radius of the target nucleus is greater than that of
the projectile (i.e. 𝑟𝑇 > 𝑟𝑃 ):

𝐶𝑇 =

{︂
2
√︀
𝑟2𝑇 − 𝑥2 : 𝑥 > 0

2
√︀
𝑟2𝑇 − 𝑟2 : 𝑥 ≤ 0
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where:

𝑥 =
𝑟2𝑃 + 𝑟2 − 𝑟2𝑇

2𝑟

In the event that 𝑟𝑃 > 𝑟𝑇 then 𝐶𝑇 is:

𝐶𝑇 =

{︂
2
√︀
𝑟2𝑇 − 𝑥2 : 𝑥 > 0
2𝑟𝑇 : 𝑥 ≤ 0

where:

𝑥 =
𝑟2𝑇 + 𝑟2 − 𝑟2𝑃

2𝑟

The projectile and target nuclear radii are given by the expression:

𝑟𝑃 ≈ 1.29
√︁
𝑟2𝑅𝑀𝑆,𝑃 − 0.842

𝑟𝑇 ≈ 1.29
√︁
𝑟2𝑅𝑀𝑆,𝑇 − 0.842

The excitation energy of the nuclear fragment formed by the spectators in the projectile is assumed to be determined
by the excess surface area, given by:

∆𝑆 = 4𝜋𝑟2𝑃

[︁
1 + 𝑃 − (1 − 𝐹 )

2/3
]︁

where the functions 𝑃 and 𝐹 are given in section [PandF]. Wilson et al equate this surface area to the excitation to:

𝐸𝑆 = 0.95∆𝑆

if the collision is peripheral and there is no significant distortion of the nucleus, or

𝐸𝑆 = 0.95
{︀

1 + 5𝐹 + Ω𝐹 3
}︀

∆𝑆

Ω =

⎧⎨⎩ 0 : 𝐴𝑃 > 16
1500 : 𝐴𝑃 < 12

1500 − 320(𝐴𝑃 − 12) : 12 ≤ 𝐴𝑃 ≤ 16

if the impact separation is such that 𝑟 ≪ 𝑟𝑃 +𝑟𝑇 . 𝐸𝑆 is in MeV provided ∆𝑆 is in fm2.

For the abraded region, Wilson et al assume that fragments with a nucleon number of five are unbounded, 90%
of fragments with a nucleon number of eight are unbound, and 50% of fragments with a nucleon number of nine
are unbound. This was not implemented within the GEANT4 version of the abrasion model, and disintegration of
the pre-fragment was only simulated by the subsequent de-excitation physics models in the G4DeexcitationHandler
(evaporation, etc. or G4WilsonAblationModel) since the yields of lighter fragments were already underestimated
compared with experiment.

In addition to energy as a result of the distortion of the fragment, some energy is assumed to be gained from transfer
of kinetic energy across the boundaries of the nuclei. This is approximated to the average energy transferred to a
nucleon per unit intersection pathlength (assumed to be 13 MeV/fm) and the longest chord-length, 𝐶𝑙, and for half of
the nucleon-nucleon collisions it is assumed that the excitation energy is:

𝐸*
𝑋 =

{︂
13 ·

[︀
1 + 𝐶𝑡−1.5

3

]︀
𝐶𝑙 : 𝐶𝑡 > 1.5 fm

13 · 𝐶𝑙 : 𝐶𝑡 ≤ 1.5 fm

where:

𝐶𝑙 =

{︂
2
√︀
𝑟2𝑃 + 2𝑟𝑟𝑇 − 𝑟2 − 𝑟2𝑇 𝑟 > 𝑟𝑇

2𝑟𝑃 𝑟 ≤ 𝑟𝑇
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𝐶𝑡 = 2

√︃
𝑟2𝑃 −

(𝑟2𝑃 + 𝑟2 − 𝑟2𝑇 )
2

4𝑟2

For the remaining events, the projectile energy is assumed to be unchanged. Wilson et al assume that the energy
required to remove a nucleon is 10 MeV, therefore the number of nucleons removed from the projectile by ablation is:

∆𝑎𝑏𝑙 =
𝐸𝑆 + 𝐸𝑋

10
+ ∆𝑠𝑝𝑐

where ∆𝑠𝑝𝑐 is the number of loosely-bound spectators in the interaction region, given by:

∆𝑠𝑝𝑐 = 𝐴𝑃𝐹 exp

(︂
−𝐶𝑇

𝜆

)︂
Wilson et al appear to assume that for half of the events the excitation energy is transferred into one of the nuclei
(projectile or target), otherwise the energy is transferred in to the other (target or projectile respectively).

The abrasion process is assumed to occur without preference for the nucleon type, i.e. the probability of a proton being
abraded from the projectile is proportional to the fraction of protons in the original projectile, therefore:

∆𝑍𝑎𝑏𝑟 = ∆𝑎𝑏𝑟
𝑍𝑃

𝐴𝑃

In order to calculate the charge distribution of the final fragment, Wilson et al assume that the products of the inter-
action lie near to nuclear stability and therefore can be sampled according to the Rudstam equation (see De-excitation
of the projectile and target nuclear pre-fragments by nuclear ablation). The other obvious condition is that the total
charge must remain unchanged.

36.4 Abraded nucleon spectrum

Cucinotta has examined different formulae to represent the secondary protons spectrum from heavy ion collisions
[Cuc94]. One of the models (which has been implemented to define the final state of the abrasion process) represents
the momentum distribution of the secondaries as:

𝜓(𝑝) ∝
3∑︁

𝑖=1

𝐶𝑖 exp

(︂
− 𝑝2

2𝑝2𝑖

)︂
+ 𝑑0

𝛾𝑝

sinh (𝛾𝑝)

where:

𝜓(𝑝) = number of secondary protons with momentum 𝑝 per unit of momentum phase space[𝑐3/MeV3];

𝑝 = magnitude of the proton momentum in the rest frame of the nucleus from which the particle is projected [MeV/c];
𝐶1, 𝐶2, 𝐶3 = 1.0, 0.03, and 0.0002;

𝑝1, 𝑝2, 𝑝3 =
√︀

2/5,
√︀

6/5𝑝𝐹 , 500[MeV/𝑐]
𝑝𝐹 = Momentum of nucleons in the nuclei at the Fermi surface [MeV/𝑐]
𝑑0 = 0.1

1

𝛾
= 90[MeV/𝑐];

G4WilsonAbrasionModel approximates the momentum distribution for the neutrons to that of the protons, and as
mentioned above, the nucleon type sampled is proportional to the fraction of protons or neutrons in the original
nucleus.

The angular distribution of the abraded nucleons is assumed to be isotropic in the frame of reference of the nucleus,
and therefore those particles from the projectile are Lorentz-boosted according to the initial projectile momentum.
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36.5 De-excitation of the projectile and target nuclear pre-fragments
by standard GEANT4 de-excitation physics

Unless specified otherwise, G4WilsonAbrasionModel will instantiate the following de-excitation models to treat sub-
sequent particle emission of the excited nuclear pre-fragments (from both the projectile and the target):

1. G4Evaporation, which will perform nuclear evaporation of (𝛼-particles, 3He, 3H, 2H, protons and neutrons, in
competition with photo-evaporation and nuclear fission (if the nucleus has sufficiently high A).

2. G4FermiBreakUp, for nuclei with 𝐴 ≤ 12 and 𝑍 ≤ 6.

3. G4StatMF, for multi-fragmentation of the nucleus (minimum energy for this process set to 5 MeV).

As an alternative to using this de-excitation scheme, the user may provide to the G4WilsonAbrasionModel a pointer
to her own de-excitation handler, or invoke instantiation of the ablation model (G4WilsonAblationModel).

36.6 De-excitation of the projectile and target nuclear pre-fragments
by nuclear ablation

A nuclear ablation model, based largely on the description provided by Wilson et al [WTC+95], has been developed to
provide a better approximation for the final nuclear fragment from an abrasion interaction. The algorithm implemented
in G4WilsonAblationModel uses the same approach for selecting the final-state nucleus as NUCFRG2 and determining
the particles evaporated from the pre-fragment in order to achieve that state. However, use is also made of classes in
GEANT4’s evaporation physics to determine the energies of the nuclear fragments produced.

The number of nucleons ablated from the nuclear pre-fragment (whether as nucleons or light nuclear fragments) is
determined based on the average binding energy, assumed by Wilson et al to be 10 MeV, i.e.:

𝐴𝑎𝑏𝑙 =

{︃
Int
(︁

𝐸𝑥

10MeV

)︁
: 𝐴𝑃𝐹 > Int

(︁
𝐸𝑥

10MeV

)︁
𝐴𝑃𝐹 : otherwise

Obviously, the nucleon number of the final fragment, 𝐴𝐹 , is then determined by the number of remaining nucleons.
The proton number of the final nuclear fragment (𝑍𝐹 ) is sampled stochastically using the Rudstam equation:

𝜎(𝐴𝐹 , 𝑍𝐹 ) ∝ exp
(︁
−𝑅

⃒⃒
𝑍𝐹 − 𝑆𝐴𝐹 − 𝑇𝐴2

𝐹

⃒⃒3/2)︁
Here 𝑅 = 11.8/𝐴𝐹 0.45, 𝑆 = 0.486, and 𝑇 = 3.8 · 10−4. Once 𝑍𝐹 and 𝐴𝐹 have been calculated, the species of the
ablated (evaporated) particles are determined again using Wilson’s algorithm. The number of 𝛼-particles is determined
first, on the basis that these have the greatest binding energy:

𝑁𝛼 =

{︂
Int
(︀
𝑍𝑎𝑏𝑙

2

)︀
: Int

(︀
𝑍𝑎𝑏𝑙

2

)︀
< Int

(︀
𝐴𝑎𝑏𝑙

4

)︀
Int
(︀
𝐴𝑎𝑏𝑙

4

)︀
: Int

(︀
𝑍𝑎𝑏𝑙

2

)︀
≥ Int

(︀
𝐴𝑎𝑏𝑙

4

)︀
Calculation of the other ablated nuclear/nucleon species is determined in a similar fashion in order of decreasing
binding energy per nucleon of the ablated fragment, and subject to conservation of charge and nucleon number.

Once the ablated particle species are determined, use is made of the GEANT4 evaporation classes to sample the
order in which the particles are ejected (from G4AlphaEvaporationProbability, G4He3EvaporationProbability,
G4TritonEvaporationProbability, G4DeuteronEvaporationProbability, G4ProtonEvaporationProbability and
G4NeutronEvaporationProbability) and the energies and momenta of the evaporated particle and the resid-
ual nucleus at each two-body decay (using G4AlphaEvaporationChannel, G4He3EvaporationChannel,
G4TritonEvaporationChannel, G4DeuteronEvaporationChannel, G4ProtonEvaporationChannel and
G4NeutronEvaporationChannel). If at any stage the probability for evaporation of any of the particles selected
by the ablation process is zero, the evaporation is forced, but no significant momentum is imparted to the parti-
cle/nucleus. Note, however, that any particles ejected from the projectile will be Lorentz boosted depending upon the
initial energy per nucleon of the projectile.

36.5. De-excitation of the projectile and target nuclear pre-fragments by standard GEANT4
de-excitation physics
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36.7 Definition of the functions P and F used in the abrasion model

In the first instance, the form of the functions 𝑃 and 𝐹 used in the abrasion model are dependent upon the relative
radii of the projectile and target and the distance of closest approach of the nuclear centres. Four radius condtions are
treated:

• Case 1, where 𝑟𝑇 > 𝑟𝑃 and 𝑟𝑇 − 𝑟𝑃 ≤ 𝑟 ≤ 𝑟𝑇 + 𝑟𝑃 :

𝑃 = 0.125
√
𝜇𝜈

(︂
1

𝜇
− 2

)︂(︂
1 − 𝛽

𝜈

)︂2

− 0.125

[︂
0.5

√
𝜇𝜈

(︂
1

𝜇
− 2

)︂
+ 1

]︂(︂
1 − 𝛽

𝜈

)︂3

𝐹 = 0.75
√
𝜇𝜈

(︂
1 − 𝛽

𝜈

)︂2

− 0.125 [3
√
𝜇𝜈 − 1]

(︂
1 − 𝛽

𝜈

)︂3

where:

𝜈 =
𝑟𝑃

𝑟𝑃 + 𝑟𝑇

𝛽 =
𝑟

𝑟𝑃 + 𝑟𝑇

𝜇 =
𝑟𝑇
𝑟𝑃

• Case 2, where 𝑟𝑇 > 𝑟𝑃 and 𝑟 < 𝑟𝑇 − 𝑟𝑃 :

𝑃 = −1

𝐹 = 1

• Case 3, where 𝑟𝑃 > 𝑟𝑇 and 𝑟𝑃 − 𝑟𝑇 ≤ 𝑟 ≤ 𝑟𝑃 + 𝑟𝑇 :

𝑃 = 0.125
√
𝜇𝜈

(︂
1

𝜇
− 2

)︂(︂
1 − 𝛽

𝜈

)︂2

− 0.125

{︃
0.5

√︂
𝜈

𝜇

(︂
1

𝜇
− 2

)︂
−

[︃√︀
1 − 𝜇2

𝜈
− 1

]︃√︂
2 − 𝜇

𝜇5

}︃(︂
1 − 𝛽

𝜈

)︂3

𝐹 = 0.75
√
𝜇𝜈

(︂
1 − 𝛽

𝜈

)︂2

− 0.125

[︃
3

√︂
𝜈

𝜇
−
[︀
1 − (1 − 𝜇2)3/2

]︀√︀
1 − (1 − 𝜇)2

𝜇3

]︃(︂
1 − 𝛽

𝜈

)︂3

• Case 4, where 𝑟𝑃 > 𝑟𝑇 and 𝑟 < 𝑟𝑇 − 𝑟𝑃 :

𝑃 =

[︃√︀
1 − 𝜇2

𝜈
− 1

]︃√︃
1 −

(︂
𝛽

𝜈

)︂2

𝐹 =
[︁
1 −

(︀
1 − 𝜇2

)︀3/2]︁√
1 −

(︂
𝛽

𝜈

)︂2
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Fig. 36.1: In the abrasion process, a fraction of the nucleons in the projectile and target nucleons interact to form a
fireball region with a velocity between that of the projectile and the target. The remaining spectator nucleons in the
projectile and target are not initially affected (although they do suffer change as a result of longer-term de-excitation).
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Fig. 36.2: Illustration clarifying impact parameter in the far-field (𝑏) and actual impact parameter (𝑟).
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CHAPTER

THIRTYSEVEN

ELECTROMAGNETIC DISSOCIATION MODEL

37.1 The Model

The relative motion of a projectile nucleus travelling at relativistic speeds with respect to another nucleus can
give rise to an increasingly hard spectrum of virtual photons. The excitation energy associated with this en-
ergy exchange can result in the liberation of nucleons or heavier nuclei (i.e. deuterons, 𝛼-particles, etc.). The
contribution of this source to the total inelastic cross section can be important, especially where the proton
number of the nucleus is large. The electromagnetic dissociation (ED) model is implemented in the classes
G4EMDissociation, G4EMDissociationCrossSection and G4EMDissociationSpectrum, with the theory taken from
Wilson et al [WTC+95], and Bertulani and Baur [BB86].

The number of virtual photons 𝑁(𝐸𝛾 , 𝑏) per unit area and energy interval experienced by the projectile due to the
dipole field of the target is given by the expression [BB86]:

𝑁(𝐸𝛾 , 𝑏) =
𝛼𝑍2

𝑇

𝜋2𝛽2𝑏2𝐸𝛾

{︂
𝑥2𝑘21(𝑥) +

(︂
𝑥2

𝛾2

)︂
𝑘20(𝑥)

}︂
(37.1)

where 𝑥 is a dimensionless quantity defined as:

𝑥 =
𝑏𝐸𝛾

𝛾𝛽~𝑐

and:

𝛼 = fine structure constant
𝛽 = ratio of the velocity of the projectile in the laboratory frame to the velocity of light
𝛾 = Lorentz factor for the projectile in the laboratory frame
𝑏 = impact parameter
𝑐 = speed of light
~ = quantum constant

𝐸𝛾 = energy of virtual photon
𝑘0 and 𝑘1 = zeroth and first order modified Bessel functions of the second kind

𝑍𝑇 = atomic number of the target nucleus

Integrating Eq. (37.1) over the impact parameter from 𝑏𝑚𝑖𝑛 to ∞ produces the virtual photon spectrum for the dipole
field of:

𝑁𝐸1(𝐸𝛾) =
2𝛼𝑍2

𝑇

𝜋𝛽2𝐸𝛾

{︂
𝜉𝑘0(𝜉)𝑘1(𝜉) − 𝜉2𝛽2

2

(︀
𝑘21(𝜉) − 𝑘20(𝜉)

)︀}︂
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where, according to the algorithm implemented by Wilson et al in NUCFRG2 [WTC+95]:

𝜉 =
𝐸𝛾𝑏𝑚𝑖𝑛

𝛾𝛽~𝑐

𝑏𝑚𝑖𝑛 = (1 + 𝑥𝑑)𝑏𝑐 +
𝜋𝛼0

2𝛾

𝛼0 =
𝑍𝑃𝑍𝑇 𝑒

2

𝜇𝛽2𝑐2

𝑏𝑐 = 1.34
[︁
𝐴

1/3
𝑃 +𝐴

1/3
𝑇 − 0.75

(︁
𝐴

−1/3
𝑃 +𝐴

−1/3
𝑇

)︁]︁
and 𝜇 is the reduced mass of the projectile/target system, 𝑥𝑑 = 0.25, and 𝐴𝑃 and 𝐴𝑇 are the projectile and target
nucleon numbers. For the last equation, the units of 𝑏𝑐 are fm. Wilson et al state that there is an equivalent virtual
photon spectrum as a result of the quadrupole field:

𝑁𝐸2(𝐸𝛾) =
2𝛼𝑍2

𝑇

𝜋𝛽4𝐸𝛾

{︂
2(1 − 𝛽2)𝑘21(𝜉) + 𝜉(2 − 𝛽2)2𝑘0(𝜉)𝑘1(𝜉) − 𝜉2𝛽4

2

(︀
𝑘21(𝜉) − 𝑘20(𝜉)

)︀}︂
The cross section for the interaction of the dipole and quadrupole fields is given by:

𝜎𝐸𝐷 =

∫︁
𝑁𝐸1(𝐸𝛾)𝜎𝐸1(𝐸𝛾)𝑑𝐸𝛾 +

∫︁
𝑁𝐸2(𝐸𝛾)𝜎𝐸2(𝐸𝛾)𝑑𝐸𝛾 (37.2)

Wilson et al assume that 𝜎𝐸1(𝐸𝛾) and 𝜎𝐸2(𝐸𝛾) are sharply peaked at the giant dipole and quadrupole resonance
energies:

𝐸𝐺𝐷𝑅 = ~𝑐
[︂
𝑚*𝑐2𝑅2

0

8𝐽

(︂
1 + 𝑢− 1 + 𝜀+ 3𝑢

1 + 𝜀+ 𝑢
𝜀

)︂]︂−1/2

𝐸𝐺𝑄𝑅 =
63

𝐴
1/3
𝑃

(37.3)

so that the terms for 𝑁𝐸1 and 𝑁𝐸2 can be taken out of the integrals in Eq. (37.2) and evaluated at the resonances.

In Eq. (37.3):

𝑢 =
3𝐽

𝑄′𝐴
−1/3
𝑃

𝑅0 = 𝑟0𝐴
1/3
𝑃

𝜖 = 0.0768, 𝑄′ = 17 MeV, 𝐽 = 36.8eV, 𝑟0 = 1.18 fm, and 𝑚* is 7/10 of the nucleon mass (taken as 938.95 MeV/c2).
(The dipole and quadrupole energies are expressed in units of MeV.)

The photonuclear cross sections for the dipole and quadrupole resonances are assumed to be given by:∫︁
𝜎𝐸1(𝐸𝛾)𝑑𝐸𝛾 = 60

𝑁𝑃𝑍𝑃

𝐴𝑃
(37.4)

in units of MeV-mb (𝑁𝑃 being the number of neutrons in the projectile) and:∫︁
𝜎𝐸2(𝐸𝛾)

𝑑𝐸𝛾

𝐸2
𝛾

= 0.22𝑓𝑍𝑃𝐴
2/3
𝑃 (37.5)

in units of 𝜇b/MeV. In the latter expression, 𝑓 is given by:

𝑓 =

⎧⎨⎩ 0.9 𝐴𝑃 > 100
0.6 40 < 𝐴𝑃 ≤ 100
0.3 40 ≤ 𝐴𝑃

376 Chapter 37. Electromagnetic Dissociation Model



Physics Reference Manual, Release 10.4

The total cross section for electromagnetic dissociation is therefore given by Eq. (37.2) with the virtual photon spectra
for the dipole and quadrupole fields calculated at the resonances:

𝜎𝐸𝐷 = 𝑁𝐸1(𝐸𝐺𝐷𝑅)

∫︁
𝜎𝐸1(𝐸𝛾)𝑑𝐸𝛾 +𝑁𝐸2(𝐸𝐺𝑄𝑅)𝐸2

𝐺𝑄𝑅

∫︁
𝜎𝐸2(𝐸𝛾)

𝐸2
𝛾

𝑑𝐸𝛾

where the resonance energies are given by Eq. (37.3) and the integrals for the photonuclear cross sections given by
Eq. (37.4) and Eq. (37.5).

The selection of proton or neutron emission is made according to the following prescription from Wilson et al.

𝜎𝐸𝐷,𝑝 = 𝜎𝐸𝐷 ×

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0.5 𝑍𝑃 < 6
0.6 6 ≤ 𝑍𝑃 ≤ 8
0.7 8 < 𝑍𝑃 < 14

min
[︁
𝑍𝑃

𝐴𝑃
, 1.95 exp(−0.075𝑍𝑃 )

]︁
𝑍𝑃 ≥ 14

and

𝜎𝐸𝐷,𝑛 = 𝜎𝐸𝐷 − 𝜎𝐸𝐷,𝑝

Note that this implementation of ED interactions only treats the ejection of single nucleons from the nucleus, and
currently does not allow emission of other light nuclear fragments.
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CHAPTER

THIRTYEIGHT

INTERACTIONS OF STOPPING PARTICLES

38.1 Complementary parameterised and theoretical treatment

Absorption of negative pions and kaons at rest from a nucleus is described in literature [GE87], [CH81], [AS86],
[Wey90] as consisting of two main components:

• a primary absorption process, involving the interaction of the incident stopped hadron with one or more nucleons
of the target nucleus;

• the deexcitation of the remnant nucleus, left in an excitated state as a result of the occurrence of the primary
absorption process.

This interpretation is supported by several experiments [HIE+78], [MVA+82], [SCMZ79], [ODD+80], [PEH+79],
[HIP+83], [IZE+83], that have measured various features characterizing these processes. In many cases the exper-
imental measurements are capable to distinguish the final products originating from the primary absorption process
and those resulting from the nuclear deexcitation component.

A set of stopped particle absorption processes is implemented in GEANT4, based on this two-component model (PiMi-
nusAbsorptionAtRest and KaonMinusAbsorptionAtRest classes, for 𝜋− and 𝐾− respectively. Both implementations
adopt the same approach: the primary absorption component of the process is parameterised, based on available ex-
perimental data; the nuclear deexcitation component is handled through the theoretical models described elsewhere in
this Manual.

38.2 Pion absorption at rest

The absorption of stopped negative pions in nuclei is interpreted [GE87], [CH81], [AS86], [Wey90] as starting with the
absorption of the pion by two or more correlated nucleons; the total energy of the pion is transferred to the absorbing
nucleons, which then may leave the nucleus directly, or undergo final-state interactions with the residual nucleus. The
remaining nucleus de-excites by evaporation of low energetic particles.

G4PiMinusAbsorptionAtRest generates the primary absorption component of the process through the parameterisation
of existing experimental data; the primary absorption component is handled by class G4PiMinusStopAbsorption. In
the current implementation only absorption on a nucleon pair is considered, while contributions from absorption on
nucleon clusters are neglected; this approximation is supported by experimental results [GE87], [Mac83] showing
that it is the dominating contribution.

Several features of stopped pion absorption are known from experimental measurements on various materials
[HIE+78], [MVA+82], [SCMZ79], [ODD+80], [PEH+79], [HIP+83], [IZE+83], [HPI82]:

• the average number of nucleons emitted, as resulting from the primary absorption process;

• the ratio of nn vs np as nucleon pairs involved in the absorption process;

• the energy spectrum of the resulting nucleons emitted and their opening angle distribution.
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The corresponding final state products and related distributions are generated according to a parameterisation of the
available experimental measurements listed above. The dependence on the material is handled by a strategy pattern:
the features pertaining to material for which experimental data are available are treated in G4PiMinusStopX classes
(where X represents an element), inheriting from G4StopMaterial base class. In case of absorption on an element for
which experimental data are not available, the experimental distributions for the elements closest in Z are used.

The excitation energy of the residual nucleus is calculated by difference between the initial energy and the energy of
the final state products of the primary absorption process.

Another strategy handles the nucleus deexcitation; the current default implementation consists in handling the deexci-
tatoin component of the process through the evaporation model described elsewhere in this Manual.
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CHAPTER

THIRTYNINE

LOW ENERGY NEUTRON INTERACTIONS

39.1 Introduction

The neutron transport class library described here simulates the interactions of neutrons with kinetic energies from
thermal energies up to O(20 MeV). The upper limit is set by the comprehensive evaluated neutron scattering data
libraries that the simulation is based on. The result is a set of secondary particles that can be passed on to the tracking
sub-system for further geometric tracking within GEANT4.

The interactions of neutrons at low energies are split into four parts in analogy to the other hadronic processes in
GEANT4. We consider radiative capture, elastic scattering, fission, and inelastic scattering as separate models. These
models comply with the interface for use with the GEANT4 hadronic processes which enables their transparent use
within the GEANT4 tool-kit together with all other GEANT4 compliant hadronic shower models.

39.2 Physics and Verification

39.2.1 Inclusive Cross-sections

All cross-section data are taken from the ENDF/B-VI [Gro91] evaluated data library.

All inclusive cross-sections are treated as point-wise cross-sections for reasons of performance. For this purpose, the
data from the evaluated data library have been processed, to explicitly include all neutron nuclear resonances in the
form of point-like cross-sections rather than in the form of parametrisations. The resulting data have been transformed
into a linearly interpolable format, such that the error due to linear interpolation between adjacent data points is smaller
than a few percent.

The inclusive cross-sections comply with the cross-sections data set interface of the GEANT4 hadronic design. They
are, when registered with the tool-kit at initialisation, used to select the basic process. In the case of fission and
inelastic scattering, point-wise semi-inclusive cross-sections are also used in order to decide on the active channel
for an individual interaction. As an example, in the case of fission this could be first, second, third, or fourth chance
fission.

39.3 Elastic Scattering

The final state of elastic scattering is described by sampling the differential scattering cross-sections d𝜎/dΩ. Two
representations are supported for the normalised differential cross-section for elastic scattering. The first is a tabulation
of the differential cross-section, as a function of the cosine of the scattering angle 𝜃 and the kinetic energy 𝐸 of the
incoming neutron.

d𝜎

dΩ
=

d𝜎

dΩ
(cos 𝜃, 𝐸)
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The tabulations used are normalised by 𝜎/(2𝜋) so the integral of the differential cross-sections over the scattering
angle yields unity.

In the second representation, the normalised cross-section are represented as a series of legendre polynomials
𝑃𝑙(cos 𝜃), and the legendre coefficients 𝑎𝑙 are tabulated as a function of the incoming energy of the neutron.

2𝜋

𝜎(𝐸)

d𝜎

dΩ
(cos 𝜃, 𝐸) =

𝑛𝑙∑︁
𝑙=0

2𝑙 + 1

2
𝑎𝑙(𝐸)𝑃𝑙(cos 𝜃)

Describing the details of the sampling procedures is outside the scope of this paper.

An example of the result we show in Fig. 39.1 for the elastic scattering of 15 MeV neutrons off uranium a comparison
of the simulated angular distribution of the scattered neutrons with evaluated data. The points are the evaluated data,
the histogram is the Monte Carlo prediction.

In order to provide full test-coverage for the algorithms, similar tests have been performed for 72Ge, 126Sn, 238U, 4He,
and 27Al for a set of neutron kinetic energies. The agreement is very good for all values of scattering angle and neutron
energy investigated.

39.4 Radiative Capture

The final state of radiative capture is described by either photon multiplicities, or photon production cross-sections,
and the discrete and continuous contributions to the photon energy spectra, along with the angular distributions of the
emitted photons.

For the description of the photon multiplicity there are two supported data representations. It can either be tabulated
as a function of the energy of the incoming neutron for each discrete photon as well as the eventual continuum
contribution, or the full transition probability array is known, and used to determine the photon yields. If photon
production cross-sections are used, only a tabulated form is supported.

The photon energies 𝐸𝛾 are associated to the multiplicities or the cross-sections for all discrete photon emissions. For
the continuum contribution, the normalised emission probability 𝑓 is broken down into a weighted sum of normalised
distributions 𝑔.

𝑓 (𝐸 → 𝐸𝛾) =
∑︁
𝑖

𝑝𝑖(𝐸)𝑔𝑖(𝐸 → 𝐸𝛾)

The weights 𝑝𝑖 are tabulated as a function of the energy 𝐸 of the incoming neutron. For each neutron energy, the
distributions 𝑔 are tabulated as a function of the photon energy. As in the ENDF/B-VI data formats [Gro91], several
interpolation laws are used to minimise the amount of data, and optimise the descriptive power. All data are derived
from evaluated data libraries.

The techniques used to describe and sample the angular distributions are identical to the case of elastic scattering, with
the difference that there is either a tabulation or a set of legendre coefficients for each photon energy and continuum
distribution.

As an example of the results is shown in Fig. 39.2 the energy distribution of the emitted photons for the radiative cap-
ture of 15 MeV neutrons on Uranium (238U). Similar comparisons for photon yields, energy and angular distributions
have been performed for capture on 238U, 235U, 23Na, and 14N for a set of incoming neutron energies. In all cases
investigated the agreement between evaluated data and Monte Carlo is very good.

39.5 Fission

For neutron induced fission, we take first chance, second chance, third chance and fourth chance fission into account.
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Fig. 39.1: Comparison of data and Monte Carlo for the angular distribution of 15 MeV neutrons scattered elastically
off uranium (238U). The points are evaluated data, and the histogram is the Monte Carlo prediction. The lower plot
excludes the forward peak, to better show the Frenel structure of the angular distribution of the scattered neutron.
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Fig. 39.2: Comparison of data and Monte Carlo for photon energy distributions for radiative capture of 15 MeV
neutrons on Uranium (238U). The points are evaluated data, the histogram is the Monte Carlo prediction.
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Neutron yields are tabulated as a function of both the incoming and outgoing neutron energy. The neutron angular
distributions are either tabulated, or represented in terms of an expansion in legendre polynomials, similar to the
angular distributions for neutron elastic scattering. In case no data are available on the angular distribution, isotropic
emission in the centre of mass system of the collision is assumed.

There are six different possibilities implemented to represent the neutron energy distributions. The energy distribution
of the fission neutrons 𝑓(𝐸 → 𝐸′) can be tabulated as a normalised function of the incoming and outgoing neutron
energy, again using the ENDF/B-VI interpolation schemes to minimise data volume and maximise precision.

The energy distribution can also be represented as a general evaporation spectrum,

𝑓(𝐸 → 𝐸′) = 𝑓 (𝐸′/Θ(𝐸)) .

Here 𝐸 is the energy of the incoming neutron, 𝐸′ is the energy of a fission neutron, and Θ(𝐸) is effective temperature
used to characterise the secondary neutron energy distribution. Both the effective temperature and the functional
behaviour of the energy distribution are taken from tabulations.

Alternatively energy distribution can be represented as a Maxwell spectrum,

𝑓(𝐸 → 𝐸′) ∝
√
𝐸′e𝐸

′/Θ(𝐸),

or an evaporation spectrum

𝑓(𝐸 → 𝐸′) ∝ 𝐸′e𝐸
′/Θ(𝐸).

In both these cases, the temperature is tabulated as a function of the incoming neutron energy.

The last two options are the energy dependent Watt spectrum, and the Madland Nix spectrum. For the energy depen-
dent Watt spectrum, the energy distribution is represented as

𝑓(𝐸 → 𝐸′) ∝ e−𝐸′/𝑎(𝐸) sinh
√︀
𝑏(𝐸)𝐸′.

Here both the parameters a and b are used from tabulation as function of the incoming neutron energy. In the case of
the Madland Nix spectrum, the energy distribution is described as

𝑓(𝐸 → 𝐸′) =
1

2
[𝑔(𝐸′, ⟨𝐾𝑙⟩) + 𝑔(𝐸′, ⟨𝐾ℎ⟩)] .

Here

𝑔(𝐸′, ⟨𝐾⟩) =
1

3
√︀
⟨𝐾⟩Θ

[︁
𝑢
3/2
2 𝐸1(𝑢2) − 𝑢

3/2
1 𝐸1(𝑢1) + 𝛾(3/2, 𝑢2) − 𝛾(3/2, 𝑢1)

]︁
,

𝑢1(𝐸′, ⟨𝐾⟩) =
(
√
𝐸′ −

√︀
⟨𝐾⟩)2

Θ
, and

𝑢2(𝐸′, ⟨𝐾⟩) =
(
√
𝐸′ +

√︀
⟨𝐾⟩)2

Θ
.

Here𝐾𝑙 is the kinetic energy of light fragments and𝐾ℎ the kinetic energy of heavy fragments,𝐸1(𝑥) is the exponential
integral, and 𝛾(𝑥) is the incomplete gamma function. The mean kinetic energies for light and heavy fragments are
assumed to be energy independent. The temperature Θ is tabulated as a function of the kinetic energy of the incoming
neutron.

Fission photons are describes in analogy to capture photons, where evaluated data are available. The measured nuclear
excitation levels and transition probabilities are used otherwise, if available.

As an example of the results is shown in Fig. 39.3 the energy distribution of the fission neutrons in third chance fission
of 15 MeV neutrons on uranium (238U). This distribution contains two evaporation spectra and one Watt spectrum.
Similar comparisons for neutron yields, energy and angular distributions, and well as fission photon yields, energy and
angular distributions have been performed for 238U, 235U, 234U, and 241Am for a set of incoming neutron energies. In
all cases the agreement between evaluated data and Monte Carlo is very good.
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Fig. 39.3: Comparison of data and Monte Carlo for fission neutron energy distributions for induced fission by 15 MeV
neutrons on uranium (238U). The curve represents evaluated data and the histogram is the Monte Carlo prediction.
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39.6 Inelastic Scattering

For inelastic scattering, the currently supported final states are (nA →) n𝛾s (discrete and continuum), np, nd, nt, n3He,
n𝛼, nd2𝛼, nt2𝛼, n2p, n2𝛼, np𝛼, n3𝛼, 2n, 2np, 2nd, 2n𝛼, 2n2𝛼, nX, 3n, 3np, 3n𝛼, 4n, p, pd, p𝛼, 2p d, d𝛼, d2𝛼, dt, t,
t2𝛼, 3He, 𝛼, 2𝛼, and 3𝛼.

The photon distributions are again described as in the case of radiative capture.

The possibility to describe the angular and energy distributions of the final state particles as in the case of fission is
maintained, except that normally only the arbitrary tabulation of secondary energies is applicable.

In addition, we support the possibility to describe the energy angular correlations explicitly, in analogy with the
ENDF/B-VI data formats. In this case, the production cross-section for reaction product n can be written as

𝜎𝑛(𝐸,𝐸′, cos(𝜃)) = 𝜎(𝐸)𝑌𝑛(𝐸)𝑝(𝐸,𝐸′, cos(𝜃)).

Here 𝑌𝑛(𝐸) is the product multiplicity, 𝜎(𝐸) is the inelastic cross-section, and 𝑝(𝐸,𝐸′, cos(𝜃)) is the distribution
probability. Azimuthal symmetry is assumed.

The representations for the distribution probability supported are isotropic emission, discrete two-body kinematics,
N-body phase-space distribution, continuum energy-angle distributions, and continuum angle-energy distributions in
the laboratory system.

The description of isotropic emission and discrete two-body kinematics is possible without further information. In the
case of N-body phase-space distribution, tabulated values for the number of particles being treated by the law, and the
total mass of these particles are used. For the continuum energy-angle distributions, several options for representing
the angular dependence are available. Apart from the already introduced methods of expansion in terms of legendre
polynomials, and tabulation (here in both the incoming neutron energy, and the secondary energy), the Kalbach-Mann
systematic is available. In the case of the continuum angle-energy distributions in the laboratory system, only the
tabulated form in incoming neutron energy, product energy, and product angle is implemented.

First comparisons for product yields, energy and angular distributions have been performed for a set of incoming
neutron energies, but full test coverage is still to be achieved. In all cases currently investigated, the agreement
between evaluated data and Monte Carlo is very good.

39.7 Neutron Data Library (G4NDL) Format

This document describes the format of G4NDL4.5. The previous version of G4NDL does not have entries for data
library identification and names of original data libraries, but other formats are same, i.e., the first element of the old
version is equivalent to the 3rd element of a new version.

Since G4NDL4.4, files in the data library are compressed by zlib [zli]. In this section, we will explain the format of
G4NDL in its pre-compressed form.

39.7.1 Cross Section

Each file in the cross section directories has the following entries:

• the first entry is identification of library (in this case G4NDL)

• the second entry original data library from which the file came
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• the third entry is a dummy entry but the value usually corresponds to the MT number of reaction in ENDF
formats (2:Elastic, 102:Capture, 18:Fission; files in the directory of inelastic cross section usually have 0 for
this entry).1

• the fourth entry is also a dummy

• the fifth entry represents the number of (energy, cross section) pairs (in eV, barn) to follow.

This is an example of cross section file format:

G4NDL (1st entry)
ENDF/B-VII.1 (2nd entry)

2 (3rd entry) \\MT
0 (4th entry)

682 (5th entry) \\number of E-XS pairs
1.000000e-05 2.043634e+01 1.062500e-05 2.043634e+01 ,,,,,
(1st pair of E and XS) (2nd pair of E and XS)
2.000000e+07 4.827462e-01
(682th pair of E and XS)

39.7.2 Final State

Unlike the format of the cross section files, the format of the final state files is not straightforward and pretty com-
plicated. Even though each of these files follows the same format rules, the actual length and appearance of each file
will depend on the specific data. The format rules of the final state files are a subset of the ENDF-6 format and a deep
understanding of the format is required to correctly interpret the content of the files. Because of limited resources, we
do not plan to provide a complete documentation on this part in the near future.

39.7.3 Thermal Scattering Cross Section

The format of the thermal scattering cross section data is similar to that of the cross section data described above:

• the 1st and 2nd entries have the same meaning

• the 3rd and 4th entries are also dummies and not used in simulation. However the 3rd entry has the value of
3 that represents MF number of ENDF-6 format and the 4th entry has the value of MT numbers of ENDF-6
format.

• the 5th entry is the temperature (in Kelvin)

• the 6th entry represents the number of (energy, cross section) pairs given for the temperature in entry 5.

• If there are multiple temperatures listed, which is typical, then for each temperature there is a corresponding
data block which consists of MF, MT, temperature, number of pairs, and paired E and cross section data.

This is an example of thermal scattering cross section file format:

G4NDL (1st entry)
ENDF/B-VII.1 (2nd entry)

3 (3rd entry) \\MF
223 (4th entry) \\MT
296 (5th entry) \\temperature
2453 (6th entry) \\number of E-XS pairs

1.000000e-5 3.456415e+2 1.125000e-5 3.272908e+2 ,,,,,
(1st pair of E and XS) (2nd pair of E and XS)

1 MF and MT numbers are used in the ENDF format to indicate the type of data and the type of reaction or products resulting from the reaction.
For example, MF3 represents cross section data and MF4 symbolizes angular distribution, also, MT2 represents elastic reaction and MT102 is
radiative capture.
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4.000040e+0 0.000000e+0 2.000000e+7 0.000000e+0
(2452nd pair of E and XS)(2453rd pair of E and XS)

3 (MF)
223 (MT)
350 (temperature)
2789 (Number of E-XS pair)

1.000000e-5 4.457232e+2 1.125000e-5 4.220525e+2 ,,,,,,
(1st pair of E and XS) (2nd pair of E and XS)

39.7.4 Coherent Final State

The final state files have a similar format:

• the 1st and 2nd entries have the same meaning before

• the 3rd and 4th entries are also dummy entries and not used in simulation. However the 3rd entry has the value
of 7 that represents MF number of ENDF-6 format and the 4th entry has the value 2 as MT number of the
ENDF-6 format.

• the 5th entry represents temperature

• the 6th entry shows the number of Bragg edges given. This is followed by pairs of Bragg edge energies in eV
and structure factors.

• If there are multiple temperatures listed, which is typical, then for each temperature there is a corresponding
data block which consists of MF, MT, temperature, number of Bragg edges, and paired energy of Bragg edge
and structure factors. However the energies of the Bragg edges only appear in the first data block.

This is an example of thermal scattering coherent final state file:

G4NDL (1st entry)
ENDF/B-VII.1 (2nd entry)

7 (3rd entry) // MF
2 (4th entry) // MT

296 (5th entry) // temperature
248 (6th entry) // number of Bragg edges

4.555489e-4 0.000000e+0 1.822196e-3 1.347465e-2 ,,,,,,
(1st pair of E and S) (2nd pair of E and S)
1.791770e+0 6.259710e-1 5.000000e+0 6.259711e-1
(247th pair of E, S) (248th pair of E, S)

7 (MF)
2 (MT)

400 (temperature)
248 (# of Bragg edge structure factors without energies)

0.000000e+0 1.342127e-2 ,,,,,
(1st pair of E and S)
4.994888e-1 4.994889e-1
(247th pair of E and S)

39.7.5 Incoherent Final State

The incoherent final state files have a similar format:

• the 1st and 2nd entry has same meaning before
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• the 3rd and 4th entries are dummy entries and not used in simulation. However the 3rd entry has the value of
6 that represents the MF number of the ENDF-6 format and the 4th entry is the MT number of the ENDF-6
format.

• the 5th entry is the temperature of this data block

• the 6th entry is the number of isoAngle data sets, described below.

• If there are multiple temperatures listed, which is typical, then for each temperature there is a corresponding
data block which consists of MF, MT, temperature, number of isoAngle data sets and the isoAngle data sets.

The format of the isoAngle data set is following.

• Up to the 8th entry, only 2nd and 5th entry has real meaning in simulation and the 2nd entry has energy of
incidence neutron and 5th entry is the number of equal probability bins (N) in mu.

• 9th to (9+N-2)th entries are the boundary values of the equal probability bins. The lowest and highest boundary
of -1 and 1 are obvious thus they are omitted from entries.

This is an example of isoAngle data set

0.000000e+0 1.000000e-5 0 0 10 10
(1st entry) (2nd entry)(3rd entry)(4th entry)(5th entry)(6th entry)
1.000000e-05 1.000000e+00 -8.749199e-01 -6.247887e-01 ,,,

(7th entry) (8th entry) (2nd boundary) (3rd boundary)
6.252111e-01 8.750801e-01
(9th boundary)(10th boundary)

This is an example of thermal scattering incoherent final state file

G4NDL (1st entry)
ENDF/B-VII.1 (2nd entry)

6 (3rd entry) \\MF
224 (4th entry) \\MT
296 (5th entry) \\temperature
2452 (6th entry) \\number of isoAngle data sets

0.000000e+0 1.000000e-5 0 0 10 10
(1st isoAngle data set)
1.000000e-05 1.000000e+00 -8.749199e-01 -6.247887e-01 -3.747014e-01
-1.246577e-01 1.253423e-01 3.752985e-01 6.252111e-01 8.750801e-01

,,,,,,,,,,,,,,,,,,,
0.000000e+0 1.125000e-5 0 0 10 10

(2452st isoAngle data set)
4.000040e+00 1.000000e+00 9.889886e-01 9.939457e-01 9.958167e-01

9.970317e-01 9.979352e-01 9.986553e-01 9.992540e-01 9.997666e-01
6 (MF)

224 (MT)
350 (temperature)
2788 (sumber of isoAngle data sets)

0.000000e+0 1.000000e-5 0 0 10 10
1.000000e-05 1.000000e+00 -8.749076e-01 -6.247565e-01 -3.746559e-01
-1.246055e-01 1.253944e-01 3.753440e-01 6.252433e-01 8.750923e-01

,,,,,,,,,,,,,,,,,,,

39.7.6 Inelastic Final State

As before, the top six entries are similar:

• the 1st and 2nd entries have the same meaning.

390 Chapter 39. Low Energy Neutron Interactions



Physics Reference Manual, Release 10.4

• the 3rd and 4th entries are dummy entries and not used in simulation. However the 3rd entry has the value of 6
that represents the MF number of ENDF-6 format and the 4th entry corresponding to MT number of ENDF-6
format.

• the 5th entry is the temperature [K] of this data block

• the 6th entry is number of E-(E’-isoAngle) data sets, where E is the energy of the incident neutron and E’ is
energy of the scattered neutron.

• If there are multiple temperatures listed, which is typical, then for each temperature there is a corresponding
data block which consists of MF, MT, temperature, number of E-(E’-isoAngle) data set and E-(E’-isoAngle)
data.

The format of E-(E’-isoAngle) is following.

• The 1st, 3rd and 4th entries are dummies and not be used in simulation.

• The 2nd entry is the energy of the incident neutron(E)

• the 5th entry is the number of entries to be found after the 6th entry.

• the 6th entry corresponds to the number of entries of each E’-isoAngle data set. The first entry of E’-isoAngle
data set represents energy of scattered neutron(E’) and 2nd entry is probability of E->E’ scattering. Following
entries correspond to boundaries of iso-probability bins in mu. The lowest and highest boundaries are also
omitted. The first and last E’-isoAng set should always have all 0 values excepting for energy of scattering
neutron.

This is an example of E-(E’-isoAngle) data set

0.000000e+0 1.000000e-5 0 0 2080 10
(1st entry) (2nd entry)(3rd entry)(4th entry)(5th entry)(6th entry)
0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00

0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
(1st E’-isoAng data set)
6.103500e-10 3.127586e+00 -8.741139e-01 -6.226646e-01 -3.716976e-01

-1.212145e-01 1.287860e-01 3.783033e-01 6.273366e-01 8.758833e-01
(2nd E’-isoAng data set)
,,,,,,,,,,,,,,,,,,,,,,

7.969600e-01 5.411300e-13 -8.750360e-01 -6.254547e-01 -3.755898e-01
-1.257686e-01 1.241790e-01 3.742614e-01 6.242919e-01 8.753607e-01

(207th E’-isoAng data set)
8.199830e-01 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00

0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
(208th E’-isoAng data set)

This is an example of thermal scattering inelastic final state file

G4NDL (1st entry)
ENDF/B-VII.1 (2nd entry)

6 (3rd entry) \\MF
222 (4th entry) \\MT

293.6 (5th entry) \\temperature
107 (6th entry) \\number of E-(E’-isoAngle) data sets

0.000000e+0 1.000000e-5 0 0 2080 10
0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00

6.103500e-10 3.127586e+00 -8.741139e-01 -6.226646e-01 -3.716976e-01
-1.212145e-01 1.287860e-01 3.783033e-01 6.273366e-01 8.758833e-01

1.220700e-09 4.423091e+00 -8.737468e-01 -6.216975e-01 -3.703295e-01
-1.196465e-01 1.303546e-01 3.796722e-01 6.283050e-01 8.762478e-01
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39.7.7 Further Information

A detailed description of the file format has been created by reverse engineering the code by a user, Wesley Ford,
who was a masters student at McMaster University [Col] under the supervision of Prof. Adriaan Buijs and has kindly
agreed for its inclusion here:

The link provides a document which describes G4NDL format and as a consequence readers and expert users may
obtain useful information from it. Especially detailed descriptions of variable names used in the package and their
meanings will be useful to developers who consider extensions of the package.

39.8 High Precision Models and Low Energy Parameterized Models

The high precision neutron models discussed in the previous section depend on an evaluated neutron data library
(G4NDL) for cross sections, angular distributions and final state information. However the library is not complete
because there are no data for several key elements. In order to use the high precision models, users must develop
their detectors using only elements which exist in the library. In order to avoid this difficulty, alternative models were
developed which use the high precision models when data are found in the library, but use the low energy parameterized
neutron models when data are missing.

The alternative models cover the same types of interaction as the originals, that is elastic and inelastic scattering,
capture and fission. Because the low energy parameterized part of the models is independent of G4NDL, results will
not be as precise as they would be if the relevant data existed.

39.9 Summary and Important Remark

By the way of abstraction and code reuse we minimised the amount of code to be written and maintained. The concept
of container-sampling lead to abstraction and encapsulation of data representation and the corresponding random
number generators. The Object Oriented design allows for easy extension of the cross-section base of the system, and
the ENDF-B VI data evaluations have already been supplemented with evaluated data on nuclear excitation levels,
thus improving the energy spectra of de-excitation photons. Other established data evaluations have been investigated,
and extensions based on the JENDL[J3TN95], JEF [J2CN94], CENDL[Cen96], and Brond[eal94] data libraries are
foreseen for next year.

Followings are important remark of the NeutornHP package. Correlation between final state particles is not included
in tabulated data. The method described here does not included necessary correlation or phase space constrains needed
to conserver momentum and energy. Such conservation is not guarantee either in single event or averaged over many
events.
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CHAPTER

FORTY

LOWENERGYCHARGEDPARTICLES

40.1 Low Energy Charged Particle Interactions

40.1.1 Introduction

The low energy charged particle transport class library described here simulates the interactions of protons, deuterons,
tritons, He-3 and alpha particle with kinetic energies up to 200 MeV. The upper limit is set by the comprehensive
evaluated neutron scattering data libraries that the simulation is based on. It reuses the code of the low energy neutron
interactions package, with some small modifications to take into account the change of incident particle.

Only the inelastic interactions are included in this model, while the elastic interaction is treated approximately by other
GEANT4 models, and the interference between Coulumb and nuclear elastic is neglected.

40.1.2 Physics and Verification

Inclusive Cross-sections

Cross-section data is taken from the ENDF/B-VII.r1 [Gro91] evaluated data library for those few elements where data
exist. As these isotopes are only a few, most of the isotopes data are taken from the TENDL data library, which uses
the TALYS nuclear model. The format is exactly the same as for the low energy neutron data libraries. While the
energy of the TENDL files goes up to 200 MeV, in the case of ENDF it only reaches 150 MeV for most isotopes and
for some is even less.

The treatment of this data is done with the same code as for the low energy neutron package. It should be mentioned
that for all except a few low Z isotopes in the ENDF data library, there is no information about individual decay
channels, but only about the total cross section plus particle yields. Therefore the same remark as for the neutron
package holds: there is no event-by-event conservation of energy, nor of atomic or mass number.

The absence of treatment of the correlation between inelastic and elastic interactions affects the emission of charged
particles, while it does not for neutron and gamma emission. The effect is expected to increase with incident energy
and modify the secondary particle spectra.

40.1.3 Neutron-induced alpha production reactions on carbon

Some breakup reactions are only partially described or not described at all by G4ParticleHP, either because of in-
complete or missing information in the evaluated neutron data library, or an incomplete implementation of the model
itself.

The base class G4ParticleHPInelasticBaseFS and its derived classes in G4ParticleHP are devoted to describing reac-
tions that involve more than one particle and a residual nucleus in the final state. These classes use, when available,
evaluated energy-angle distributions to sample the final state of the reaction products, otherwise, the n-body phase
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space distribution. Reactions involving only one particle and a residual nucleus in the final state are described in
G4ParticleHPInelasticCompFS and its derived classes instead. The description is however incomplete when it comes
to breakup reactions proceeding in multiple steps, as they are not considered to their whole extent but only to the first
step, leaving an intermediate nucleus in an excited state that is forced to decay to the ground state without any particle
emission. This can be the case of the 12C(n,n′3𝛼) reactions, which are important in many applications.

G4ParticleHPInelasticCompFS incorporates the 12C(n,n′3𝛼) multistep breakup model from NRESP7.1: a Monte
Carlo simulation code developed at the Physikalisch-Technische Bundesanstalt (PTB), Germany, to study the response
of organic scintillation detectors to fast neutrons between 0.02 and 20 MeV [DK82] . Two different mechanisms are
considered:

1. 𝑛+12C → 𝛼+9Be* | 9Be* → 𝑛′+8Be | 8Be → 2𝛼

2. 𝑛+12C → 𝑛′+12C* | 12C* → 𝛼+8Be | 8Be → 2𝛼

Both end up with the 2𝛼 decay of 8Be from its ground state but differ in the first and intermediate steps. Each
mechanism comprises one or more reaction channels associated with excited well-defined or pseudo-states of the
intermediate nucleus. The model samples the direction of the outgoing neutron from an isotropic distribution in the
center-of-mass system and the alpha particles are emitted conserving energy and momentum. Relativistic kinematics
is applied at each step.

Beware that angular distributions for the 12C(n,n′3𝛼) reactions in the neutron data library are ignored in this model.
The 12C(n,𝛼)9Be reaction, on the other hand, has a strong anisotropy in the center-of-mass system and there is no
angular distribution data for this reaction in the neutron data library G4NDL whatsoever. Hence, for a complete
description of neutron-induced alpha production reactions on carbon, the angular distributions for the 12C(n,𝛼)9Be
reaction in NRESP7.1 are also incorporated (hard coded) in G4ParticleHPInelasticCompFS.

To invoke this model, the user needs to set environment variable:

G4PHP_USE_NRESP71_MODEL 1

Alternatively, the user may use the UI command:

/process/had/particle_hp/use_NRESP71_model true

A detailed description of the model and its verification and validation are published in A. R. Garcia et al, NIMA 868,
73-81 (2017) [GMCO+17] . The authors would appreciate the citation of their work by users of this model in the
publication of their results.
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CHAPTER

FORTYONE

GEANT4 LOW ENERGY NUCLEAR DATA (LEND) PACKAGE

41.1 Low Energy Nuclear Data

GEANT4 Low Energy Nuclear Data (LEND) Package G4LEND is a set of low energy nuclear interaction models
in GEANT4. The LEND package uses Generalized Nuclear Data (GND) which is a modern format for storing nu-
clear data. To use the package, users must download data from ftp://gdo142.ucllnl.org/ and then GND_v1.3.tar.gz
in the directory GND_after2013 is the file you need to download and unpack. Please set an environment variable
G4LENDDATA pointing the directory which contains unpacked gammas.map and neutrons.map files. The download
contains GND-formatted nuclear data for incident neutrons and gammas which are converted from the ENDF/B-VII.r1
library. A total of 421 target nuclides from H to Es are available for the neutron- incident data and 162 nuclides from H
to Pt for the gamma-incident data. The cross sections and final state products of the interactions are extracted from the
data using the General Interaction Data Interface (GIDI). G4LEND then allow them to be used in GEANT4 hadronic
cross section and model. G4LEND is a data-driven model; therefore the data library quality is crucial for its physics
performance. Energy range of the package is also a function of data library. In the case of the data which converted
from ENDF/B-VII.r1, it can handle neutrons interaction from below thermal energy up to 20 MeV for most target
nuclides. The upper limit of the energy enhances up to 150 MeV for some target nuclides. One important limitation
of the model is that it does not guarantee conservation laws beyond the 2 body interaction.

The evaluated data applied to this model are particularly suitable for incident gammas below 20 MeV giving higher
precision than the default Bertini Cascade model (The Bertini Intranuclear Cascade Model).
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CHAPTER

FORTYTWO

RADIOACTIVE DECAY

42.1 The Radioactive Decay Module

G4RadioactiveDecay and associated classes are used to simulate the decay, either in-flight or at rest, of radioactive
nuclei by 𝛼, 𝛽+, and 𝛽− emission and by electron capture (EC). The simulation model depends on data taken from
the Evaluated Nuclear Structure Data File (ENSDF) [Tul96] which provides information on:

• nuclear half-lives,

• nuclear level structure for the parent or daughter nuclide,

• decay branching ratios, and

• the energy of the decay process.

If the daughter of a nuclear decay is an excited isomer, its prompt nuclear de-excitation is treated using the
G4PhotoEvaporation class (see Section Photon evaporation).

42.2 Alpha Decay

The final state of alpha decay consists of an 𝛼 and a recoil nucleus with (𝑍 − 2, 𝐴− 4). The two particles are emitted
back-to-back in the center of mass with the energy of the 𝛼 taken from the ENSDF data entry for the decaying isotope.

42.3 Beta Decay

Beta decay is modeled by the emission of a 𝛽− or 𝛽+, an anti-neutrino or neutrino, and a recoil nucleus of either
𝑍 + 1 or 𝑍 − 1. The energy of the 𝛽 is obtained by sampling either from histogrammed data or from the theoretical
three-body phase space spectral shapes. The latter include allowed, first, second and third unique forbidden, and first
non-unique forbidden transitions.

The shape of the energy spectrum of the emitted lepton is given by

𝑑2𝑛

𝑑𝐸𝑑𝑝𝑒
= (𝐸0 − 𝐸𝑒)

2𝐸𝑒𝑝𝑒𝐹 (𝑍,𝐸𝑒)𝑆(𝑍,𝐸0, 𝐸𝑒)

where, in units of electron mass, 𝐸0 is the endpoint energy of the decay taken from the ENSDF data, 𝐸𝑒 and 𝑝𝑒 are the
emitted electron energy and momentum, 𝑍 is the atomic number, 𝐹 is the Fermi function and 𝑆 is the shape factor.

The Fermi function 𝐹 accounts for the effect of the Coulomb barrier on the probability of 𝛽± emission. Its relativistic
form is

𝐹 (𝑍,𝐸𝑒) = 2(1 + 𝛾)(2𝑝𝑒𝑅)2𝛾−2𝑒±𝜋𝛼𝑍𝐸𝑒/𝑝𝑒
|Γ(𝛾 + 𝑖𝛼𝑍𝐸𝑒/𝑝𝑒)|2

Γ(2𝛾 + 1)2
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where 𝑅 is the nuclear radius, 𝛾 =
√︀

1 − (𝛼𝑍)2, and 𝛼 is the fine structure constant. The squared modulus of Γ is
computed using approximation B of Wilkinson [Wil70].

The factor 𝑆 determines whether or not additional corrections are applied to the decay spectrum. When 𝑆 = 1
the decay spectrum takes on the so-called allowed shape which is just the phase space shape modified by the Fermi
function. For this type of transition the emitted lepton carries no angular momentum and the nuclear spin and parity do
not change. When the emitted lepton carries angular momentum and nuclear size effects are not negligible, the factor
𝑆 is no longer unity and the transitions are called “forbidden”. Corrections are then made to the spectrum shape which
take into account the energy dependence of the nuclear matrix element. The form of 𝑆 used in the spectrum sampling
is that of Konopinski [Kon66].

42.4 Electron Capture

Electron capture from the atomic K, L and M shells is simulated by producing a recoil nucleus of (𝑍 − 1, 𝐴) and an
electron-neutrino back-to-back in the center of mass. Since this leaves a vacancy in the electron orbitals, the atomic
relaxation model (ARM) is triggered in order to produce the resulting x-rays and Auger electrons. More information
on the ARM can be found in the Electromagnetic section of this manual.

In the electron capture decay mode, internal conversion is also enabled so that atomic electrons may be ejected when
interacting with the nucleus.

42.5 Recoil Nucleus Correction

Due to the level of imprecision of the rest-mass energy of the nuclei generated by G4IonTable::GetNucleusMass, the
mass of the parent nucleus is modified to a minor extent just before performing the two- or three-body decay so that
the 𝑄 for the transition process equals that identified in the ENSDF data.

42.6 Biasing Methods

By default, sampling of the times of radioactive decay and branching ratios is done according to standard, analogue
Monte Carlo modeling. The user may switch on one or more of the following variance reduction schemes, which can
provide significant improvement in the modelling efficiency:

1. The decays can be biased to occur more frequently at certain times, for example, corresponding to times when
measurements are taken in a real experiment. The statistical weights of the daughter nuclides are reduced
according to the probability of survival to the time of the event, 𝑡, which is determined from the decay rate. The
decay rate of the 𝑛𝑡ℎ nuclide in a decay chain is given by the recursive formulae:

𝑅𝑛(𝑡) =

𝑛−1∑︁
𝑖=1

𝐴𝑛:𝑖𝑓(𝑡, 𝜏𝑖) +𝐴𝑛:𝑛𝑓(𝑡, 𝜏𝑛)

where:

𝐴𝑛:𝑖 =
𝜏𝑖

𝜏𝑖 − 𝜏𝑛
𝐴𝑛:𝑖 ∀𝑖 < 𝑛 (42.1)

𝐴𝑛:𝑛 = −
𝑛−1∑︁
𝑖=1

𝜏𝑛
𝜏𝑖 − 𝜏𝑛

𝐴𝑛:𝑖 − 𝑦𝑛

𝑓(𝑡, 𝜏𝑖) =
𝑒
− 𝑡

𝜏𝑖

𝜏𝑖

𝑡∫︁
− inf

𝐹 (𝑡′)𝑒
𝑡′
𝜏𝑖 𝑑𝑡′. (42.2)
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The values 𝜏𝑖 are the mean life-times for the nuclei, 𝑦𝑖 is the yield of the 𝑖𝑡ℎ nucleus, and 𝐹 (𝑡) is a function
identifying the time profile of the source. The above expression for decay rate is simplified, since it assumes
that the 𝑖𝑡ℎ nucleus undergoes 100% of the decays to the (𝑖+ 1)𝑡ℎ nucleus. Similar expressions which allow for
branching and merging of different decay chains can be found in Ref. [Tru96].

A consequence of the form of equations (42.1) and (42.2) is that the user may provide a source time profile so
that each decay produced as a result of a simulated source particle incident at time 𝑡 = 0 is convolved over the
source time profile to derive the actual decay rate for that source function.

This form of variance reduction is only appropriate if the radionuclei can be considered to be at rest with respect
to the geometry when decay occurs.

2. For a given decay mode (𝛼, 𝛽+ +𝐸𝐶, or 𝛽−) the branching ratios to the daughter nuclide can be sampled with
equal probability, so that some low probability branches which may have a disproportionately greater effect on
the measurement are sampled with increased probability.

3. Each parent nuclide can be split into a user-defined number of nuclides (of proportionally lower statistical
weight) prior to treating decay in order to increase the sampling of the effects of the daughter products.

42.6. Biasing Methods 399
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CHAPTER

FORTYTHREE

INTRODUCTION

Gamma-nuclear and lepto-nuclear reactions are handled in GEANT4 as hybrid processes which typically require both
electromagnetic and hadronic models for their implementation. While neutrino-induced reactions are not currently
provided, the GEANT4 hadronic framework is general enough to include their future implementation as a hybrid of
weak and hadronic models.

The general scheme followed is to factor the full interaction into an electromagnetic (or weak) vertex, in which a
virtual particle is generated, and a hadronic vertex in which the virtual particle interacts with a target nucleus. In most
cases the hadronic vertex is implemented by an existing GEANT4 model which handles the intra-nuclear propagation.

The cross sections for these processes are parameterizations, either directly of data or of theoretical distributions
determined from the integration of lepton-nucleon cross sections double differential in energy loss and momentum
transfer.
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CHAPTER

FORTYFOUR

CROSS-SECTIONS IN PHOTONUCLEAR AND ELECTRONUCLEAR
REACTIONS

44.1 Approximation of Photonuclear Cross Sections

The photonuclear cross sections parameterized in the G4PhotoNuclearCrossSection class cover all incident photon
energies from the hadron production threshold upward. The parameterization is subdivided into five energy regions,
each corresponding to the physical process that dominates it.

• The Giant Dipole Resonance (GDR) region, depending on the nucleus, extends from 10 MeV up to 30 MeV. It
usually consists of one large peak, though for some nuclei several peaks appear.

• The “quasi-deuteron” region extends from around 30 MeV up to the pion threshold and is characterized by small
cross sections and a broad, low peak.

• The ∆ region is characterized by the dominant peak in the cross section which extends from the pion threshold
to 450 MeV.

• The Roper resonance region extends from roughly 450 MeV to 1.2 GeV. The cross section in this region is not
strictly identified with the real Roper resonance because other processes also occur in this region.

• The Reggeon-Pomeron region extends upward from 1.2 GeV.

In the GEANT4 photonuclear data base there are about 50 nuclei for which the photonuclear absorption cross sections
have been measured in the above energy ranges. For low energies this number could be enlarged, because for heavy
nuclei the neutron photoproduction cross section is close to the total photo-absorption cross section. Currently, how-
ever, 14 nuclei are used in the parameterization: 1H, 2H, 4He, 6Li, 7Li, 9Be, 12C, 16O, 27Al, 40Ca, Cu, Sn, Pb, and U.
The resulting cross section is a function of 𝐴 and 𝑒 = log(𝐸𝛾), where 𝐸𝛾 is the energy of the incident photon. This
function is the sum of the components which parameterize each energy region. The cross section in the GDR region
can be described as the sum of two peaks,

𝐺𝐷𝑅(𝑒) = 𝑡ℎ(𝑒, 𝑏1, 𝑠1) · exp(𝑐1 − 𝑝1 · 𝑒) + 𝑡ℎ(𝑒, 𝑏2, 𝑠2) · exp(𝑐2 − 𝑝2 · 𝑒).

The exponential parameterizes the falling edge of the resonance which behaves like a power law in𝐸𝛾 . This behavior is
expected from the CHIPS modelling approach ([DKW00]), which includes the nonrelativistic phase space of nucleons
to explain evaporation. The function

𝑡ℎ(𝑒, 𝑏, 𝑠) =
1

1 + exp
(︀
𝑏−𝑒
𝑠

)︀ ,
describes the rising edge of the resonance. It is the nuclear-barrier-reflection function and behaves like a threshold,
cutting off the exponential. The exponential powers 𝑝1 and 𝑝2 are

𝑝1 = 1, 𝑝2 = 2 for 𝐴 < 4

𝑝1 = 2, 𝑝2 = 4 for 4 ≤ 𝐴 < 8

𝑝1 = 3, 𝑝2 = 6 for 8 ≤ 𝐴 < 12

𝑝1 = 4, 𝑝2 = 8 for 𝐴 ≥ 12.
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The 𝐴-dependent parameters 𝑏𝑖, 𝑐𝑖 and 𝑠𝑖 were found for each of the 14 nuclei listed above and interpolated for other
nuclei. The ∆ isobar region was parameterized as

∆(𝑒, 𝑑, 𝑓, 𝑔, 𝑟, 𝑞) =
𝑑 · 𝑡ℎ(𝑒, 𝑓, 𝑔)

1 + 𝑟 · (𝑒− 𝑞)2
,

where 𝑑 is an overall normalization factor. 𝑞 can be interpreted as the energy of the ∆ isobar and 𝑟 can be interpreted
as the inverse of the ∆ width. Once again 𝑡ℎ is the threshold function. The 𝐴-dependence of these parameters is as
follows:

• 𝑑 = 0.41 ·𝐴 (for 1H it is 0.55, for 2H it is 0.88), which means that the ∆ yield is proportional to 𝐴;

• 𝑓 = 5.13 − .00075 · 𝐴. exp(𝑓) shows how the pion threshold depends on 𝐴. It is clear that the threshold
becomes 140 MeV only for uranium; for lighter nuclei it is higher.

• 𝑔 = 0.09 for 𝐴 ≥ 7 and 0.04 for 𝐴 < 7;

• 𝑞 = 5.84 − .09
1+.003·𝐴2 , which means that the “mass” of the ∆ isobar moves to lower energies;

• 𝑟 = 11.9−1.24 · log(𝐴). 𝑟 is 18.0 for 1H. The inverse width becomes smaller with𝐴, hence the width increases.

The 𝐴-dependence of the 𝑓 , 𝑞 and 𝑟 parameters is due to the ∆ +𝑁 → 𝑁 +𝑁 reaction, which can take place in the
nuclear medium below the pion threshold. The quasi-deuteron contribution was parameterized with the same form as
the ∆ contribution but without the threshold function:

𝑄𝐷(𝑒, 𝑣, 𝑤, 𝑢) =
𝑣

1 + 𝑤 · (𝑒− 𝑢)2
.

For 1H and 2H the quasi-deuteron contribution is almost zero. For these nuclei the third baryonic resonance was used
instead, so the parameters for these two nuclei are quite different, but trivial. The parameter values are given below.

• 𝑣 = exp(−1.7+𝑎·0.84)
1+exp(7·(2.38−𝑎)) , where 𝑎 = log(𝐴). This shows that the 𝐴-dependence in the quasi-deuteron region is

stronger than 𝐴0.84. It is clear from the denominator that this contribution is very small for light nuclei (up to
6Li or 7Li). For 1H it is 0.078 and for 2H it is 0.08, so the delta contribution does not appear to be growing. Its
relative contribution disappears with 𝐴.

• 𝑢 = 3.7 and 𝑤 = 0.4. The experimental information is not sufficient to determine an 𝐴-dependence for these
parameters. For both 1H and 2H 𝑢 = 6.93 and 𝑤 = 90, which may indicate contributions from the ∆(1600) and
∆(1620).

The transition Roper contribution was parameterized using the same form as the quasi-deuteron contribution:

𝑇𝑟(𝑒, 𝑣, 𝑤, 𝑢) =
𝑣

1 + 𝑤 · (𝑒− 𝑢)2
.

Using 𝑎 = log(𝐴), the values of the parameters are

• 𝑣 = exp(−2.+ 𝑎 · 0.84). For 1H it is 0.22 and for 2H it is 0.34.

• 𝑢 = 6.46 + 𝑎 · 0.061 (for 1H and for 2H it is 6.57), so the “mass” of the Roper moves higher with 𝐴.

• 𝑤 = 0.1 + 𝑎 · 1.65. For 1 H it is 20.0 and for 2H it is 15.0).

The Regge-Pomeron contribution was parametrized as follows:

𝑅𝑃 (𝑒, ℎ) = ℎ · 𝑡ℎ(7., 0.2) · (0.0116 · exp(𝑒 · 0.16) + 0.4 · exp(−𝑒 · 0.2)), (44.1)

where ℎ = 𝐴 · exp(−𝑎 · (0.885 + 0.0048 · 𝑎)) and, again, 𝑎 = log(𝐴). The first exponential in Eq. (44.1) describes
the Pomeron contribution while the second describes the Regge contribution.
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44.2 Electronuclear Cross Sections and Reactions

Electronuclear reactions are so closely connected with photonuclear reactions that they are sometimes called “pho-
tonuclear” because the one-photon exchange mechanism dominates in electronuclear reactions. In this sense electrons
can be replaced by a flux of equivalent photons. This is not completely true, because at high energies the Vector
Dominance Model (VDM) or diffractive mechanisms are possible, but these types of reactions are beyond the scope
of this discussion.

44.3 Common Notation for Different Approaches to Electronuclear
Reactions

The Equivalent Photon Approximation (EPA) was proposed by E. Fermi [Fer24] and developed by C. Weizsacker
and E. Williams [Weizsacker34][Wil34] and by L. Landau and E. Lifshitz [LL34]. The covariant form of the EPA
method was developed in Refs. [PS61] and [GSKO62]. When using this method it is necessary to take into account
that real photons are always transversely polarized while virtual photons may be longitudinally polarized. In general
the differential cross section of the electronuclear interaction can be written as

𝑑2𝜎

𝑑𝑦𝑑𝑄2
=

𝛼

𝜋𝑄2
(𝑆𝑇𝐿 · (𝜎𝑇 + 𝜎𝐿) − 𝑆𝐿 · 𝜎𝐿),

where

𝑆𝑇𝐿 = 𝑦
1 − 𝑦 + 𝑦2

2 + 𝑄2

4𝐸2 − 𝑚2
𝑒

𝑄2

(︁
𝑦2 + 𝑄2

𝐸2

)︁
𝑦2 + 𝑄2

𝐸2

,

𝑆𝐿 =
𝑦

2

(︂
1 − 2𝑚2

𝑒

𝑄2

)︂
.

The differential cross section of the electronuclear scattering can be rewritten as

𝑑2𝜎𝑒𝐴
𝑑𝑦𝑑𝑄2

=
𝛼𝑦

𝜋𝑄2

(︃
(1 − 𝑦

2 )2

𝑦2 + 𝑄2

𝐸2

+
1

4
− 𝑚2

𝑒

𝑄2

)︃
𝜎𝛾*𝐴,

where 𝜎𝛾*𝐴 = 𝜎𝛾𝐴(𝜈) for small 𝑄2 and must be approximated as a function of 𝜖, 𝜈, and 𝑄2 for large 𝑄2. Interactions
of longitudinal photons are included in the effective 𝜎𝛾*𝐴 cross section through the 𝜖 factor, but in the present GEANT4
method, the cross section of virtual photons is considered to be 𝜖-independent. The electronuclear problem, with
respect to the interaction of virtual photons with nuclei, can thus be split in two. At small 𝑄2 it is possible to use
the 𝜎𝛾(𝜈) cross section. In the 𝑄2 ≫ 𝑚2

𝑒 region it is necessary to calculate the effective 𝜎𝛾*(𝜖, 𝜈,𝑄2) cross section.
Following the EPA notation, the differential cross section of electronuclear scattering can be related to the number of
equivalent photons 𝑑𝑛 = 𝑑𝜎/𝜎𝛾* . For 𝑦 𝑙𝑙1 and 𝑄2 < 4𝑚2

𝑒 the canonical method [VBB71] leads to the simple result

𝑦𝑑𝑛(𝑦)

𝑑𝑦
= −2𝛼

𝜋
ln(𝑦). (44.2)

In [BGMS75] the integration over 𝑄2 for 𝜈2 ≫ 𝑄2
𝑚𝑎𝑥 ≃ 𝑚2

𝑒 leads to

𝑦𝑑𝑛(𝑦)

𝑑𝑦
= −𝛼

𝜋

[︂
1 + (1 − 𝑦)2

2
ln

(︂
𝑦2

1 − 𝑦

)︂
+ (1 − 𝑦)

]︂
.

In the 𝑦 ≪ 1 limit this formula converges to Eq. (44.2). But the correspondence with Eq. (44.2) can be made more
explicit if the exact integral

𝑦𝑑𝑛(𝑦)

𝑑𝑦
=
𝛼

𝜋

(︂
1 + (1 − 𝑦)2

2
𝑙1 − (1 − 𝑦)𝑙2 −

(2 − 𝑦)2

4
𝑙3

)︂
, (44.3)
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where

𝑙1 = ln

(︂
𝑄2

𝑚𝑎𝑥

𝑄2
𝑚𝑖𝑛

)︂
,

𝑙2 = 1 − 𝑄2
𝑚𝑎𝑥

𝑄2
𝑚𝑖𝑛

,

𝑙3 = ln

(︂
𝑦2 +𝑄2

𝑚𝑎𝑥/𝐸
2

𝑦2 +𝑄2
𝑚𝑖𝑛/𝐸

2

)︂
,

𝑄2
𝑚𝑖𝑛 =

𝑚2
𝑒𝑦

2

1 − 𝑦
,

is calculated for

𝑄2
𝑚𝑎𝑥(𝑚𝑒)

=
4𝑚2

𝑒

1 − 𝑦
. (44.4)

The factor (1 − 𝑦) is used arbitrarily to keep 𝑄2
𝑚𝑎𝑥(𝑚𝑒)

> 𝑄2
𝑚𝑖𝑛, which can be considered as a boundary between

the low and high 𝑄2 regions. The full transverse photon flux can be calculated as an integral of Eq. (44.3) with the
maximum possible upper limit

𝑄2
𝑚𝑎𝑥(𝑚𝑎𝑥) = 4𝐸2(1 − 𝑦). (44.5)

The full transverse photon flux can be approximated by

𝑦𝑑𝑛(𝑦)

𝑑𝑦
= −2𝛼

𝜋

(︂
(2 − 𝑦)2 + 𝑦2

2
ln(𝛾) − 1

)︂
, (44.6)

where 𝛾 = 𝐸/𝑚𝑒. It must be pointed out that neither this approximation nor Eq. (44.3) works at 𝑦 ≃ 1; at this point
𝑄2

𝑚𝑎𝑥(𝑚𝑎𝑥) becomes smaller than 𝑄2
𝑚𝑖𝑛. The formal limit of the method is 𝑦 < 1 − 1

2𝛾 .

In Fig. 44.1(a,b) the energy distribution for the equivalent photons is shown. The low-𝑄2 photon flux with the upper
limit defined by Eq. (44.4) is compared with the full photon flux. The low-𝑄2 photon flux is calculated using Eq.
(44.2) (dashed lines) and using Eq. (44.3) (dotted lines). The full photon flux is calculated using Eq. (44.6) (the solid
lines) and using Eq. (44.3) with the upper limit defined by Eq.(44.5) (dash-dotted lines, which differ from the solid
lines only at 𝜈 ≈ 𝐸𝑒). The conclusion is that in order to calculate either the number of low-𝑄2 equivalent photons
or the total number of equivalent photons one can use the simple approximations given by Eq. (44.2) and Eq.(44.6),
respectively, instead of using Eq. (44.3), which cannot be integrated over 𝑦 analytically. Comparing the low-𝑄2 photon
flux and the total photon flux it is possible to show that the low-𝑄2 photon flux is about half of the the total. From
the interaction point of view the decrease of 𝜎𝛾* with increasing 𝑄2 must be taken into account. The cross section
reduction for the virtual photons with large 𝑄2 is governed by two factors. First, the cross section drops with 𝑄2 as
the squared dipole nucleonic form-factor

𝐺2
𝐷(𝑄2) ≈

(︂
1 +

𝑄2

(843 MeV)2

)︂−2

.

Second, all the thresholds of the 𝛾𝐴 reactions are shifted to higher 𝜈 by a factor 𝑄2/2𝑀 , which is the difference
between the 𝐾 and 𝜈 values. Following the method proposed in [BFG+76] the 𝜎𝛾* at large 𝑄2 can be approximated
as

𝜎𝛾* = (1 − 𝑥)𝜎𝛾(𝐾)𝐺2
𝐷(𝑄2)𝑒𝑏(𝜖,𝐾)·𝑟+𝑐(𝜖,𝐾)·𝑟3 , (44.7)

where 𝑟 = 1
2 ln(𝑄2+𝜈2

𝐾2 ). The 𝜖-dependence of the 𝑎(𝜖,𝐾) and 𝑏(𝜖,𝐾) functions is weak, so for simplicity the 𝑏(𝐾)
and 𝑐(𝐾) functions are averaged over 𝜖. They can be approximated as

𝑏(𝐾) ≈
(︂

𝐾

185 MeV

)︂0.85

,

422 Chapter 44. Cross-sections in Photonuclear and Electronuclear Reactions



Physics Reference Manual, Release 10.4

Fig. 44.1: Relative contribution of equivalent photons with small 𝑄2 to the total “photon flux” for (a) 1 GeV electrons
and (b) 10 GeV electrons. In figures (c) and (d) the equivalent photon distribution 𝑑𝑛(𝜈,𝑄2) is multiplied by the
photonuclear cross section 𝜎𝛾*(𝐾,𝑄2) and integrated over 𝑄2 in two regions: the dashed lines are integrals over the
low-𝑄2 equivalent photons (under the dashed line in the first two figures), and the solid lines are integrals over the
high-𝑄2 equivalent photons (above the dashed lines in the first two figures).
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and

𝑐(𝐾) ≈ −
(︂

𝐾

1390 MeV

)︂3

.

The result of the integration of the photon flux multiplied by the cross section approximated by Eq. (44.7) is shown
in Fig. 44.1(c,d). The integrated cross sections are shown separately for the low-𝑄2 region (𝑄2 < 𝑄2

𝑚𝑎𝑥(𝑚𝑒)
, dashed

lines) and for the high-𝑄2 region (𝑄2 > 𝑄2
𝑚𝑎𝑥(𝑚𝑒)

, solid lines). These functions must be integrated over ln(𝜈), so
it is clear that because of the Giant Dipole Resonance contribution, the low-𝑄2 part covers more than half the total
𝑒𝐴→ hadrons cross section. But at 𝜈 >200 MeV, where the hadron multiplicity increases, the large𝑄2 part dominates.
In this sense, for a better simulation of the production of hadrons by electrons, it is necessary to simulate the high-𝑄2

part as well as the low-𝑄2 part.

Taking into account the contribution of high-𝑄2 photons it is possible to use Eq. (44.6) with the over-estimated
𝜎𝛾*𝐴 = 𝜎𝛾𝐴(𝜈) cross section. The slightly over-estimated electronuclear cross section is

𝜎*
𝑒𝐴 = (2 ln(𝛾) − 1) · 𝐽1 −

ln(𝛾)

𝐸𝑒

(︂
2𝐽2 −

𝐽3
𝐸𝑒

)︂
.

where

𝐽1(𝐸𝑒) =
𝛼

𝜋

∫︁ 𝐸𝑒

𝜎𝛾𝐴(𝜈)𝑑 ln(𝜈)

𝐽2(𝐸𝑒) =
𝛼

𝜋

∫︁ 𝐸𝑒

𝜈𝜎𝛾𝐴(𝜈)𝑑 ln(𝜈),

and

𝐽3(𝐸𝑒) =
𝛼

𝜋

∫︁ 𝐸𝑒

𝜈2𝜎𝛾𝐴(𝜈)𝑑 ln(𝜈).

The equivalent photon energy 𝜈 = 𝑦𝐸 can be obtained for a particular random number 𝑅 from the equation

𝑅 =
(2 ln(𝛾) − 1)𝐽1(𝜈) − ln(𝛾)

𝐸𝑒

(︁
2𝐽2(𝜈) − 𝐽3(𝜈)

𝐸𝑒

)︁
(2 ln(𝛾) − 1)𝐽1(𝐸𝑒) − ln(𝛾)

𝐸𝑒

(︁
2𝐽2(𝐸𝑒) − 𝐽3(𝐸𝑒)

𝐸𝑒

)︁ .
Eq. (44.3) is too complicated for the randomization of 𝑄2 but there is an easily randomized formula which approxi-
mates Eq. (44.3) above the hadronic threshold (𝐸 > 10 MeV). It reads

𝜋

𝛼𝐷(𝑦)

∫︁ 𝑄2

𝑄2
𝑚𝑖𝑛

𝑦𝑑𝑛(𝑦,𝑄2)

𝑑𝑦𝑑𝑄2
𝑑𝑄2 = −𝐿(𝑦,𝑄2) − 𝑈(𝑦), (44.8)

where

𝐷(𝑦) = 1 − 𝑦 +
𝑦2

2
,

𝐿(𝑦,𝑄2) = ln

[︃
𝐹 (𝑦) +

(︂
𝑒𝑃 (𝑦) − 1 +

𝑄2

𝑄2
𝑚𝑖𝑛

)︂−1
]︃
,

and

𝑈(𝑦) = 𝑃 (𝑦) ·
(︂

1 − 𝑄2
𝑚𝑖𝑛

𝑄2
𝑚𝑎𝑥

)︂
,

with

𝐹 (𝑦) =
(2 − 𝑦)(2 − 2𝑦)

𝑦2
· 𝑄

2
𝑚𝑖𝑛

𝑄2
𝑚𝑎𝑥
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and

𝑃 (𝑦) =
1 − 𝑦

𝐷(𝑦)
.

The 𝑄2 value can then be calculated as

𝑄2

𝑄2
𝑚𝑖𝑛

= 1 − 𝑒𝑃 (𝑦) +
(︁
𝑒𝑅·𝐿(𝑦,𝑄2

𝑚𝑎𝑥)−(1−𝑅)·𝑈(𝑦) − 𝐹 (𝑦)
)︁−1

,

where 𝑅 is a random number. In Fig. 44.2, Eq. (44.3) (solid curve) is compared to Eq. (44.8) (dashed curve). Because
the two curves are almost indistinguishable in the figure, this can be used as an illustration of the𝑄2 spectrum of virtual
photons, which is the derivative of these curves. An alternative approach is to use Eq. (44.3) for the randomization
with a three dimensional table 𝑦𝑑𝑛

𝑑𝑦 (𝑄2, 𝑦, 𝐸𝑒).

Fig. 44.2: Integrals of 𝑄2 spectra of virtual photons for three energies 10 MeV, 100 MeV, and 1 GeV at y=0.001,
y=0.5, and y=0.95. The solid line corresponds to Eq. (44.3) and the dashed line (which almost everywhere coincides
with the solid line) corresponds to Eq. (44.3).

After the 𝜈 and 𝑄2 values have been found, the value of 𝜎𝛾*𝐴(𝜈,𝑄2) is calculated using Eq. (44.7). If 𝑅 · 𝜎𝛾𝐴(𝜈) >
𝜎𝛾*𝐴(𝜈,𝑄2), no interaction occurs and the electron keeps going. This “do nothing” process has low probability and
cannot shadow other processes.
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CHAPTER

FORTYFIVE

GAMMA-NUCLEAR INTERACTIONS

45.1 Process and Cross Section

Gamma-nuclear reactions in GEANT4 are handled by the class G4PhotoNuclearProcess. The default cross section
class for this process is G4PhotoNuclearCrossSection, which was described in detail in the previous chapter.

45.2 Final State Generation

Final state generation proceeds by two different models, one for incident gamma energies of a few GeV and below, and
one for high energies. For high energy gammas, the QGSP model is used. Incident gammas are treated as QCD strings
which collide with nucleons in the nucleus, forming more strings which later hadronize to produce secondaries. In this
particular model the remnant nucleus is de-excited using the GEANT4 precompound and de-excitation sub-models.

At lower incident energies, there are two models to choose from. The Bertini-style cascade (G4CascadeInterface
interacts the incoming gamma with nucleons using measured partial cross sections to decide the final state multiplicity
and particle types. Secondaries produced in this initial interaction are then propagated through the nucleus so that
they may react with other nucleons before exiting the nucleus. The remnant nucleus is then de-excited to produce low
energy fragments. Details of this model are provided in another chapter in this manual.

An alternate handling of low energy gamma interactions is provided by G4GammaNuclearReaction, which is based
upon the Chiral Invariant Phase Space model (CHIPS [DKW00a][DKW00b][DKW00]). In GEANT4 version 9.6 and
earlier a separate CHIPS model was provided for gamma nuclear interactions. Here the incoming gamma is absorbed
into a nucleon or cluster of nucleons within the target nucleus. This forms an excited bag of partons which later fuse to
form final state hadrons. Parton fusion continues until there are none left, at which point the final nuclear evaporation
stage is invoked to bring the nucleus to its ground state.

45.3 Low Energy Nuclear Data Model

The LEND model (Low Energy Nuclear Data Model) utilised evaluated data to sample the final states of gamma-
nuclear interactions to high precision. This model is particularly suitable for incident gammas below 20 MeV giving
higher precision than the default Bertini Cascade model (BertiniCascade).
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CHAPTER

FORTYSIX

ELECTRO-NUCLEAR INTERACTIONS

46.1 Process and Cross Section

Electro-nuclear reactions in GEANT4 are handled by the classes G4ElectronNuclearProcess and
G4PositronNuclearProcess. The default cross section class for both these processes is G4ElectroNuclearCrossSection
which was described in detail in an earlier chapter.

46.2 Final State Generation

Final state generation proceeds in two steps. In the first step the electromagnetic vertex of the electron/positron-
nucleus reaction is calculated. Here the virtual photon spectrum is generated by sampling parameterized 𝑄2 and 𝜈
distributions. The equivalent photon method is used to get a real photon from this distribution.

In the second step, the real photon is interacted with the target nucleus at the hadronic vertex, assuming the photon
can be treated as a hadron. Photons with energies below 10 GeV can be interacted directly with nucleons in the
target nucleus using the measured (𝛾, 𝑝) partial cross sections to decide the final state multiplicity and particle types.
This is currently done by the Bertini-style cascade (G4CascadeInterface). Photons with energies above 10 GeV are
converted to 𝜋0s and then allowed to interact with nucleons using the FTFP model. In this model the hadrons are
treated as QCD strings which collide with nucleons in the nucleus, forming more strings which later hadronize to
produce secondaries. In this particular model the remnant nucleus is de-excited using the GEANT4 precompound and
de-excitation sub-models.

This two-step process is implemented in the G4ElectroVDNuclearModel. An alternative model is the CHIPS-based
G4ElectroNuclearReaction [DKW00]. This model also uses the equivalent photon approximation in which the incom-
ing electron or positron generates a virtual photon at the electromagnetic vertex, and the virtual photon is converted
to a real photon before it interacts with the nucleus. The real photon interacts with the hadrons in the target using the
CHIPS model in which quasmons (generalized excited hadrons) are produced and then decay into final state hadrons.
Electrons and positrons of all energies can be handled by this single model.
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CHAPTER

FORTYSEVEN

MUON-NUCLEAR INTERACTIONS

47.1 Process and Cross Section

Muon-nuclear reactions in GEANT4 are handled by the class G4MuonNuclearProcess. The default cross section class
for this process is G4KokoulinMuonNuclearXS, the details of which are discussed in Muon Photonuclear Interaction.

47.2 Final State Generation

Just as for the electro-nuclear models, the final state generation for the muon-nuclear reactions proceeds in two steps.
In the first step the electromagnetic vertex of the muon-nucleus reaction is calculated. Here the virtual photon spectrum
is generated by sampling parameterized momentum transfer (𝑄2) and energy transfer (𝜈) distributions. In this case the
same equations used to generate the process cross section are used to sample 𝑄2 and 𝜈. The equivalent photon method
is then used to get a real photon.

In the second step, the real photon is interacted with the target nucleus at the hadronic vertex, assuming the photon
can be treated as a hadron. Photons with energies below 10 GeV can be interacted directly with nucleons in the
target nucleus using the measured (𝛾, 𝑝) partial cross sections to decide the final state multiplicity and particle types.
This is currently done by the Bertini-style cascade (G4CascadeInterface). Photons with energies above 10 GeV are
converted to 𝜋0s and then allowed to interact with nucleons using the FTFP model. In this model the hadrons are
treated as QCD strings which collide with nucleons in the nucleus, forming more strings which later hadronize to
produce secondaries. In this particular model the remnant nucleus is de-excited using the GEANT4 precompound and
de-excitation sub-models.

This two-step process is implemented in the G4MuonVDNuclearModel.
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