
www.pld.com.cn

Introduction to VHDL

www.pld.com.cn

Course Objectives

n Learn the basic constructs of VHDL
n Learn the modeling structure of VHDL
n Understand the design environments

– Simulation
– Synthesis

www.pld.com.cn

Course Outline

n VHDL Basics
– Overview of language

n Design Units
– Entity
– Architecture
– Configurations
– Packages (Libraries)

n Architecture Modeling Fundamentals
– Signals
– Processes

• Sequential Statements

www.pld.com.cn

Course Outline

n Understanding VHDL and Logic Synthesis
– Process Statement
– Inferring Logic

n Model Application
– State Machine Coding

n Hierarchical Designing
– Overview
– Structural Modeling
– Application of LPM’s

www.pld.com.cn

VHDL
Basics

www.pld.com.cn

VHDL

VHSIC (Very High Speed Integrated Circuit)

Hardware

Description

Language

www.pld.com.cn

What is VHDL?

n IEEE industry standard hardware description
language

n High-level description language for both Simulation &
Synthesis

www.pld.com.cn

VHDL History

n 1980 - U.S. Department of Defense (DOD) funded a
project to create a standard hardware description
language under the Very High Speed Integrated
Circuit (VHSIC) program.

n 1987 - the Institute of Electrical and Electronics
Engineers (IEEE) ratified as IEEE Standard 1076.

n 1993 - the VHDL language was revised and updated
to IEEE 1076 ‘93.

www.pld.com.cn

Terminology

n HDL - Hardware Description Language is a software
programming language that is used to model a piece
of hardware

n Behavior Modeling - A component is described by its
input/output response

n Structural Modeling - A component is described by
interconnecting lower-level components/primitives

www.pld.com.cn

Behavior Modeling

input1, .., inputn
output1, .., outputn

 IF input1 THEN
FOR j IN high DOWNTO low LOOP
 shft(j) := shft(j);
END LOOP;
 output1 <= shft AFTER 5ns

n Only the functionality of the circuit, no structure
n No specific hardware intent
n For the purpose of synthesis, as well as simulation

www.pld.com.cn

Structural Modeling

input1

inputn

output1

outputn

Higher-level Component

 Lower-level
Component1

 Lower-level
Component1

n Functionality and structure of the circuit
n Call out the specific hardware
n For the purpose of synthesis

www.pld.com.cn

More Terminology

n Register Transfer Level (RTL) - A type of behavioral
modeling, for the purpose of synthesis.
– Hardware is implied or inferred
– Synthesizable

n Synthesis - Translating HDL to a circuit and then
optimizing the represented circuit

n RTL Synthesis - The process of translating a RTL
model of hardware into an optimized technology
specific gate level implementation

www.pld.com.cn

RTL Synthesis

Process (a, b, c, d, sel)
 begin
 case (sel) is
 when “00” => mux_out <= a;

when “01” => mux_out <= b;
when “10” => mux_out <= c;
when “11” => mux_out <= d;

 end case;

a

d

a

d

Translation

Optimization

a

d
sel

2

binferred mux_out
c

www.pld.com.cn

VHDL Synthesis vs. Other HDL Standards

n VHDL
– “Tell me how your circuit should behave and I will give you

hardware that does the job.”

n Verilog
– Similar to VHDL

n ABEL, PALASM, AHDL
– “Tell me what hardware you want and I will give it to you”

www.pld.com.cn

VHDL Synthesis vs. Other HDL Standards

n VHDL
– “Give me a circuit whose output only changes when there is

a low-to-high transition on a particular input. When the
transition happens, make the output equal to the input until
the next transition.”

– Result: VHDL Synthesis provides a positive edge-triggered
flipflop

n ABEL, PALASM, AHDL
– “Give me a D-type flipflop.”
– Result: ABEL, PALASM, AHDL synthesis provides a D-type

flipflop. The sense of the clock depends on the synthesis
tool.

www.pld.com.cn

Typical Synthesis Design Flow

Synthesis
Compiler

Simulation
Waveform

VHDL
Library

Netlist

Text Output
 Test

Vectors

Timing Analysis Place/Route

Technology
 Library

 VHDL
 Model

www.pld.com.cn

Typical Simulation Design Flow

Simulation
Compiler

VHDL
Simulation

Waveform

VHDL
 Library

 VHDL
TestBench

 Simulation
 Model

Text Output

 Test
Vectors

Optional

VHDL
 Model

www.pld.com.cn

VHDL Basics

n Two sets of constructs:
– Synthesis
– Simulation

n The VHDL Language is made up of reserved keywords.
n The language is, for the most part, NOT case sensitive.
n VHDL statements are terminated with a ;
n VHDL is white space insensitive. Used for readability.
n Comments in VHDL begin with “--” to eol
n VHDL models can be written:

– Behavioral
– Structural
– Mixed

www.pld.com.cn

VHDL
Design Units

www.pld.com.cn

VHDL Basics

n VHDL Design Units
– Entity

• Used to define external view of a model. i.e. symbol
– Architecture

• Used to define the function of the model. i.e. schematic
– Configuration

• Used to associate an Architecture with an Entity
– Package

• Collection of information that can be referenced by VHDL
models. I.e. Library

• Consist of two parts Package Declaration and Package
Body.

www.pld.com.cn

Entity Declaration

ENTITY <entity_name> IS
Generic Declarations
Port Declarations

END <entity_name>; (1076-1987 version)
END ENTITY <entity_name> ; (1076-1993 version)

n Analogy : Symbol
n <entity_name> can be any alpha/numerical name

– Note: MAX+PLUS II requires that the <entity_name> and <file_name> be
the same.

n Generic Declarations
– Used to pass information into a model.
– MAX+PLUS II place some restriction on the use of Generics.

n Port Declarations
– Used to describe the inputs and outputs i.e. pins

www.pld.com.cn

Entity : Generic Declaration

n New values can be passed during compilation.
n During simulation/synthesis a Generic is read only.

ENTITY <entity_name> IS
Generic (constant tplh , tphl : time := 5 ns

-- Note constant is assumed and is not required
 tphz, tplz : time := 3 ns;

 default_value : integer := 1;
 cnt_dir : string := “up”
);

Port Declarations
END <entity_name>; (1076-1987 version)
END ENTITY <entity_name> ; (1076-1993 version)

www.pld.com.cn

Entity : Port Declarations

n Structure : <class> object_name : <mode> <type> ;
• <class> : what can be done to an object
• Object_name : identifier
• <mode> : directional

– in (input) out (output)
– inout (bidirectional) buffer (output w/ internal feedback)

• <type> : What can be contained in the object

ENTITY <entity_name> IS
Generic Declarations
Port (signal clk : in bit;
 --Note: signal is assumed and is not required
 q : out bit

);
END <entity_name>; (1076-1987 version)
END ENTITY <entity_name> ; (1076-1993 version)

www.pld.com.cn

Architecture

n Key aspects of the Architecture
– Analogy : schematic
– Describes the Functionality and Timing of a model
– Must be associated with an ENTITY
– ENTITY can have multiple architectures
– Architecture statements execute concurrently (Processes)
– Architecture Styles

• Behavioral : How designs operate
– RTL : Designs are described in terms of Registers
– Functional : No timing

• Structural : Netlist
– Gate/Component Level

• Hybrid : Mixture of the above

www.pld.com.cn

Architecture

ARCHITECTURE <identifier> OF <entity_identifier> IS
--architecture declaration section (list does not include all)

signal temp : integer := 1; -- Signal Declarations :=1 is default value optional
constant load : boolean := true; --Constant Declarations
type states is (S1, S2, S3, S4) ; --Type Declarations
--Component Declarations discussed later
--Subtype Declarations
--Attribute Declarations
--Attribute Specifications
--Subprogram Declarations
--Subprogram body

BEGIN
Process Statements
Concurrent Procedural calls
Concurrent Signal assignment
Component instantiation statements
Generate Statements

END <architecture identifier> ; (1076-1987 version)

END ARCHITECTURE; (1076-1993 version)

www.pld.com.cn

VHDL - Basic Modeling Structure

ENTITY entity_name IS
generics
port declarations

END entity_name;

ARCHITECTURE arch_name OF entity_name IS
enumerated data types
internal signal declarations
component declarations

BEGIN
signal assignment statements
process statements
component instantiations

END arch_name;

www.pld.com.cn

VHDL : Entity - Architecture

input1

inputn

output1

outputn
Symbol

Entity

CLRN
ENA

D Q

clk

clr

mux_out
a

d

sel
2

b
c

Schematic

Architecture

www.pld.com.cn

Configuration

n Used to make associations within models
– Associate a Entity and Architecture
– Associate a component to an Entity-Architecture

n Widely used in Simulation environments
– Provides a flexible and fast path to design alternatives

n Limited or no support in Synthesis environments

CONFIGURATION <identifier> OF <entity_name> IS
FOR <architecture_name>
END FOR;

END; (1076-1987 version)
END CONFIGURATION; (1076-1993 version)

www.pld.com.cn

Putting it all together

ARCHITECTURE

a

b

sel

x

a

b

sel

y

a

b

sel

z

a

b

sel

x

y

z

ENTITYENTITY cmpl_sig IS
PORT (a, b, sel : IN bit;

x, y, z : OUT bit;
END cmpl_sig;
ARCHITECTURE logic OF cmpl_sig IS
BEGIN

 -- simple signal assignment
x <= (a AND NOT sel) OR (b AND sel);
 -- conditional signal assignment
y <= a WHEN sel='0' ELSE
 b;
 -- selected signal assignment
WITH sel SELECT

z <= a WHEN '0',
 b WHEN '1',
 '0' WHEN OTHERS;

END logic;
CONFIGURATION cmpl_sig_conf OF cmpl_sig IS

FOR logic
END FOR;

END cmpl_sig_conf;

www.pld.com.cn

Packages

n Packages are a convenient way of storing and using
information throughout an entire model.

n Packages consist of:
– Package Declaration (Required)

• Type declarations
• Subprograms declarations

– Package Body (Optional)
• Subprogram definitions

n VHDL has two built-in Packages
– Standard
– TEXTIO

www.pld.com.cn

Packages

PACKAGE <package_name> IS
Constant Declarations
Type Declarations
Signal Declarations
Subprogram Declarations
Component Declarations
--There are other Declarations

END <package_name> ; (1076-1987)
END PACKAGE <package_name> ; (1076-1993)
PACKAGE BODY <package_name> IS

Constant Declarations
Type Declarations
Subprogram Body

END <package_name> ; (1076-1987)
END PACKAGE BODY <package_name> ; (1076-1993)

www.pld.com.cn

Package Example

LIBRARY ieee;
USE ieee.std_logic_1164.all;
PACKAGE filt_cmp IS
 TYPE state_type IS (idle, tap1, tap2, tap3, tap4);
 COMPONENT acc

port(xh : in std_logic_vector(10 downto 0);
 clk, first: in std_logic;
 yn : out std_logic_vector(11 downto 4));

 END COMPONENT;
FUNCTION compare (variable a , b : integer) RETURN boolean;
END filt_cmp;
PACKAGE BODY filt_cmp IS
FUNCTION compare (variable a , b : integer) IS
 VARIABLE temp : boolean;
 Begin

If a < b then
 temp := true ;

 else
 temp := false ;
end if;

 RETURN temp ;
END compare ;
END fily_cmp ;

Package Declaration

Package Body

www.pld.com.cn

Libraries

n Contains a package or a collection of packages.
n Resource Libraries

– Standard Package
– IEEE developed packages
– Altera Component packages
– Any library of design units that are referenced in a

design.
n Working Library

– Library into which the unit is being compiled.

www.pld.com.cn

Model Referencing of Library/Package

n All packages must be compiled
n Implicit Libraries

– Work
– STD
ð Note: Items in these packages do not need to be referenced,

they are implied.

n LIBRARY Clause
– Defines the library name that can be referenced.
– Is a symbolic name to path/directory.
– Defined by the Compiler Tool.

n USE Clause
– Specifies the package and object in the library that you have

specified in the Library clause.

www.pld.com.cn

Example

n LIBRARY <name>, <name> ;
– name is symbolic and define by

compiler tool.
ð Note: Remember that WORK

 and STD do not need to
 be defined.

n USE lib_name.pack_name.object;
– ALL is a reserved word.

n Placing the Library/Use clause 1st
will allow all following design units
to access it.

LIBRARY ieee;
USE ieee.std_logic_1164.all;
ENTITY cmpl_sig IS
PORT (a, b, sel : IN std_logic;

x, y, z : OUT std_logic;
END cmpl_sig;
ARCHITECTURE logic OF cmpl_sig IS
BEGIN

 -- simple signal assignment
x <= (a AND NOT sel) OR (b AND sel);
 -- conditional signal assignment
y <= a WHEN sel='0' ELSE
 b;
 -- selected signal assignment
WITH sel SELECT

z <= a WHEN '0',
 b WHEN '1',
 '0' WHEN OTHERS;

END logic;
CONFIGURATION cmpl_sig_conf OF cmpl_sig IS

FOR logic
END FOR;

END cmpl_sig_conf;

www.pld.com.cn

Libraries

n LIBRARY STD ;
– Contains the following packages:

• standard (Types: Bit, Boolean, Integer, Real, and Time.
All operator functions to support types)

• textio (File operations)

– An implicit library (built-in)
• Does not need to be referenced in VHDL design

www.pld.com.cn

Types defined in Standard Package

n Type BIT
– 2 logic value system (‘0’, ‘1’)

signal a_temp : bit;
– BIT_VECTOR array of bits

signal temp : bit_vector(3 downto 0);
signal temp : bit_vector(0 to 3) ;

n Type BOOLEAN
– (false, true)

n Integer
– Positive and negative values in decimal

signal int_tmp : integer; -- 32 bit number
signal int_tmp1 : integer range 0 to 255; --8 bit number

ð Note: Standard package has other types

www.pld.com.cn

Libraries

n LIBRARY IEEE;
– Contains the following packages:

• std_logic_1164 (std_logic types & related functions)
• std_logic_arith (arithmetic functions)
• std_logic_signed (signed arithmetic functions)
• std_logic_unsigned (unsigned arithmetic functions)

www.pld.com.cn

Types defined in std_logic_1164 Package

n Type STD_LOGIC
– 9 logic value system (‘U’, ‘X’, ‘0’, ‘1’, ‘Z’, ‘W’, ‘L’, ‘H’, ‘-’)

• ‘W’, ‘L’, ‘H” weak values (Not supported by Synthesis)
• ‘X’ - used for unknown
• ‘Z’ - (not ‘z’) used for tri-state
• ‘-’ Don’t Care

– Resolved type: supports, signals with multiple drives.

n Type STD_ULOGIC
– Same 9 value system as STD_LOGIC
– Unresolved type: Does not support multiple signal drives.

Error will occur.

www.pld.com.cn

User-Defined Libraries/Packages

n User-defined packages can be in the same directory as
the design
 LIBRARY WORK; --optional
 USE WORK.<package name>.all;

n Or can be in a different directory from the design
 LIBRARY <any_name>;
 USE <any_name>.<package_name>.all;

www.pld.com.cn

Architecture
Modeling

Fundamentals

www.pld.com.cn

Section Overview

n Understanding the concept and usage of Signals
– Signal Assignments
– Concurrent Signal Assignment statements
– Signal Delays

n Processes
– Implied
– Explicit

n Understanding the concept and usage of Variables
n Sequential Statement

– If-Then
– Case
– Loops

www.pld.com.cn

Using Signals

n Signals represent physical interconnect (wire) that
communicate between processes (functions)

n Signals can be declared in Packages, Entity and
Architecture

Functional
 Block:
 MUX
 (signals)

 Functional
 Block:
REGISTERS
 (signals)

process process
signals

signals signals

signals

www.pld.com.cn

Assigning values to Signals

n All bits:
temp <= “10101010”;
temp <= x”AA” ; (1076-1993)

n Single bit:
temp(7) <= ‘1’;

n Bit-slicing:
temp (7 downto 4) <= “1010”;

n Single-bit: single-quote (‘)
n Multi-bit: double-quote (“)

SIGNAL temp : STD_LOGIC_VECTOR (7 downto 0);

www.pld.com.cn

Signal used as an interconnect

r

t

g

h

qb

Signal Declaration
inside Architecture

• r, t, g, h, and qb are Signals (by default)
• qa is a buried Signal and needs to be
 declared

LIBRARY ieee;
USE ieee.std_logic_1164.all;
ENTITY simp IS
PORT(r, t, g, h : IN STD_LOGIC;

 qb : OUT STD_LOGIC);
END simp;
ARCHITECTURE logic OF simp IS
SIGNAL qa : STD_LOGIC;

BEGIN

qa <= r or t;
qb <= (qa and not(g xor h));

END logic;

www.pld.com.cn

Signal Assignments

n Signal Assignments are represented by: <=
n Signal Assignments have an implied process (function)

that synthesizes to hardware

CLRN

ENA

D Q
Signal

Signal Assignment <= implied process

www.pld.com.cn

Concurrent Signal Assignments

n Three Concurrent Signal Assignments:
– Simple Signal Assignment
– Conditional Signal Assignment
– Selected Signal Assignment

www.pld.com.cn

Simple Signal Assignments

n Format: <signal_name> <= <expression>;

n Example:

r

t

g

h

qb

n VHDL Operators are used to describe the process

implied process
qa <= r or t ;
qb <= (qa and not(g xor h));

ð Parenthesis () give the
order of operation.

www.pld.com.cn

VHDL Operators

Operator Type Operator Name/Symbol

Logical and or nand nor xor xnor(1)

Relational = /= < <= > >=

Adding + - &

Signing + -

Multiplying * / mod rem

Miscellaneous ** abs not

(1) Supported in VHDL ‘93 only

www.pld.com.cn

VHDL Operators

n VHDL defines Arithmetic & Boolean functions only for
built-in data types (defined in Standard package)
– Arithmetic operators such as +, -, <, >, <=, >= are defined

only for INTEGER type.
– Boolean operators such as AND, OR, NOT are defined only

for BIT type.

n Recall: VHDL implicit library (built-in)
– Library STD

• Types defined in the Standard package:
– BIT, BOOLEAN, INTEGER

ð Note: Items in this package do not need to be referenced,
 they are implied.

www.pld.com.cn

Arithmetic Function

The VHDL compiler can
understand this operation
because an arithmetic
operation is defined for
the built-in data type
INTEGER

ENTITY opr IS
PORT (a : IN INTEGER RANGE 0 TO 16;
 b : IN INTEGER RANGE 0 TO 16;
 sum : OUT INTEGER RANGE 0 TO 32);

END opr;

ARCHITECTURE example OF opr IS
BEGIN
adder_body:PROCESS (a, b)
BEGIN

sum <= a + b;
END PROCESS adder_body;
END example;

ð Note: Remember the Library STD and the Package
Standard do not need to be referenced.

www.pld.com.cn

Operator Overloading

n How do you use Arithmetic & Boolean functions with
other data types?
– Operator Overloading - defining Arithmetic & Boolean

functions with other data types.

n Operators are overloaded by defining a function
whose name is the same as the operator itself.
– Because the operator and function name are the same, the

function name must be enclosed within double quotes to
distinguish it from the actual VHDL operator.

– The function is normally declared in a package so that it is
globally visible for any design

www.pld.com.cn

Operator Overloading Function/Package

n Packages that define these operator overloading
functions can be found in the LIBRARY IEEE.

n For example, the package std_logic_unsigned
defines some of the following functions

package std_logic_unsigned is

 function "+"(L: STD_LOGIC_VECTOR; R: STD_LOGIC_VECTOR) return STD_LOGIC_VECTOR;
 function "+"(L: STD_LOGIC_VECTOR; R: INTEGER) return STD_LOGIC_VECTOR;
 function "+"(L: INTEGER; R: STD_LOGIC_VECTOR) return STD_LOGIC_VECTOR;
 function "+"(L: STD_LOGIC_VECTOR; R: STD_LOGIC) return STD_LOGIC_VECTOR;
 function "+"(L: STD_LOGIC; R: STD_LOGIC_VECTOR) return STD_LOGIC_VECTOR;

 function "-"(L: STD_LOGIC_VECTOR; R: STD_LOGIC_VECTOR) return STD_LOGIC_VECTOR;
 function "-"(L: STD_LOGIC_VECTOR; R: INTEGER) return STD_LOGIC_VECTOR;
 function "-"(L: INTEGER; R: STD_LOGIC_VECTOR) return STD_LOGIC_VECTOR;
 function "-"(L: STD_LOGIC_VECTOR; R: STD_LOGIC) return STD_LOGIC_VECTOR;
 function "-"(L: STD_LOGIC; R: STD_LOGIC_VECTOR) return STD_LOGIC_VECTOR;

www.pld.com.cn

Use of Operator Overloading

Include these statements
at the beginning of a
design file

This allows us to perform
arithmetic on non-built-in
data types.

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_unsigned.all;

ENTITY overload IS
PORT (a : IN STD_LOGIC_VECTOR (3 downto 0);
 b : IN STD_LOGIC_VECTOR (3 downto 0);
 sum : OUT STD_LOGIC_VECTOR (4 downto 0));

END overload;

ARCHITECTURE example OF overload IS
BEGIN
adder_body:PROCESS (a, b)
BEGIN

sum <= a + b;
END PROCESS adder_body;
END example;

www.pld.com.cn

Concurrent Signal Assignments

n Three Concurrent Signal Assignments:
– Simple Signal Assignment
– Conditional Signal Assignment
– Selected Signal Assignment

www.pld.com.cn

Conditional Signal Assignments

<signal_name> <= <signal/value> when <condition1> else

<signal/value> when <condition2> else

.

.
<signal/value> when <condition3> else

<signal/value>;

n Format:

n Example:
c

b

selb a

sela

q

implied process

q <= a WHEN sela = ‘1’ ELSE
 b WHEN selb = ‘1’ ELSE
 c;

www.pld.com.cn

Selected Signal Assignments

with <expression> select
<signal_name> <= <signal/value> when <condition1>,

 <signal/value> when <condition2>,

.

.
 <signal/value> when others;

n Format:

n Example:
a

d
sel

2

b
c

q

implied process

WITH sel SELECT
 q <= a WHEN “00”,

 b WHEN “01”,
 c WHEN “10”,
 d WHEN OTHERS;

www.pld.com.cn

Selected Signal Assignments

n All possible conditions must be considered
n WHEN OTHERS clause evaluates all other possible

conditions that are not specifically stated.

SEE NEXT SLIDE

www.pld.com.cn

Selected Signal Assignment

• What are the values for a
 STD_LOGIC data type
• Answer: {‘0’,’1’,’X’,’Z’}

• Therefore, is the WHEN OTHERS
 clause necessary?
• Answer: YES

sel has a STD_LOGIC data type

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY cmpl_sig IS
PORT (a, b, sel : IN STD_LOGIC;

 z : OUT STD_LOGIC;
END cmpl_sig;

ARCHITECTURE logic OF cmpl_sig IS
BEGIN

 -- selected signal assignment
WITH sel SELECT

z <= a WHEN '0',
 b WHEN '1',
 '0' WHEN OTHERS;

END logic;

www.pld.com.cn

VHDL Model - Concurrent Signal Assignments

ARCHITECTURE

a

b

sel

x

a

b

sel

y

a

b

sel

z

a

b

sel

x

y

z

ENTITY

• The signal assignments execute in
parallel, and therefore the order we list the
statements should not affect the outcome

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY cmpl_sig IS
PORT (a, b, sel : IN STD_LOGIC;

x, y, z : OUT STD_LOGIC;
END cmpl_sig;

ARCHITECTURE logic OF cmpl_sig IS
BEGIN

 -- simple signal assignment
x <= (a AND NOT sel) OR (b AND sel);
 -- conditional signal assignment
y <= a WHEN sel='0' ELSE
 b;
 -- selected signal assignment
WITH sel SELECT

z <= a WHEN '0',
 b WHEN '1',
 '0' WHEN OTHERS;

END logic;

www.pld.com.cn

Explicit Process Statement

n Process can be thought of
as
– Implied processes
– Explicit processes

n Implied process consist of
– Concurrent signal

assignment statements
– Component statements
– Processes’ sensitivity is

read side of expression

n Explicit process
– Concurrent statement
– Consist of Sequential

statements only

-- Explicit Process Statement
PROCESS (sensitivity_list)
 Constant Declarations
 Type Declarations
 Variable Declarations

BEGIN
-- Sequential statement #1;
-- … … ..
-- Sequential statement #N ;
END PROCESS;

www.pld.com.cn

Execution of Process Statement

n Process Statement is executed
infinitely unless broken by a WAIT
statement or Sensitivity List.
– Sensitivity list implies a WAIT

statement at the end of the
process.

– Process can have multiple WAIT
statements

– Process can not have both a
Sensitivity List and WAIT
statement.

ð Note: Logic Synthesis places
 restrictions on WAIT and
 Sensitivity List

PROCESS (a,b)
 BEGIN
 --sequential statements
 END PROCESS;

PROCESS
 BEGIN
 -- sequential statements
 WAIT ON (a,b) ;
 END PROCESS;

www.pld.com.cn

Multi-Process Statements

Process 1
 Sequential
 Statement

Process N
 Sequential
 Statement

SignalsSignals

n An Architecture can
have multi-Process
Statements.

n Each Process
executes in parallel
with each other.

n However, within a
Process, the
statements are
executed
sequentially.

A
R
C
H
I
T
E
C
T
U
R
E

• Describes the functionality of design

www.pld.com.cn

VHDL Model - Multi-Process Architecture

• The Process statements execute in parallel and
 therefore, the order in which we list the statements
 should have no affect on the outcome

• Within a Process,
 the statements are
 executed sequentially

case_label: PROCESS(a, b, c, d, sel)
 BEGIN
 CASE sel IS

WHEN "00" =>
z <= a;

WHEN "01" =>
z <= b;

WHEN "10" =>
z <= c;

WHEN "11" =>
z <= d;

WHEN OTHERS =>
z <= '0';

 END CASE;
END PROCESS case_label;
END logic;

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY if_case IS
PORT (a, b, c, d : IN STD_LOGIC;

sel : IN STD_LOGIC_VECTOR(1 DOWNTO 0);
y, z : OUT STD_LOGIC);

END if_case;

ARCHITECTURE logic OF if_case IS
BEGIN
if_label: PROCESS(a, b, c, d, sel)

BEGIN
IF sel="00" THEN

y <= a;
ELSIF sel="01" THEN

y <= b;
ELSIF sel="10" THEN

y <= c;
ELSE

y <= d;
END IF;

END PROCESS if_label;
• Signal Assignments can also be
 inside Process statements.

www.pld.com.cn

Signal Assignment - delay

n Signal Assignments can be inside Process
statements or outside (like the three concurrent
signal assignments).

n Signal Assignments incur delay
– Two types of Delays

• Inertial Delay (Default)
– A pulse that is short in duration of the propagation

delay will not be transmitted
• Transport Delay

– Any pulse is transmitted no matter how short.
ð In VHDL, there are exceptions to this rule that will not be

discussed.

www.pld.com.cn

Initialize Signals

Execute
all

Processes

Advance Time

Update Signals

Execute
sensitive
Processes

Initialization
Phase

Simulation
CycleDelta

VHDL Simulation

n Event - A change in value:
from 0 to 1; or from X to 1, etc

n Simulation cycle
– Wall clock time
– Delta

• Process Execution Phase
• Signal Update Phase

n When does a simulation cycle
end and a new one begins?
ð When:

– All processes execute
– Signals are updated

n Signals get updated at end of
process.

www.pld.com.cn

Equivalent Function

• c and y get executed and updated in
 parallel at the end of the Process
 within one simulation cycle

LIBRARY ieee;
USE ieee.std_logic_1164.all;
ENTITY simp IS
PORT(a, b : IN STD_LOGIC;

 y : OUT STD_LOGIC);
END simp;
ARCHITECTURE logic OF simp IS
SIGNAL c : STD_LOGIC;

BEGIN

c <= a and b;
y <= c;

END logic;

LIBRARY ieee;
USE ieee.std_logic_1164.all;
ENTITY simp_prc IS
PORT(a,b : IN STD_LOGIC;

 y : OUT STD_LOGIC);
END simp_prc;
ARCHITECTURE logic OF simp_prc IS
SIGNAL c : STD_LOGIC;

BEGIN
process1: PROCESS(a, b)

BEGIN
c <= a and b;

END PROCESS process1;
process2: PROCESS(c)

BEGIN
y <= c;

END PROCESS process2;
END logic;

www.pld.com.cn

?? Equivalent Functions

LIBRARY ieee;
USE ieee.std_logic_1164.all;
ENTITY simp IS
PORT(a, b : IN STD_LOGIC;

y : OUT STD_LOGIC);
END simp;
ARCHITECTURE logic OF simp IS
SIGNAL c : STD_LOGIC;
BEGIN

c <= a and b;

y <= c;

END logic;

LIBRARY ieee;
USE ieee.std_logic_1164.all;
ENTITY simp_prc IS
PORT(a, b : IN STD_LOGIC;

 y: OUT STD_LOGIC);
END simp_prc;
ARCHITECTURE logic OF simp_prc IS
SIGNAL c: STD_LOGIC;

BEGIN
PROCESS(a, b)

BEGIN
c <= a and b;
y <= c;

END PROCESS;
END logic;

www.pld.com.cn

Variable Declarations

n Variables are declared inside a Process
n Variables are represented by: :=
n Variable Declaration

VARIABLE <name> : <DATA_TYPE> := <value>;
VARIABLE temp : STD_LOGIC_VECTOR (7 downto 0);

n Variable assignments are updated immediately
– Do not incur a delay

No Delay

Temporary Storage

www.pld.com.cn

Assigning values to Variables

n All bits:
temp := “10101010”;
temp := x”AA” ; (1076-1993)

n Single bit:
temp(7) := ‘1’;

n Bit-slicing:
temp (7 downto 4) := “1010”;

n Single-bit: single-quote (‘)
n Multi-bit: double-quote (“)

VARIABLE temp : STD_LOGIC_VECTOR (7 downto 0);

www.pld.com.cn

Variable Assignment

Variable declaration

Variable assignment

Variable is assigned to a
Signal to synthesize to a
piece of hardware

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY var IS
PORT (a, b : IN STD_LOGIC;

 y : OUT STD_LOGIC);
END var;

ARCHITECTURE logic OF var IS
BEGIN

PROCESS (a, b)
VARIABLE c : STD_LOGIC;

BEGIN
c := a AND b;

y <= c;

END PROCESS;

END logic;

www.pld.com.cn

Use of a Variable

val is a variable that is updated
at the instant an assignment
is made to it

Therefore, the updated value
of val is available for the
CASE statement.

LIBRARY ieee;
USE ieee.std_logic_1164.all;
ENTITY cmb_var IS
PORT(i0, i1, a : IN BIT;

 q : OUT BIT);
END cmb_var;
ARCHITECTURE logic OF cmb_var IS
BEGIN

PROCESS(i0, i1, a)
VARIABLE val : INTEGER RANGE 0 TO 1;
BEGIN

IF (a = '0') THEN
val := val;

ELSE
val := val + 1;

END IF;
CASE val IS

WHEN 0 =>
q <= i0;

WHEN 1 =>
q <= i1;

END CASE;
END PROCESS;

END logic;

www.pld.com.cn

Signal and Variable Scope

ARCHITECTURE

label1: PROCESS
 {VARIABLE Declarations}

label2: PROCESS
 {VARIABLE Declarations}

{SIGNAL Declarations}
Declared outside of the
Process Statements
(Globally visible to all
 Process Statements)

Declared inside the
Process Statements
(Locally visible to the
 Process Statements)

www.pld.com.cn

Review - Signals vs. Variables

Represent circuit
interconnect

Global scope
(communicate between

PROCESSES)
Updated at end of
Process Statement
(new value not available)

SIGNALS (<=)

UTILITY

SCOPE

BEHAVIOR

VARIABLES (:=)

Represent local
storage

Local scope
(inside PROCESS)

Updated Immediately
(new value available)

 assignee <= assignment assignee := assignmentASSIGN

www.pld.com.cn

Sequential Statements

n Sequential Statements
– IF-THEN statement
– CASE statement
– Looping Statements

www.pld.com.cn

If-Then Statements

IF <condition1> THEN

{sequence of statement(s)}
ELSIF <condition2> THEN

{sequence of statement(s)}

.

.
ELSE

{sequence of statement(s)}
END IF;

n Format: n Example:

c

b

selb a

sela

q

PROCESS(sela, selb, a, b, c)
BEGIN
 IF sela=‘1’ THEN

q <= a;
 ELSIF selb=‘1’ THEN

q <= b;
 ELSE

q <= c;
 END IF;
END PROCESS;

www.pld.com.cn

If-Then Statements

n Conditions are evaluated in order from top to bottom
– Prioritization

n The first condition, that is true, causes the
corresponding sequence of statements to be
executed.

n If all conditions are false, then the sequence of
statements associated with the “ELSE” clause is
evaluated.

www.pld.com.cn

If-Then Statements

n Similar to Conditional Signal Assignment

PROCESS(sela, selb, a, b, c)
BEGIN
 IF sela=‘1’ THEN

q <= a;
 ELSIF selb=‘1’ THEN

q <= b;
 ELSE

q <= c;
 END IF;
END PROCESS;

q <= a WHEN sela = ‘1’ ELSE
 b WHEN selb = ‘1’ ELSE
 c;

c

b

selb a

sela

q

 Implied Process Explicit Process

www.pld.com.cn

Case Statement

CASE {expression} IS
WHEN <condition1> =>

{sequence of statements}
WHEN <condition2> =>

{sequence of statements}

.

.
WHEN OTHERS => -- (optional)

{sequence of statements}
END CASE;

n Format: n Example:

a

d

sel
2

b
c

q

PROCESS(sel, a, b, c, d)
BEGIN
 CASE sel IS

WHEN “00” =>
q <= a;

WHEN “01” =>
q <= b;

WHEN “10” =>
q <= c;

WHEN OTHERS =>
q <= d;

 END CASE;
END PROCESS;

www.pld.com.cn

Case Statement

n Conditions are evaluated at once
– No Prioritization

n All possible conditions must be considered
n WHEN OTHERS clause evaluates all other possible

conditions that are not specifically stated.

www.pld.com.cn

Case Statements

n Similar to Selected Signal Assignment

PROCESS(sel, a, b, c, d)
BEGIN
 CASE sel IS

WHEN “00” =>
q <= a;

WHEN “01” =>
q <= b;

WHEN “10” =>
q <= c;

WHEN OTHERS =>
q <= d;

 END CASE;
END PROCESS;

WITH sel SELECT
q <= a WHEN “00”,
 b WHEN “01”,
 c WHEN “10”,
 d WHEN OTHERS;

a

d

sel
2

b
c

q

 Implied Process Explicit Process

www.pld.com.cn

Sequential LOOPS

n Infinite Loop
– Loops infinitely unless EXIT

statement exists

n While Loop
– Conditional test to end loop

n FOR Loop
– Iteration Loop

[loop_label]LOOP
 --sequential statement
 EXIT loop_label ;
END LOOP;

WHILE <condition> LOOP
 --sequential statements
END LOOP;

FOR <identifier> IN <range> LOOP
 --sequential statements
END LOOP;

www.pld.com.cn

FOR LOOP using a Variable: 4-bit Left Shifter

Variable Declaration

Variable is initialized

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_unsigned.all;
ENTITY shift4 IS
PORT (shft_lft : in std_logic;

d_in : in std_logic_vector(3 downto 0);
q_out : out std_logic_vector(7 downto 0));

END shift4;
ARCHITECTURE logic OF shift4 IS
BEGIN

PROCESS(d_in, shft_lft)
VARIABLE shft_var : std_logic_vector(7 DOWNTO 0);

BEGIN
shft_var(7 downto 4) := "0000";
shft_var(3 downto 0) := d_in;

www.pld.com.cn

FOR LOOP using a Variable: 4-bit Left Shifter

Enables shift-left

i is the index for the FOR LOOP
and does not need to be declared

Shifts left by 4

Fills the LSBs with zeros

No shifting

Variable is assigned to a Signal
before the end of the Process to
synthesize to a piece of hardware

IF shft_lft = '1' THEN
FOR i IN 7 DOWNTO 4 LOOP

shft_var(i) := shft_var(i-4);
END LOOP;

shft_var(3 downto 0) := “0000”;
ELSE

shft_var := shft_var;
END IF;

q_out <= shft_var;

END PROCESS;
END logic;

www.pld.com.cn

Understanding VHDL
and

Logic Synthesis

www.pld.com.cn

VHDL Model - RTL Modeling

a

d

sel
2

b
c

y

a

d

sel
2

b
c

z

 ARCHITECTURE

a

c

 sel

 y

z

 ENTITY

b

d

2

n RTL - Type of
behavioral modeling
that implies or infers
hardware

n Functionality and
somewhat structure of
the circuit

n For the purpose of
synthesis, as well as
simulation

Result:

www.pld.com.cn

Recall - RTL Synthesis

 IF sel=“00” THEN
 mux_out <= a;
 ELSIF sel=“01” THEN

mux_out <= b;
 … … … …
 ELSE sel=“11” THEN

mux_out <= d;

a

d

a

d

Translation

Optimization

a

d

sel
2

b
c

inferred

www.pld.com.cn

Two Types of Process Statements

a

b

sel

c

CLRN

ENA

D Qd

clk

clr

q

sensitivity list includes all inputs used
in the combinatorial logic

sensitivity list does not include the d input,
only the clock or/and control signals

• Sequential Process
– Sensitive to a clock or/and
 control signals

• Example
 PROCESS(clr, clk)

• Combinatorial Process
– Sensitive to all inputs used in
 the combinatorial logic

• Example
 PROCESS(a, b, sel)

www.pld.com.cn

LATCH

sensitivity list includes both inputs

data

gate

q
Transparent
 Latch

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

ENTITY latch IS
PORT (data : IN std_logic;

gate : IN std_logic;
q : OUT std_logic

);
END latch;

ARCHITECTURE behavior OF latch IS
BEGIN

label_1: PROCESS (data, gate)
BEGIN
IF gate = '1' THEN

q <= data;
END IF;

END PROCESS;

END behavior;

What happens if gate = ‘0’?
ð Implicit Memory

www.pld.com.cn

DFF - clk=‘1’

sensitivity list only includes the
triggering signal, in this case, clk

CLRN

ENA

D Qd

clk

q

clk = ‘1’ means that it is
positive-edge triggered

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY dff IS
PORT (d : in std_logic;

clk : in std_logic;
q : out std_logic

);
END dff;

ARCHITECTURE behavior OF dff IS
BEGIN
PROCESS (clk)

BEGIN
IF clk = '1' THEN

q <= d;
END IF;

END PROCESS;
END behavior;

www.pld.com.cn

DFF with WAIT statement

Note: There is no sensitivity list

wait until
– Acts like the sensitivity list

CLRN

ENA

D Qd

clk

q

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY wait_dff IS
PORT (d, clk : in std_logic;

q : out std_logic
);

END wait_dff;

ARCHITECTURE behavior OF wait_dff IS
BEGIN
PROCESS

BEGIN
wait until clk = '1';

q <= d;
END PROCESS;
END behavior;

www.pld.com.cn

DFF - clk’event and clk=‘1’

clk’event and clk=‘1’
– clk is the signal name (any name)
– ‘event is a VHDL attribute,

 specifying that there needs
 to be a change in signal value

– clk=‘1’ means positive-edge
 triggered

CLRN

ENA

D Qd

clk

q

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY dff_a IS
PORT (d : in std_logic;

clk : in std_logic;
q : out std_logic

);
END dff_a;

ARCHITECTURE behavior OFdff_a IS
BEGIN
PROCESS (clk)

BEGIN
IF clk'event and clk = '1' THEN

q <= d;
END IF;

END PROCESS;
END behavior;

www.pld.com.cn

DFF - rising_edge

rising_edge
– IEEE function that is defined in the
 std_logic_1164 package
– specifies that the signal value
 must be 0 to 1
– X, Z to 1 transition is not allowed

CLRN

ENA

D Qd

clk

q

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY dff_b IS
PORT (d : in std_logic;

clk : in std_logic;
q : out std_logic

);
END dff_b;

ARCHITECTURE behavior OFdff_b IS
BEGIN
PROCESS(clk)

BEGIN
IF rising_edge(clk) THEN

q <= d;
END IF;

END PROCESS;
END behavior;

www.pld.com.cn

DFF with asynchronous clear

– This is how to implement asynchronous
 control signals for the register
– Note: This IF-THEN statement
 is outside the IF-THEN statement
 that checks the condition rising_edge
– Therefore, clr=‘1’ does not depend
 on the clock

CLRN

ENA

D Qd

clk

clr

q

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_unsigned.all;

ENTITY dff_clr IS
PORT (clr : in bit;

d, clk : in std_logic;
q : out std_logic
);

END dff_clr;

ARCHITECTURE behavior OF dff_clr IS
BEGIN
PROCESS(clk, clr)

BEGIN

IF clr = '0' THEN
q <= '0';

ELSIF rising_edge(clk) THEN
q <= d;

END IF;
END PROCESS;
END behavior;

www.pld.com.cn

How Many Registers?

ENTITY reg1 IS
PORT (d : in BIT;

clk : in BIT;
q : out BIT);

END reg1;

ARCHITECTURE reg1 OF reg1 IS
SIGNAL a, b : BIT;
BEGIN

PROCESS (clk)
BEGIN

IF rising_edge(clk) THEN
a <= d;
b <= a;
q <= b;

END IF;
END PROCESS;

END reg1;

www.pld.com.cn

How Many Registers?

CLRN

ENA

D Q

clk

qb

CLRN

ENA

D Q

clk

CLRN

ENA

D Qd

clk

a

n Signal Assignments inside the IF-THEN statement
that checks the clock condition infer registers.

www.pld.com.cn

How Many Registers?

Signal assignment moved.

ENTITY reg1 IS
PORT (d : in BIT;

clk : in BIT;
q : out BIT);

END reg1;

ARCHITECTURE reg1 OF reg1 IS
SIGNAL a, b : BIT;
BEGIN

PROCESS (clk)
BEGIN

IF rising_edge(clk) THEN
a <= d;
b <= a;

END IF;
END PROCESS;
q <= b;

END reg1;

www.pld.com.cn

How Many Registers?

n b to q assignment is no longer edge-sensitive
because it is not inside the IF-THEN statement that
checks the clock condition

q

CLRN

ENA

D Q

clk

CLRN

ENA

D Qd

clk

a

www.pld.com.cn

How Many Registers?

Signals changed to variables.

ENTITY reg1 IS
PORT (d : in BIT;

clk : in BIT;
q : out BIT);

END reg1;

ARCHITECTURE reg1 OF reg1 IS
BEGIN

PROCESS (clk)
VARIABLE a, b : BIT;
BEGIN

IF rising_edge(clk) THEN
a := d;
b := a;
q <= b;

END IF;
END PROCESS;

END reg1;

www.pld.com.cn

How Many Registers?

n Variable assignments are updated immediately
n Signal assignments are updated on clock edge

CLRN

ENA

D Qd

clk

q

www.pld.com.cn

Variable Assignments in Sequential Logic

n Variable assignments inside the IF-THEN statement,
that checks the clock condition, will not infer
registers.

n Variable assignments are temporary storage and
have no hardware intent.

n Variable assignments can be used in expressions to
immediately update a value.
– Then the Variable can be assigned to a Signal

www.pld.com.cn

Example - Counter using a variable

n Counters are accumulators that
always add a ‘1’ or subtract a ‘1’

Arithmetic expression assigned to a
variable

Variable assigned to a Signal inside
the IF-THEN statement, that checks
the clock condition, will infer registers

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_unsigned.all;

ENTITY count_a IS
PORT (clk, rst, updn : in std_logic;

q : out std_logic_vector(15 downto 0));
END count_a;

ARCHITECTURE logic OF count_a IS
BEGIN
PROCESS(rst, clk)
VARIABLE tmp_q : std_logic_vector(15 downto 0);
BEGIN

IF rst = '0' THEN
q <= 0;

ELSIF rising_edge(clk) THEN
IF updn = '1' THEN

tmp_q := tmp_q + 1;
ELSE

tmp_q := tmp_q - 1;
END IF;

 q <= tmp_q;
END IF;

END PROCESS;
END logic;

www.pld.com.cn

Model
Application

www.pld.com.cn

Finite State Machine (FSM) - State Diagram
RESET

nw = 1

Tap1
select = 0
first = 1

Idle
nxt = 0
first = 0

Tap2
select = 1
first = 0

Tap3
select = 2

Tap4
select = 3
nxt = 1

nw = 1

nw = 0

Inputs:
reset
nw

Outputs:
select
first
nxt

www.pld.com.cn

Enumerated Data Type

n Recall the Built-In Data Types:
– BIT
– STD_LOGIC
– INTEGER

n What about User-Defined Data Types:
– Enumerated Data Type:

TYPE <your_data_type> IS
 (items or values for your data type separated by commas)

www.pld.com.cn

Writing VHDL Code for FSM

n State Machine states must be an Enumerated Data Type:
 TYPE state_type IS (idle, tap1, tap2, tap3, tap4);

n Object which stores the value of the current state must be
a Signal of the user-defined type:
 SIGNAL filter : state_type;

www.pld.com.cn

Writing VHDL Code for FSM

n To determine next state transition/logic:
– Use a CASE statement inside IF-THEN statement

that checks for the clock condition
• Remember: State machines are implemented using

registers

n To determine state machine outputs:
– Use Conditional and/or Selected signal

assignments
– Or use a second Case statement to determine the

state machine outputs.

www.pld.com.cn

FSM VHDL Code - Enumerated Data Type
RESET

nw = 1

Tap1
select = 0
first = 1

Idle
nxt = 0
first = 0

Tap2
select = 1
first = 0

Tap3
select = 2

Tap4
select = 3
nxt = 1

nw = 1

nw = 0

Enumerated data type

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_unsigned.all;
USE ieee.std_logic_arith.all;

ENTITY state_m2 IS
PORT(clk, reset, nw : in std_logic;

sel: out std_logic_vector(1 downto 0);
nxt, first: out std_logic);

END state_m2;

ARCHITECTURE logic OF state_m2 IS
TYPE state_type IS
 (idle, tap1, tap2, tap3, tap4);
SIGNAL filter : state_type;

www.pld.com.cn

FSM VHDL Code - Next State Logic
RESET

nw = 1

Tap1
select = 0
first = 1

Idle
nxt = 0
first = 0

Tap2
select = 1
first = 0

Tap3
select = 2

Tap4
select = 3
nxt = 1

nw = 1

nw = 0

BEGIN
PROCES (reset, clk)

BEGIN
IF reset = '1' THEN

filter <= idle;
ELSIF clk'event and clk = '1' THEN

CASE filter IS
WHEN idle =>

IF nw = '1' THEN
filter <= tap1;

END IF;
WHEN tap1 =>

filter <= tap2;
WHEN tap2 =>

filter <= tap3;
WHEN tap3 =>

filter <= tap4;
WHEN tap4 =>

IF nw = '1' THEN
filter <= tap1;

ELSE
filter <= idle;

END IF;

END CASE;

END IF;
END process;

www.pld.com.cn

FSM VHDL Code - Outputs

nxt <= '1' WHEN filter=tap4 ELSE
 '0';

first <= '1' WHEN filter=tap1 ELSE
 '0';

WITH filter SELECT
sel <= "00" WHEN tap1,

 "01" WHEN tap2,
 "10" WHEN tap3,
 "11" WHEN tap4,
 "00" WHEN others;

END logic;

RESET

nw = 1

Tap1
select = 0
first = 1

Idle
nxt = 0
first = 0

Tap2
select = 1
first = 0

Tap3
select = 2

Tap4
select = 3
nxt = 1

nw = 1

nw = 0

conditional
signal assignments

selected
signal assignments

www.pld.com.cn

FSM VHDL Code - Outputs using a Case
RESET

nw = 1

Tap1
select = 0
first = 1

Idle
nxt = 0
first = 0

Tap2
select = 1
first = 0

Tap3
select = 2

Tap4
select = 3
nxt = 1

nw = 1

nw = 0

output: PROCESS(filter)
BEGIN
CASE filter IS

WHEN idle =>
nxt <= '0';
first <= '0';

WHEN tap1 =>
sel <= "00";
first <= '1';

WHEN tap2 =>
sel <= "01";
first <= '0';

WHEN tap3 =>
sel <= "10";

WHEN tap4 =>
sel <= "11";
nxt <= '1';

END CASE;
END PROCESS output;

END logic;

www.pld.com.cn

Designing
Hierarchically

www.pld.com.cn

Recall - Structural Modeling

input1

inputn

output1

outputn

Higher-level Component

 Lower-level
Component1

 Lower-level
Component1

n Functionality and structure of the circuit
n Call out the specific hardware, lower-level components
n For the purpose of synthesis

www.pld.com.cn

Design Hierarchically - Multiple Design Files

n VHDL hierarchical design requires Component
Declarations and Component Instantiations

top.vhd
entity-architecture “top”
component “mid_a”
component “mid_b”

mid_a.vhd
entity-architecture “mid_a”
component “bottom_a”

mid_b.vhd
entity-architecture “mid_b”
component “bottom_a”
component “bottom_b”

bottom_a.vhd
entity-architecture “bottom_a”

bottom_b.vhd
entity-architecture “bottom_b”

www.pld.com.cn

Component Declaration and Instantiation

n Component Declaration - Used to declare the Port types and
the Data Types of the ports for a lower-level design.

COMPONENT <lower-level_design_name> IS
PORT (<port_name> : <port_type> <data_type>;

.

.
 <port_name> : <port_type> <data_type>);

END COMPONENT;

n Component Instantiation - Used to map the ports of a lower-
level design to that of the current-level design
<instance_name> : <lower-level_design_name>

PORT MAP(<lower-level_port_name> => <current_level_port_name>,
 … ,<lower-level_port_name> => <current_level_port_name>);

www.pld.com.cn

n Next-level of hierarchy design must have a Component
Declaration for a lower-level design before it can be Instantiated

Component Declaration

Component InstantiationInstance label/name

Component Declaration and Instantiation

Positional Association

ARCHITECTURE tolleab_arch OF tolleab IS
COMPONENT tollv
PORT(clk : IN STD_LOGIC;

cross, nickel, dime, quarter : IN STD_LOGIC;
green, red : OUT STD_LOGIC;
sout : OUT STATE_TYPE;
state_in : IN STATE_TYPE);

END COMPONENT;
BEGIN
u1 : tollv PORT MAP (tclk, tcross, tnickel, tdime,

tquarter, tgreen, tred,
tsout, tstate);

www.pld.com.cn

Component Declaration and Instantiation

dime => tdime

lower-level port

current-level port

LIBRARY ieee;
USE ieee.std_logic_1164.all;
ENTITY tolleab IS
PORT(tclk : IN STD_LOGIC;

tcross, tnickel, tdime, tquarter : IN STD_LOGIC;
tgreen, tred : OUT STD_LOGIC);

END tolleab;
ARCHITECTURE tolleab_arch OF tolleab IS
TYPE STATE_TYPE IS (cent0, cent5, cent10, cent15, cent20, cent25, cent30,

cent35, cent40, cent45, cent50, arrest);
SIGNAL connect : STATE_TYPE;

COMPONENT tollv
PORT(clk: IN STD_LOGIC;

cross, nickel, dime, quarter : IN STD_LOGIC;
green, red : OUT STD_LOGIC;
sout : OUT STATE_TYPE;
state_in : IN STATE_TYPE);

END COMPONENT;

BEGIN

u1 : tollv PORT MAP (clk => tclk, cross => tcross, nickel => tnickel, dime => tdime,
quarter => tquarter, green => tgreen, red => tred,
sout => connect, state_in => connect);

END tolleab_arch;

www.pld.com.cn

Benefits of Hierarchical Designing

Designing Hierarchically
n In a design group, each designer can create seperate

functions (components) in separate design files.
n These components can be shared by other designers

or can be used for future projects.
n Therefore, designing hierarchically can make designs

more modular and portable
n Designing Hierarchically can also allow easier and

faster alternative implementations
– Example: Try different counter implementations by replacing

component declaration and component instantiation

www.pld.com.cn

Vendor Libraries

n Silicon vendors often provide libraries of
macrofunctions & primitives
– Altera Library

• maxplus2
• megacore

n Can be used to control physical implementation of
design within the PLD

n Vendor-specific libraries improve performance &
efficiency of designs

n Altera provides a complete library of LPM-compliant
macrofunctions, plus other primitives

www.pld.com.cn

Library Altera/LPM

n LIBRARY ALTERA ;
– Contains the following packages:

• maxplus2 (Component declarations for all primitives and
megafunction Altera libraries)

• megacore (Component declarations for all Altera
Megacores)

n LIBRARY LPM;
– Contains the following packages:

• lpm_components (Component Declarations for all
Altera LPM functions)

ð Note: See MAX+PLUS II online help for more information

www.pld.com.cn

LPMs

n Library of Parametrized Modules
– Large building blocks that are easily configurable by:

• Using different Ports

• Setting different Parameters

n Industry standard:
– Port names
– Parameters

n However, the source code is different for each vendor.
n Altera’s LPMs have been optimized to access the

architectural features of Altera devices

www.pld.com.cn

LPM Instantiation

n All of the Altera LPM macrofunctions are declared in
the package lpm_components.all in the
LIBRARY lpm;

n In the VHDL Code:
LIBRARY lpm;
USE lpm.lpm_components.all;

www.pld.com.cn

LPM Instantiation - lpm_mux
• MAX+plus II On-line HELP: VHDL Component Declaration:

COMPONENT lpm_mux
 GENERIC (LPM_WIDTH: POSITIVE;
 LPM_WIDTHS: POSITIVE;
 LPM_PIPELINE: INTEGER:= 0;
 LPM_SIZE: POSITIVE;
 LPM_HINT: STRING := UNUSED);
 PORT (data: IN STD_LOGIC_2D(LPM_SIZE-1 DOWNTO 0, LPM_WIDTH-1 DOWNTO 0);
 aclr: IN STD_LOGIC := '0';
 clock: IN STD_LOGIC := '0';
 sel: IN STD_LOGIC_VECTOR(LPM_WIDTHS-1 DOWNTO 0);
 result: OUT STD_LOGIC_VECTOR(LPM_WIDTH-1 DOWNTO 0));
END COMPONENT;

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
USE ieee.std_logic_signed.all;

LIBRARY lpm;
USE lpm.lpm_components.all;

ENTITY tst_mux IS
PORT (a : in std_logic_2d (3 downto 0, 15 downto 0);

sel : in std_logic_vector(1 downto 0);
y : out std_logic_vector (15 downto 0));

END tst_mux;

ARCHITECTURE behavior OF tst_mux IS
BEGIN

u1: lpm_mux GENERIC MAP(lpm_width => 16, lpm_size => 4, lpm_widths => 2)
 PORT MAP (data => a, sel => sel, result => y);

END behavior;

www.pld.com.cn

LPM Instantiation - lpm_mult
LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_unsigned.all;

LIBRARY lpm;
USE lpm.lpm_components.all;

ENTITY tst_mult IS
PORT (a, b : in std_logic_vector(7 downto 0);

q_out : out std_logic_vector(15 downto 0));
END tst_mult;

ARCHITECTURE behavior OF tst_mult IS

BEGIN

u1 : lpm_mult GENERIC MAP (lpm_widtha => 8, lpm_widthb => 8,
lpm_widths => 16, lpm_widthp => 16)

 PORT MAP(dataa => a, datab => b, result => q_out);

END behavior;

www.pld.com.cn

Benefits of LPMs

n Industry standard
n Larger building blocks, so you don’t have to start from

scratch
– Reduces design time
– Therefore, faster time-to-market

n Easy to change the functionality by using different
Ports and/or Parameters

n Consistent synthesis

www.pld.com.cn

Appendix

www.pld.com.cn

ATTRIBUTES

n ‘HIGH - 7
n ‘LOW - 0
n ‘RIGHT - 0
n ‘LEFT - 7
n ‘RANGE - 7 DOWNTO 0
n ‘REVERSE RANGE - 0 TO 7
n ‘LENGTH - 8

<signal_name> : IN STD_LOGIC_VECTOR(7 DOWNTO 0)

www.pld.com.cn

SUBPROGRAMS

n FUNCTIONS
n PROCEDURES

www.pld.com.cn

SUBPROGRAMS

PARAMETERS

PARAMETERS

RETURN VALUE

OUT PARAMETERS

FUNCTION

PROCEDURE

ARCHITECTURE
begin

end

www.pld.com.cn

FUNCTIONS

n Format:
function <function_name> (<input_parameters>)
return <DATA_TYPE> is

{any declarations}
begin

{functionality}
return <name_of_a_declaration>

end <function_name>;

www.pld.com.cn

FUNCTIONS

n For functions:
– only allowable mode for parameters is in
– only allowed object classes are constant or

signal
– if the object class is not specified, constant is

assumed

www.pld.com.cn

PROCEDURES

n Format:
procedure <procedure_name> (<mode_parameters>)

begin
{functionality}

end <procedure_name>;

www.pld.com.cn

PROCEDURES

n For Procedures:
– allowable modes for parameters are in, out, and inout
– allowable object classes for parameters are constant,

variable and signal
– If the mode is in and no object class is specified, then

constant is assumed.
– If the mode is inout or out and if no object class is

specified, then variable is assumed.

www.pld.com.cn

Signal Assignment inside a Process - delay

• Delta cycle has 2 phases:
– process execution
– signal update

• Delta cycle is non-visible delay
 (very small, close to zero)

simulation cycle1 simulation cycle2

• y does not get the newest value of c until a
 simulation cycle later.

 (visible delay) (visible delay)

LIBRARY ieee;
USE ieee.std_logic_1164.all;
ENTITY simp_prc IS
PORT(a, b : IN STD_LOGIC;

 y: OUT STD_LOGIC);
END simp_prc;
ARCHITECTURE logic OF simp_prc IS
SIGNAL c: STD_LOGIC;

BEGIN
PROCESS(a, b)

BEGIN
c <= a and b;
y <= c;

END PROCESS;
END logic;

1

 a = 1, b = 1

 c and y
executed

1

c updated (c=1)

a,b changes
a = 0, b = 1

y updated (y=X)

 c and y
executed

c updated (c=0)

a,b changes
a = 0, b = 1

y updated (y=1)

 c and y
executed

www.pld.com.cn

2 Process vs. 1 Process

1

 a = 1, b = 1

 c and y
executed

1

c updated (c=1)

a,b changes
a = 0, b = 1

y updated (y=X)

 c and y
executed

c updated (c=0)

a,b changes
a = 0, b = 1

y updated (y=1)

 c and y
executed

PROCESS(a, b)
BEGIN
c <= a and b;
y <= c;

END PROCESS;

simulation cycle1 simulation cycle2

• y does not get the newest value of c until a
 simulation cycle later.

 (visible delay) (visible delay)

 a = 1
 b = 1

 c
executed

 c
updated
 (c=1)

 y
executed

a,b changes
 a = 0
 b = 1

 c
executed

y updated
 (y=1)

 c
updated
 (c=0)

 y
executed

a,b changes
 a = 1
 b = 1

 c
executed

y updated
 (y=0)

1 2 21
simulation cycle1 simulation cycle2

• c and y gets executed and updated within the
 same simulation cycle

 (visible delay) (visible delay)

process1: PROCESS(a, b)
BEGIN

c <= a and b;
END PROCESS process1;

process2: PROCESS(c)
BEGIN

y <= c;
END PROCESS process2;

www.pld.com.cn

Variable Assignment - no delay

1

simulation cycle1 simulation cycle2

• Delta cycle has 2 phases:
– process execution
– signal update

• c and y gets executed and updated within the
 same simulation cycle (at the end of the process)

• Delta cycle is non-visible delay
 (very small, close to zero)

 a = 1, b = 1

 y
executed

 c
executed
 and
updated
 (c=1) c executed and

 updated (c=0)

a,b changes
a = 0, b = 1

 y
executed

y updated
 (y=1)

1

 (visible delay) (visible delay)

LIBRARY ieee;
USE ieee.std_logic_1164.all;
ENTITY var IS
PORT (a, b : IN STD_LOGIC;

 y : OUT STD_LOGIC);
END var;
ARCHITECTURE logic OF var IS
BEGIN
PROCESS (a, b)
VARIABLE c : STD_LOGIC;
BEGIN
c := a AND b;

y <= c;
END PROCESS;
END logic;

a,b changes
a = 1, b = 1

 y
executed

y updated
 (y=0)

 c executed and
 updated (c=1)

www.pld.com.cn

2 Process vs. 1 Process

1

 a = 1, b = 1

 c and y
executed

1

c updated (c=1)

a,b changes
a = 0, b = 1

y updated (y=X)

 c and y
executed

c updated (c=0)

a,b changes
a = 0, b = 1

y updated (y=1)

 c and y
executed

PROCESS(a, b)
BEGIN
c <= a and b;
y <= c;

END PROCESS;

simulation cycle1 simulation cycle2

• y does not get the newest value of c until a
 simulation cycle later.

 (visible delay) (visible delay)

 a = 1
 b = 1

 c
executed

 c
updated
 (c=1)

 y
executed

a,b changes
 a = 0
 b = 1

 c
executed

y updated
 (y=1)

 c
updated
 (c=0)

 y
executed

a,b changes
 a = 1
 b = 1

 c
executed

y updated
 (y=0)

1 2 21
simulation cycle1 simulation cycle2

• c and y gets executed and updated within the
 same simulation cycle

 (visible delay) (visible delay)

process1: PROCESS(a, b)
BEGIN

c <= a and b;
END PROCESS process1;

process2: PROCESS(c)
BEGIN

y <= c;
END PROCESS process2;

