Introduction to VHDL

Course Objectives

B | earn the basic constructs of VHDL
B [earn the modeling structure of VHDL

B Understand the design environments
— Simulation
— Synthesis

www.pld.com.cn

Course QOutline

B VHDL Basics
— Overview of language

B Design Units
— Entity
— Architecture
— Configurations
— Packages (Libraries)

B Architecture Modeling Fundamentals
— Signals
— Processes
e Sequential Statements

www.pld.com.cn

Course QOutline

B Understanding VHDL and Logic Synthesis
— Process Statement
— Inferring Logic

B Model Application
— State Machine Coding

B Hierarchical Designing
— Overview
— Structural Modeling
— Application of LPM’s

www.pld.com.cn

VHDL
Basics

VHDL

VHSIC (Very High Speed Integrated Circuit)
Hardware
Description

Language

www.pld.com.cn

What is VHDL?

B |[EEE industry standard hardware description
language

B High-level description language for both Simulation &
Synthesis

www.pld.com.cn

VHDL History

B 1980 - U.S. Department of Defense (DOD) funded a
project to create a standard hardware description
language under the Very High Speed Integrated
Circuit (VHSIC) program.

B 1987 - the Institute of Electrical and Electronics
Engineers (IEEE) ratified as IEEE Standard 1076.

® 1993 - the VHDL language was revised and updated
to IEEE 1076 ‘93.

www.pld.com.cn

Terminology

B HDL - Hardware Description Language is a software
programming language that is used to model a piece
of hardware

B Behavior Modeling - A component is described by its
Input/output response

M Structural Modeling - A component is described by
Interconnecting lower-level components/primitives

www.pld.com.cn

Behavior Modeling

B Only the functionality of the circuit, no structure
B No specific hardware intent
B For the purpose of synthesis, as well as simulation

: : outputl, .., outputn
Inputl, .., Inputn

IF inputl THEN

FOR j IN high DOWNTO low LOOP
shft(j) := shft(j);
END LOOP;
outputl <=shft AFTER 5ns

www.pld.com.cn

Structural Modeling

B Functionality and structure of the circuit
B Call out the specific hardware
B For the purpose of synthesis

Higher-level Component

inputl outputl
> — >
[D o

Lower-level —

o I Componentl ®
Lower-level I

() — o

Componentl

inputn outputn

www.pld.com.cn

More Terminology

B Register Transfer Level (RTL) - A type of behavioral
modeling, for the purpose of synthesis.
— Hardware is implied or inferred
— Synthesizable

B Synthesis - Translating HDL to a circuit and then
optimizing the represented circuit

B RTL Synthesis - The process of translating a RTL
model of hardware into an optimized technology
specific gate level implementation

www.pld.com.cn

RTL Synthesis

Process (a, b, c, d, sel) inferred

! |

! |

! |

. |
roce: I b__ mux out

! |

case (sel) is | S |

| ::’ ! |

! |

! |

! |

! |

! |

! |

when “00” => mux_out <= a;
when “01” => mux_out <= b:
when “10” => mux_out <= ¢;
when"11"=>mux out<=d; |~ So--mooemomoomoooooooooooo

end case;
‘_) D
Translation 2 %

Optimization —

www.pld.com.cn

VHDL Synthesis vs. Other HDL Standards

B VHDL

— “Tell me how your circuit should behave and | will give you
hardware that does the job.”

® Verilog
— Similar to VHDL

B ABEL, PALASM, AHDL
— “Tell me what hardware you want and | will give it to you”

www.pld.com.cn

VHDL Synthesis vs. Other HDL Standards

B VHDL

— “Give me a circuit whose output only changes when there is
a low-to-high transition on a particular input. When the
transition happens, make the output equal to the input until
the next transition.”

— Result: VHDL Synthesis provides a positive edge-triggered
flipflop

® ABEL, PALASM, AHDL

— “Give me a D-type flipflop.”

— Result: ABEL, PALASM, AHDL synthesis provides a D-type
flipflop. The sense of the clock depends on the synthesis
tool.

www.pld.com.cn

Typical Synthesis Design Flow

A
VHDL Technology
Library Library

>

SyntheS|s
Compller

Timing Analysis m Place/Route
Text Output <
. .] Test
Simulation Vectors
Waveform

A

www.pld.com.cn

Typical Simulation Design Flow

> >
VHDL VHDL
Model TestBench

y

VHDL
Waveform <~
Simulation 7 Text Output

www.pld.com.cn

VHDL Basics

B Two sets of constructs:
— Synthesis
— Simulation

B The VHDL Language is made up of reserved keywords.
B The language is, for the most part, NOT case sensitive.
B VHDL statements are terminated with a ;

B VHDL is white space insensitive. Used for readability.

B Comments in VHDL begin with “--" to eol

B VHDL models can be written:
— Behavioral
— Structural
— Mixed

www.pld.com.cn

VHDL
Design Units

VHDL Basics

B VHDL Design Units
— Entity
« Used to define external view of a model. i.e. symbol
— Architecture
« Used to define the function of the model. i.e. schematic
— Configuration
» Used to associate an Architecture with an Entity
— Package

 Collection of information that can be referenced by VHDL
models. l.e. Library

« Consist of two parts Package Declaration and Package
Body.

www.pld.com.cn

Entity Declaration

ENTITY <entity name> IS
Generic Declarations
Port Declarations
END <entity_name>; (1076-1987 version)
END ENTITY <entity_name> ; (1076-1993 version)

B Analogy : Symbol

B <entity name> can be any alpha/numerical name

— Note: MAX+PLUS Il requires that the <entity _name> and <file_name> be
the same.

B Generic Declarations

— Used to pass information into a model.

— MAX+PLUS Il place some restriction on the use of Generics.
B Port Declarations

— Used to describe the inputs and outputs i.e. pins

www.pld.com.cn

Entity : Generic Declaration

ENTITY <entity name> IS
Generic (constant tplh, tphl : time :=5 ns
-- Note constant is assumed and is not required
tphz, tplz : time := 3 ns;
default_value : integer := 1,
cnt_dir : string :=“up”
);
Port Declarations
END <entity_name>; (1076-1987 version)
END ENTITY <entity_name> ; (1076-1993 version)

B New values can be passed during compilation.
B During simulation/synthesis a Generic is read only.

www.pld.com.cn

Entity : Port Declarations

ENTITY <entity name> IS
Generic Declarations
Port (signal clk : in bit;
--Note: signal is assumed and is not required
g : out hit

);
END <entity_name>; (1076-1987 version)
END ENTITY <entity_name> ; (1076-1993 version)

B Structure : <class> object_name : <mode> <type>,
» <class> : what can be done to an object
* Object_name : identifier
e <mode> : directional
— in (input) out (output)
— inout (bidirectional) buffer (output w/ internal feedback)
« <type>: What can be contained in the object

www.pld.com.cn

Architecture

B Key aspects of the Architecture
— Analogy : schematic
— Describes the Functionality and Timing of a model
— Must be associated with an ENTITY
— ENTITY can have multiple architectures
— Architecture statements execute concurrently (Processes)
— Architecture Styles
* Behavioral : How designs operate
— RTL : Designs are described in terms of Registers
— Functional : No timing
 Structural : Netlist
— Gate/Component Level
« Hybrid : Mixture of the above

www.pld.com.cn

Architecture

ARCHITECTURE <identifier> OF <entity_identifier> IS
--architecture declaration section (list does not include all)
signal temp : integer := 1; -- Signal Declarations :=1 is default value optional
constant load : boolean := true; --Constant Declarations
type statesis (S1, S2, S3, S4) ; --Type Declarations
--Component Declarations discussed later
--Subtype Declarations
--Attribute Declarations
--Attribute Specifications
--Subprogram Declarations
--Subprogram body

BEGIN
Process Statements
Concurrent Procedural calls
Concurrent Signal assignment
Component instantiation statements
Generate Statements

END <architecture identifier> ; (1076-1987 version)
END ARCHITECTURE; (1076-1993 version)

www.pld.com.cn

VHDL - Basic Modeling Structure

ENTITY entity_name IS
generics
port declarations
END entity _name;

ARCHITECTURE arch_name OF entity _name IS
enumerated data types
Internal signal declarations
component declarations
BEGIN
signal assignment statements
process statements
component instantiations
END arch _name;

www.pld.com.cn

VHDL : Entity - Architecture

www.pld.com.cn

in?utl | _Ol%thtl
. Entity .
’ Symbol ’
inputn outputn
>— —>

Architecture

a Schematic
b ——\| mux_out

D Q

C
d — clk —P
sel ENA

CLRN
[e]
clr — 1

Configuration

B Used to make associations within models
— Associate a Entity and Architecture
— Associate a component to an Entity-Architecture
B Widely used in Simulation environments
— Provides a flexible and fast path to design alternatives

B Limited or no support in Synthesis environments

CONFIGURATION <identifier> OF <entity_name> IS
FOR <architecture_name>
END FOR;

END; (1076-1987 version)

END CONFIGURATION; (1076-1993 version)

www.pld.com.cn

Putting it all together

ENTITY cmpl _sig IS
PORT (a, b, sel : IN bit;

X, Y, z: OUT bit;
END cmpl_sig;
ARCHITECTURE logic OF cmpl_sig IS
BEGIN
-- simple signal assignment
X <= (a AND NOT sel) OR (b AND sel);
-- conditional signal assignment
y <= a WHEN sel="0' ELSE
b;
-- selected signal assignment
WITH sel SELECT
z <=aWHEN'0',
b WHEN '1',
'0' WHEN OTHERS;
END logic;
CONFIGURATION cmpl_sig_conf OF cmpl_sig IS
FOR logic
END FOR;

END cmpl_sig_conf;

www.pld.com.cn

ENTITY

—————————————————————

Packages

B Packages are a convenient way of storing and using
iInformation throughout an entire model.

B Packages consist of:
— Package Declaration (Required)
* Type declarations
e Subprograms declarations
— Package Body (Optional)
e Subprogram definitions

B VHDL has two built-in Packages
— Standard
— TEXTIO

www.pld.com.cn

Packages

PACKAGE <package name> IS

Constant Declarations

Type Declarations

Signal Declarations
Subprogram Declarations
Component Declarations
--There are other Declarations

END <package name>; (1076-1987)
END PACKAGE <package name> ; (1076-1993)
PACKAGE BODY <package name> IS

Constant Declarations

Type Declarations
Subprogram Body

END <package name> ; (1076-1987)
END PACKAGE BODY <package name>; (1076-1993)

www.pld.com.cn

Package Example

PACKAGE filt_cmp IS
TYPE state_type IS (idle, tapl, tap2, tap3, tap4);
COMPONENT acc
port(xh : in std_logic_vector(10 downto 0); Pac kag e Dec | ar atl on
clk, first: in std_logic;
yn : out std_logic_vector(11 downto 4));
END COMPONENT;
FUNCTION compare (variable a, b : integer) RETURN boolean;
END filt_cmp;
PACKAGE BODY filt_cmp IS
FUNCTION compare (variable a, b : integer) IS
VARIABLE temp : boolean;
Begin

If a <b then Package Body
temp := true ;
else
temp := false ;
end if;
RETURN temp ;
END compare ;
END fily_cmp ;

www.pld.com.cn

Libraries
.
B Contains a package or a collection of packages.
B Resource Libraries
— Standard Package
— |IEEE developed packages
— Altera Component packages

— Any library of design units that are referenced in a
design.

B Working Library
— Library into which the unit is being compiled.

www.pld.com.cn

Model Referencing of Library/Package

® All packages must be compiled

B [mplicit Libraries
— Work
— STD
= Note: Items in these packages do not need to be referenced,
they are implied.
B LIBRARY Clause
— Defines the library name that can be referenced.
— |Is a symbolic name to path/directory.
— Defined by the Compiler Tool.

B USE Clause

— Specifies the package and object in the library that you have
specified in the Library clause.

www.pld.com.cn

Example

S
LIBRARY ieee;

B LIBRARY <name>, <name> ;

USE ieee.std_logic_1164.all;
ENTITY cmpl _sig IS
PORT (a, b, sel : IN std_logic;
X, ¥, z: OUT std_logic;
END cmpl_sig;
ARCHITECTURE logic OF cmpl_sig IS
BEGIN
-- simple signal assignment
X <= (a AND NOT sel) OR (b AND sel);
-- conditional signal assignment
y <= a WHEN sel="0' ELSE
b;
-- selected signal assignment
WITH sel SELECT
z<=aWHEN'0/,
b WHEN '1',
'0' WHEN OTHERS;
END logic;
CONFIGURATION cmpl_sig_conf OF cmpl_sig IS
FOR logic
END FOR;
END cmpl_sig_conf;

www.pld.com.cn

— name is symbolic and define by
compiler tool.

= Note: Remember that WORK
and STD do not need to
be defined.

B USE lib_name.pack name.object;

— ALL is areserved word.

B Placing the Library/Use clause 1st

will allow all following design units
to access it.

Libraries

B LIBRARY STD ;
— Contains the following packages:

« standard (Types: Bit, Boolean, Integer, Real, and Time.
All operator functions to support types)

* textio (File operations)

— An implicit library (built-in)
* Does not need to be referenced in VHDL design

www.pld.com.cn

Types defined in Standard Package
|
H Type BIT
— 2 logic value system (‘0, ‘1")
signal a_temp : bit;
— BIT_VECTOR array of bits
signal temp : bit_vector(3 downto 0);
signal temp : bit_vector(0 to 3) ;
B Type BOOLEAN
— (false, true)
B |nteger
— Positive and negative values in decimal
signal int_tmp : integer; -- 32 bit number
signal int_tmp1l : integer range 0 to 255; --8 bit number
= Note: Standard package has other types

www.pld.com.cn

Libraries

B LIBRARY IEEE;
— Contains the following packages:
» std _logic_1164 (std_logic types & related functions)
» std_logic_arith (arithmetic functions)
« std_logic_signed (signed arithmetic functions)
e std_logic_unsigned (unsigned arithmetic functions)

www.pld.com.cn

Types defined in std_logic 1164 Package

B Type STD LOGIC
— 9 logic value system (‘U’, ‘X', ‘0", ‘1", ‘Z', ‘W', ‘L, ‘H’, *-")
o ‘W, ‘'L, ‘H” weak values (Not supported by Synthesis)
« ‘X’ - used for unknown
e ‘Z' - (not ‘z’) used for tri-state
e " Don’'t Care
— Resolved type: supports, signals with multiple drives.

B Type STD ULOGIC

— Same 9 value system as STD_LOGIC

— Unresolved type: Does not support multiple signal drives.
Error will occur.

www.pld.com.cn

User-Defined Libraries/Packages

B User-defined packages can be in the same directory as
the design

LIBRARY WORK; --optional
USE WORK.<package name>.all;

B Or can be in a different directory from the design

LIBRARY <any name>;
USE <any_name>.<package name>.all;

www.pld.com.cn

Architecture
Modeling
Fundamentals

Section Overview

B Understanding the concept and usage of Signals
— Signal Assignments
— Concurrent Signal Assignment statements
— Signal Delays
B Processes
— Implied
— EXxplicit
B Understanding the concept and usage of Variables

B Seguential Statement

— If-Then
— Case
— Loops

www.pld.com.cn

Using Signals

B Signals represent physical interconnect (wire) that
communicate between processes (functions)

B Signals can be declared in Packages, Entity and
Architecture

Process Process
S_iw Functional - Functional .
Block: M Block: >!J nals
_ MUX REGISTERS
signals (signals) (signals)

www.pld.com.cn

Assigning values to Signals

SIGNAL temp : STD_LOGIC VECTOR (7 downto 0);

H All bits:

temp <= “10101010";

temp <= x"AA” ; (1076-1993)
B Single bit:

temp(7) <= ‘17
W Bit-slicing:

temp (7 downto 4) <= “1010%
B Single-bit: single-quote ()
B Multi-bit: double-quote (¥)

www.pld.com.cn

Signal used as an interconnect

LIBRARY ieee;

USE ieee.std logic_1164.all;

ENTITY simp IS

PORT(r,t,g, h:IN STD_LOGIC;
gb : OUT STD_LOGIC);

END simp;

ARCHITECTURE logic OF simp IS

SIGNAL ga: STD LOGIC;

BEGIN

ga<=rort;
gb <= (ga and not(g xor h));

END logic;

—>

> |
[a>— .
>

o

>

declared

* r,t,g, h,and gb are Signals (by default)
* gais a buried Signal and needs to be

IS

Signal Declaration

www.pld.com.cn

inside Architecture

Signal Assignments

B Signal Assignments are represented by: <=

B Signal Assignments have an implied process (function)
that synthesizes to hardware

Signal Assignment <= implied process

www.pld.com.cn

Concurrent Signhal Assignments

B Three Concurrent Signal Assignments:
— Simple Signal Assignment
— Conditional Signal Assignment
— Selected Signal Assignment

www.pld.com.cn

Simple Signal Assignments

B Format: | <signal name> <= <expression>;

B Example: ga<= rort:
gb <= (ga and not(g xor h)); ~ Implied process
%_
|:‘L\/ = Parenthesis () give the
Lo L order of operation.

D

h

B VHDL Operators are used to describe the process

www.pld.com.cn

VHDL Operators

Operator Type Operator Name/Symbol
Logical and or nand nor Xor xnorq
Relational = /= < <= > >=

Adding + - &

Signing + -

Multiplying * [/ mod rem
Miscellaneous ** abs not

v, i com.cn (1) Supported in VHDL ‘93 only

VHDL Operators

B VHDL defines Arithmetic & Boolean functions only for
built-in data types (defined in Standard package)

— Arithmetic operators such as +, -, <, >, <=, >= are defined
only for INTEGER type.

— Boolean operators such as AND, OR, NOT are defined only
for BIT type.

B Recall: VHDL implicit library (built-in)
— Library STD

» Types defined in the Standard package:
— BIT, BOOLEAN, INTEGER

= Note: Items in this package do not need to be referenced,
they are implied.

www.pld.com.cn

Arithmetic Function

ENTITY opr IS
PORT (a :IN INTEGER RANGE 0 TO 16;
b :IN INTEGER RANGE 0 TO 16;
sum : OUT INTEGER RANGE 0 TO 32);

END opr;

ARCHITECTURE example OF opr IS The VHDL compiler can

BEGIN understand this operation

adder_body:PROCESS (a, b) because an arithmetic

BEGIN / operation is defined for
sum <=a + b; the built-in data type

END PROCESS adder_body; INTEGER

END example;

= Note: Remember the Library STD and the Package
Standard do not need to be referenced.

www.pld.com.cn

Operator Overloading

B How do you use Arithmetic & Boolean functions with
other data types?

— Operator Overloading - defining Arithmetic & Boolean
functions with other data types.

B Operators are overloaded by defining a function
whose name is the same as the operator itself.

— Because the operator and function name are the same, the
function name must be enclosed within double quotes to
distinguish it from the actual VHDL operator.

— The function is normally declared in a package so that it is
globally visible for any design

www.pld.com.cn

Operator Overloading Function/Package

B Packages that define these operator overloading
functions can be found in the LIBRARY IEEE.

B For example, the package std _logic_unsigned
defines some of the following functions

package std logic_unsigned is

function"+"(L: STD_LOGIC VECTOR; R: STD_LOGIC VECTOR) return STD_LOGIC VECTOR;
function"+"(L: STD_LOGIC VECTOR; R: INTEGER) return STD_LOGIC_VECTOR,;
function"+"(L: INTEGER; R: STD_LOGIC VECTOR) return STD_LOGIC _VECTOR,;
function"+"(L: STD_LOGIC VECTOR; R: STD_LOGIC) return STD_LOGIC VECTOR;
function"+"(L: STD_LOGIC; R: STD_LOGIC VECTOR) return STD_LOGIC VECTOR,;

function"-"(L: STD_LOGIC VECTOR; R: STD_LOGIC VECTOR) return STD_LOGIC _VECTOR,;
function"-"(L: STD_LOGIC VECTOR; R: INTEGER) return STD_LOGIC VECTOR,;
function"-"(L: INTEGER; R: STD_LOGIC VECTOR) return STD_LOGIC VECTOR,;
function"-"(L: STD_LOGIC VECTOR; R: STD _LOGIC) return STD_LOGIC VECTOR,;
function"-"(L: STD_LOGIC; R: STD_LOGIC _VECTOR) return STD_LOGIC _VECTOR,;

www.pld.com.cn

Use of Operator Overloading

LIBRARY ieee: /

USE ieee.std logic_1164.all;
USE ieee.std_logic_unsigned.all;

ENTITY overload IS

Include these statements
at the beginning of a
design file

PORT (a :INSTD_LOGIC_VECTOR (3 downto 0);

b :INSTD_LOGIC_VECTOR (3 downto 0);

sum : OUT STD_LOGIC_VECTOR (4 downto 0));

END overload;
ARCHITECTURE example OF overload IS

BEGIN
adder_body:PROCESS (a, b)
BEGIN

sum <= a + b;
END PROCESS adder_body;
END example;

www.pld.com.cn

This allows us to perform
arithmetic on non-built-in
data types.

Concurrent Signhal Assignments

B Three Concurrent Signal Assignments:
— Simple Signal Assignment
— Conditional Signal Assignment
— Selected Signal Assignment

www.pld.com.cn

Conditional Signal Assignments

B Format: | <signal_name> <= <signal/value>when <condition1> else
<signal/value> when <condition2> else

<signal/value> when <condition3> else
<signal/value>;

B Example:
q<= aWHENsela="‘1ELSE C_\

b WHEN selb =1 ELSE b)
= selb | a_

Implied process

www.pld.com.cn

Selected Signal Assignments

B Format: with <expression> select
<signal_name> <= <signal/value> when <condition1>,
<signal/value> when <condition2>,

<signal/value> when others;

B Example:
WITH sel SELECT a—
q<= aWHEN “00”, o S
b WHEN “01”, ¢ —
¢ WHEN “10”, d
d WHEN OTHERS: sel /;

Implied process

www.pld.com.cn

Selected Signal Assignments

B All possible conditions must be considered

® WHEN OTHERS clause evaluates all other possible
conditions that are not specifically stated.

SEE NEXT SLIDE _>

www.pld.com.cn

Selected Signal Assignment

LIBRARY ieee;
USE ieee.std logic_1164.all;

ENTITY cmpl_sig IS

PORT (a, b, sel: INSTD_LOGIC; <
z : OUT STD_LOGIC;
END cmpl_sig;

ARCHITECTURE logic OF cmpl_sig IS
BEGIN
-- selected signal assignment
WITH sel SELECT
z <= a WHEN "0,

b WHEN '1',

'0' WHEN OTHERS;
END logic;

www.pld.com.cn

sel has a STD_LOGIC data type

* What are the values for a
STD_LOGIC data type

* Answer: {'0’,’1'’X",'Z’}
e Therefore, is the WHEN OTHERS

/ clause necessary?

e Answer: YES

VHDL Model - Concurrent Signal Assignments

LIBRARY ieeeg;
USE ieee.std logic_1164.all;

ENTITY cmpl_sig IS

PORT (a, b, sel:INSTD LOGIC;
X,Y,z:0UT STD_LOGIC;

END cmpl_sig;

ARCHITECTURE logic OF cmpl_sig IS
BEGIN
-- simple signal assignment
X <= (a AND NOT sel) OR (b AND sel);
-- conditional signal assignment
y <= a WHEN sel='0' ELSE
b;
-- selected signal assignment
WITH sel SELECT
z <=aWHEN "0/,
b WHEN '1',
'0' WHEN OTHERS;
END logic;

* The signal assignments execute in

parallel, and therefore the order we list the
statements should not affect the outcome

www.pld.com.cn

ENTITY

ARCHITECTURE

—————————————————————

' sel

Explicit Process Statement

B Process can be thought of
as

— Implied processes
— Explicit processes

B Implied process consist of

— Concurrent signal
assignment statements
— Component statements

— Processes’ sensitivity is _
read side of expression -- Sequential statement #N ;

END PROCESS;

-- Explicit Process Statement
PROCESS (sensitivity _list)
Constant Declarations
Type Declarations
Variable Declarations
BEGIN
-- Sequential statement #1,

B EXxplicit process
— Concurrent statement

— Consist of Sequential
statements only

www.pld.com.cn

Execution of Process Statement

B Process Statement is executed PROCESS (a,b)
Infinitely unless broken by a WAIT BEGIN
statement or Sensitivity List.

— Sensitivity list implies a WAIT --sequential statements

statement at the end of the END PROCESS;
process.
— Process can have multiple WAIT PROCESS
statements BEGI N
— Process can not have both a :
Sensitivity List and WAIT -- sequential statements
statement. WAIT ON (a,b) ;
END PROCESS;

= Note: Logic Synthesis places
restrictions on WAIT and
Sensitivity List

www.pld.com.cn

Multi-Process Statements

B An Architecture can
have multi-Process

Sequential Statements.

Statemen

. \ B Each Process
T~

Process 1

executes in parallel

— with each other.

mIxcCc—-O0om-A—IOA™D0>

Process N B However, within a
Sequential
Statement PI’OCGSS, the
statements are
executed

sequentially.

www.pld.com.cn

VHDL Model - Multi-Process Architecture

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY if _case IS
PORT (a, b,c,d:INSTD_LOGIC;

® The Process statements execute in parallel and

therefore, the order in which we list the statements
should hav/e no affect on the outcome

sel:IN STD_LOGIC_VECTOR(1 DOWNTO 0),

y, z: OUT STD_LOGIC);
END if case;

ARCHITECTURE logic OF if _case IS
BEGIN

case_label: PROCESS(a, b, c, d, sel)

if_label: PROCESS(a, b, c, d, sel) <

BEGIN
IF sel="00" THEN
y <=a,
ELSIF sel="01" THEN
y<=b;
ELSIF sel="10" THEN
y <=¢;
ELSE
y<=d
END IF;

BEGIN
CASE sel IS
WHEN "00" =>
Z <= aq,
WHEN "01" =>
Z<=Db;
* Within a Process, WHEN "10" =>
Z <=,
the statements are WHEN "11" =>
executed sequentially z<=d;
WHEN OTHERS =>
z<="0,
END CASE;
END PROCESS case_label;

END logic;

END PROCESS if_label;

www.pld.com.cn

* Signal Assignments can also be
inside Process statements.

Signal Assignment - delay

B Signal Assignments can be inside Process
statements or outside (like the three concurrent
signal assignments).

B Signal Assignments incur delay
— Two types of Delays
* |Inertial Delay (Default)

— A pulse that is short in duration of the propagation
delay will not be transmitted

« Transport Delay
— Any pulse is transmitted no matter how short.

= In VHDL, there are exceptions to this rule that will not be
discussed.

www.pld.com.cn

VHDL Simulation

B Event - A change in value:
from O to 1; or from X to 1, etc

B Simulation cycle
— Wall clock time
— Delta
* Process Execution Phase
« Signal Update Phase
B When does a simulation cycle
end and a new one begins?
= When:
— All processes execute
— Signals are updated

B Signals get updated at end of
process.

www.pld.com.cn

Initialize Signals

y

Execute
all
Pr ocesses

Initialization

Phase

Y

\ 4

Advance Time

y

Execute
sensitive
Pr ocesses

v

Dedlta

Update Signals

!

\

Simulation
Cycle

Equivalent Function

LIBRARY ieee; LIBRARY ieee,
USE ieee.std_logic_1164.all; USE ieee.std_logic_1164.all;
ENTITY Simp IS PORT(a.0 - I 81D, LOGIC
. . a,b: :
PORT(a, b IN STD LOGIC; | y: OUT STD_LOGIC):
~y:OUT STD_LOGIC); END simp. orc
END simp; ARCHITECTURE logic OF simp_prc IS
ARCHITECTURE logic OF simp IS SIGNAL ¢ : STD LOGIC:
SIGNAL ¢ : STD _LOGIC:; |::>
BEGIN
BEGIN processl: PROCESS(a, b)
> BEGIN
_ L c <= aand b;
¢ <: a.and b; END PROCESS processi;
y<=¢ (process2: PROCESS(c)
B BEGIN
END logic; y<=c:

« c and y get executed and updated in
parallel at the end of the Process
within one simulation cycle

END PROCESS process?2,
END logic;

www.pld.com.cn

?? Equivalent Functions

LIBRARY ieee;
USE ieee.std logic 1164.all;
ENTITY simp IS
PORT(a, b :IN STD_LOGIC;

y : OUT STD_LOGICO);
END simp;
ARCHITECTURE logic OF simp IS
SIGNAL c: STD_LOGIC;

LIBRARY ieee;
USE ieee.std logic_1164.all;
ENTITY simp_prc IS
PORT(a, b: IN STD_LOGIC;
y: OUT STD_LOGIC);
END simp_prc;
ARCHITECTURE logic OF simp_prc IS
SIGNAL c: STD_LOGIC;

BEGIN BEGIN
PROCESS(a, b)
BEGIN
c<=aandb; —> c<=aandb;
—> y <=¢;
y<=¢ END PROCESS;
END logic;

END logic;

www.pld.com.cn

Variable Declarations

B Variables are declared inside a Process
B Variables are represented by: :=

B Variable Declaration
VARIABLE <name> : <DATA TYPE> := <value>;
VARIABLE temp : STD_LOGIC_VECTOR (7 downto 0);

B Variable assignments are updated immediately
— Do not incur a delay

Temporary Storage

<— No Delay —

www.pld.com.cn

Assigning values to Variables

VARIABLE temp : STD_LOGIC _VECTOR (7 downto 0);

m All bits:

temp := “101010107;

temp := x"AA” ; (1076-1993)
B Single bit:

temp(7) = ‘1’;
W Bit-slicing:

temp (7 downto 4) := “10107%
B Single-bit: single-quote ()
B Multi-bit: double-quote (¥)

www.pld.com.cn

Variable Assignment

LIBRARY ieee;
USE ieee.std logic_1164.all;

ENTITY var IS

PORT (a,b:IN STD_LOGIC;
y : OUT STD_LOGIC);

END var;

ARCHITECTURE logic OF var IS
BEGIN

PROCESS (a, b)
VARIABLE c¢ : STD_LOGIC;
BEGIN

<

c :=a AND b; <—

y<=cC, =<

Variable declaration

Variable assignment

END PROCESS;

END logic;

www.pld.com.cn

Variable is assigned to a
Signal to synthesize to a
piece of hardware

Use of a Variable

LIBRARY ieee;

USE ieee.std _logic_1164.all;
ENTITY cmb_var IS
PORT(iO, i1, a : IN BIT;

q: OUT BIT);
END cmb_var;] .)
ARCHITECTURE logic OF cmb_var IS val is a variable that is updated
BEGIN PROCESS(0, 1. 2 at the instant an assignment
IV, 11, a . .
VARIABLE val : INTEGER RANGE 0 TO 1; s made to It
BEGIN
IF (a="0") THEN
val := val;
ELSE
val :=val + 1;
END IF: Therefore, the updated value
CASEvalls < of val is available for the
ERDE o CASE statement.
WHEN 1 =>
q<=il;
END CASE;
END PROCESS;

END logic;

www.pld.com.cn

Signal and Variable Scope

ARCHITECTURE _
'Declared outside of the

{SIGNAL Declarations} <« |Process Statements

(Globally visible to all
labell: PROCESS | Process Statements)
{VARIABLE Declarations}

label2: PROCESS Declared inside the
[VARIABLE Declarations} ¥~ |Process Statements

(Locally visible to the
Process Statements)

www.pld.com.cn

Review - Signals vs. Variables

SIGNALS (<=) VARIABLES (:=)
ASSIGN assignee <= assignment assignee .= assignment
UTILITY Represent circuit Represent local
interconnect storage
SCOPE Global scope Local scope
(communicate between (inside PROCESS)
PROCESSES)
BEHAVIOR | Updated atend of Updated Immediately

Process Statement
(new value not available)

(new value available)

www.pld.com.cn

Sequential Statements

B Sequential Statements
— IF-THEN statement
— CASE statement
— Looping Statements

www.pld.com.cn

If-Then Statements

B Format:

B Example:

IF <condition1> THEN
{sequence of statement(s)}
ELSIF <condition2> THEN
{sequence of statement(s)}

ELSE
{sequence of statement(s)}
END IF;

www.pld.com.cn

PROCESS(sela, selb, a, b, ¢)
BEGIN
IF sela="1" THEN
<=4
ELSIF selb="1' THEN
q<=b;
ELSE
q<=¢,
END IF;
END PROCESS;

__/

selb |

sela |

If-Then Statements
.
B Conditions are evaluated in order from top to bottom
— Prioritization

® The first condition, that is true, causes the
corresponding sequence of statements to be
executed.

® |f all conditions are false, then the sequence of
statements associated with the “ELSE” clause Is
evaluated.

www.pld.com.cn

If-Then Statements

B Similar to Conditional Signal Assignment

Implied Process Explicit Process
q <=a WHEN sela ="1"EL SE PROCESS(sela, selb, a, b, ¢)
S.WHEN selb =1’ ELSE BEGIN
: IF sela='1' THEN
q<=3a

ELSIF selb=‘1’ THEN
c_\ q<=b;
b ELSE
—/ a — q<=¢
selb — END IF:

sela END PROCESS:

www.pld.com.cn

Case Statement

B Format:

CASE {expression} IS
WHEN <condition1> =>

{sequence of statements}

WHEN <condition2> =>

{sequence of statements}

WHEN OTHERS => -- (optional)

{sequence of statements}

END CASE;

www.pld.com.cn

C oo 9

sel

2

B Example:

PROCESS(sel, a, b, c, d)
BEGIN
CASE sel IS
WHEN “00” =>
gq<=4a
WHEN “01” =>
q <= b;
WHEN “10” =>
gq<=¢
WHEN OTHERS =>
q<=d;
END CASE;
END PROCESS;

Case Statement

B Conditions are evaluated at once
— No Prioritization
® All possible conditions must be considered

® WHEN OTHERS clause evaluates all other possible
conditions that are not specifically stated.

www.pld.com.cn

Case Statements

B Similar to Selected Signal Assignment

Implied Process Explicit Process
WITH sel SELECT PROCESS(sel, a, b, c, d)
g <= a WHEN “00”, BEGIN
b WHEN “01”, CASE sel IS
¢ WHEN “107, WHEN “00” =>
d WHEN OTHERS; q<=a;
WHEN “01” =>
q<=b;
a —— WHEN “10” =>
b —— g q <=,
c—— WHEN OTHERS =>
d — g<= d’
sel ﬁf END CASE;

END PROCESS;

www.pld.com.cn

Sequential LOOPS

B Infinite Loop

— Loops infinitely unless EXIT
statement exists

® While Loop
— Conditional test to end loop

B FOR Loop
— Iteration Loop

www.pld.com.cn

[loop_|abel]LOOP
--sequential statement
EXIT loop labd ;

END LOOP;

WHILE <condition>LOOP
--sequential statements
END LOOP;

FOR <identifier> IN <range> L OOP
--sequential statements
END LOOP;

FOR LOOP using a Variable: 4-bit Left Shifter

LIBRARY ieeeg;

USE ieee.std logic 1164.all;

USE ieee.std logic_unsigned.all;

ENTITY shift4 IS

PORT (shft_Ift: in std_logic;
d_in:in std_logic_vector(3 downto 0);
g_out : out std_logic_vector(7 downto 0));

END shift4;

ARCHITECTURE logic OF shift4 1S Variable Declaration

BEGIN

PROCESS(d _in, shft_Ift)

VARIABLE shft_var : std_logic_vector(7 DOWNTO 0);
BEGIN

shft_var(7 downto 4) := "0000";

shft_var(3 downto 0) :=d_in;

\ Variable is initialized

www.pld.com.cn

FOR LOOP using a Variable: 4-bit Left Shifter

IF shft_Ift ="1"' THEN
FORIiIN7 DOWNTO 4 LOOP <—u__
shft_var(i) := shft_var(i-4);

END LOOP; <<\\\\\\\\
shft_var(3 downto 0) :=“0000";
ELSE
shft_var := shft_var: \
END IF; \
No shifting

g_out <= shft_var;

Enables shift-left

I is the index for the FOR LOOP
and does not need to be declared

Shifts left by 4

Fills the LSBs with zeros

END PROCESS; \

END logic; Variable is assigned to a Signal
before the end of the Process to
synthesize to a piece of hardware

www.pld.com.cn

Understanding VHDL
and
Logic Synthesis

VHDL Model - RTL Modeling

Result:

ENTITY

ARCHITECTURE

1YY 7Y

—z >

www.pld.com.cn

B RTL - Type of
behavioral modeling
that implies or infers
hardware

B Functionality and
somewhat structure of
the circuit

B For the purpose of
synthesis, as well as
simulation

Recall - RTL Synthesis

IF sel="00" THEN

mux_out <= a;
ELSIF sel="01" THEN
mux_out <= b;

ELSE sel="11" THEN
mux_out <= d;

inferred

—

—_—_———————e— e ——— — — g

L

Translation

I
N

d

www.pld.com.cn

Optimization

Two Types of Process Statements

e Combinatorial Process

— Sensitive to all inputs used in
the combinatorial logic
« Example

PROCESS(a, b, s&l)

sensitivity list includes all inputs used
in the combinatorial logic

e Sequential Process

d —° °—d
— Sensitive to a clock or/and :
control signals clk —P
« Example B
PROCESS(clr, clk) clr i

sensitivity list does not include the d input,
only the clock or/and control signals

www.pld.com.cn

LATCH

LIBRARY ieee;
USE ieee.std_logic_1164.ALL

ENTITY latch IS
PORT (data: IN std_logic;
gate : IN std_logic;
g : OUT std_logic
)i
END latch;

ARCHITECTURE behavior OF latch IS
BEGIN

label 1: PROCESS (data, gate) «

BEGIN
IF gate ='1' THEN
g <= data;

dat Transparent
Latch D

s3>

sensitivity list includes both inputs

END IF; <
END PROCESS;

END behavior;

www.pld.com.cn

What happens if gate = ‘0'?
= Implicit Memory

DFF - clk="1'

LIBRARY ieee;

USE ieee.std_logic_1164.all; o
. |p Ql——

ENTITY dff IS d .

PORT (d:in std_logic; !

clk : in std_logic; clk 5 D
: out std_logic | =NA
) q- - | CLRN

END dff;

ARCHITECTURE behavior OF dff IS

BEGIN < sensitivity list only includes the

PROCESSB(égI)N triggering signal, in this case, clk

IF clk = '1' THEN
ge=di T
END IF; —

END PROCESS;
END behavior;

clk ='1’ means thatitis
positive-edge triggered

www.pld.com.cn

DFF with WAIT statement

LIBRARY ieeeg;
USE ieee.std logic_1164.all;

ENTITY wait_dff IS
PORT (d, clk : in std_logic;
g : out std_logic
);
END wait_dff;
ARCHITECTURE behavior OF wait_dff IS
BEGIN
PROCESS
BEGIN —— |
wait until clk = 1"
q<=d;
END PROCESS;
END behavior;

- Note: There is no sensitivity list

wait until
— Acts like the sensitivity list

www.pld.com.cn

DFF - clk’event and clk="1’

LIBRARY ieee; L
USE ieee.std_logic_1164.all;
d — | Q—(
ENTITY dff_a IS :
PORT (d :in std_logic; clk —
clk : in std_logic; | ENA
q : out std_logic CLRN
) i ’ i
END dff_a;
ARCHITECTURE behavior OFdff_a IS clk’event and clk=‘1’
BEGIN B Ik is the signal
By / — clkis the signal name (any name)
BEGIN —‘event is a VHDL attribute,
IF clk'event and clk = '1' THEN specifying that there needs
o d; to be a change in signal value
END PROCESS: —clk="1" means positive-edge
END behavior; triggered

www.pld.com.cn

DFF - rising_edge

LIBRARY ieee;
USE ieee.std logic_1164.all;
d —|P Q—(q
ENTITY dff b IS :
PORT (d : in std_logic; clk —
clk : in std_logic; ! ENA
g : out std_logic CLRN
); i 7 i
END dff_b;
ARCHITECTURE behavior OFdff b IS | [
BEGIN | rising_edge | | | |
PROCESS(clk) / — |EEE function that is defined in the
BEGIN std_logic_1164 package
J ”S'”g—ec?ie_(‘;;_k) THEN — specifies that the signal value
END IE: must be O Fq 1 |
END PROCESS; — X, Z to 1 transition is not allowed
END behavior;

www.pld.com.cn

DFF with asynchronous clear

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_unsigned.all;

ENTITY dff clr IS d P ° q
PORT (clr: in bit; | !
d, clk : in std_logic; clk —
q : out std_logic | ENA
)i | CLRN
END dff clr; ! O
— clr |
ARCHITECTURE behavior OF dff cIris e
BEGIN
PROCESS(clk, clr) — This is how to implement asynchronous
BEGIN . i
control signals for the register
IF clr ='0' THEN <« | — Note: This IF-THEN statement
q<="0; is outside the IF-THEN statement
ELSIF rising_edge(clk) THEN that checks the condition rising_edge
o d; — Therefore, clr="1" does not depend
END PROCESS; on the clock

END behavior;

www.pld.com.cn

How Many Registers?

www.pld.com.cn

ENTITY regl IS
PORT (d . in BIT;
clk :inBIT;
g :outBIT);
END regl;

ARCHITECTURE regl OF regl IS
SIGNAL a, b : BIT;
BEGIN
PROCESS (clk)
BEGIN
IF rising_edge(clk) THEN
a<=d;
b <= a;
g <=Db;
END IF;
END PROCESS;
END regl;

How Many Registers?

B Signal Assignments inside the IF-THEN statement
that checks the clock condition infer registers.

d —IP Q a D Q b D Q——(
clk —p clk —P clk —Pp

ENA ENA ENA

CLRN CLRN CLRN

www.pld.com.cn

How Many Registers?

ENTITY regl IS
PORT (d . in BIT;
clk :inBIT;
g :outBIT);
END regl;

ARCHITECTURE regl OF regl IS
SIGNAL a, b : BIT;
BEGIN
PROCESS (clk)
BEGIN
IF rising_edge(clk) THEN Signal assignment moved.
a<=d;
b <= a;
END IF;
END PROCESS;
g <= b: <
END regl;

www.pld.com.cn

How Many Registers?

B b to g assignment is no longer edge-sensitive
because it Is not inside the IF-THEN statement that
checks the clock condition

4 —1o 0 a b ol— 9
clk —P clk —P

ENA ENA

CLRN CLRN

www.pld.com.cn

How Many Registers?

ENTITY regl IS
PORT (d . in BIT;
clk :inBIT;
g :outBIT);
END regl,;

ARCHITECTURE regl OF regl IS
BEGIN
PROCESS (clk)
VARIABLE a, b : BIT;
BEGIN
IF rising_edge(clk) THEN

b:.=a;
q<=b;
END IF;
END PROCESS;
END regl;

a:.=d; /

- Signals changed to variables.

www.pld.com.cn

How Many Registers?

B Variable assignments are updated immediately
B Signal assignments are updated on clock edge

www.pld.com.cn

Variable Assignments in Sequential Logic

B Variable assignments inside the IF-THEN statement,
that checks the clock condition, will not infer
registers.

B Variable assignments are temporary storage and
have no hardware intent.

B Variable assignments can be used in expressions to
Immediately update a value.

— Then the Variable can be assigned to a Signal

www.pld.com.cn

Example - Counter using a variable

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_unsigned.all;

ENTITY count_a IS
PORT (clk, rst, updn : in std_logic;

g : out std_logic_vector(15 downto 0));
END count_a,;

ARCHITECTURE logic OF count_a IS
BEGIN
PROCESS(rst, clk)
VARIABLE tmp_q : std_logic_vector(15 downto 0);
BEGIN
IF rst ='0' THEN
q<=0;
ELSIF rising_edge(clk) THEN
IF updn ='1' THEN

B Counters are accumulators that
always add a ‘1’ or subtract a ‘1’

Arithmetic expression assigned to a
variable

tmp_q = tmp_q +1: /

ELSE
tmp_q:=tmp_q- 1;
END IF;
q<=tmp_q, <
END IF;
END PROCESS;

END logic;

www.pld.com.cn

Variable assigned to a Signal inside
the IF-THEN statement, that checks
the clock condition, will infer registers

Model
Application

Finite State Machine (FSM) - State Diagram

RESET

Inputs: + Outputs:

select

reset
nw @ . first

nxt

www.pld.com.cn

Enumerated Data Type
.

B Recall the Built-In Data Types:

— BIT

— STD _LOGIC

— INTEGER
B What about User-Defined Data Types:

— Enumerated Data Type:

TYPE <your_data_type> IS
(items or values for your data type separated by commas)

www.pld.com.cn

Writing VHDL Code for FSM

B State Machine states must be an Enumerated Data Type:
TYPE state_type IS (idle, tapl, tap2, tap3, tap4),

B Object which stores the value of the current state must be
a Signal of the user-defined type:

SIGNAL filter : state_type,;

www.pld.com.cn

Writing VHDL Code for FSM

B To determine next state transition/logic:

— Use a CASE statement inside IF-THEN statement
that checks for the clock condition

 Remember: State machines are implemented using
registers

B To determine state machine outputs:

— Use Conditional and/or Selected signal
assignments

— Or use a second Case statement to determine the
state machine outputs.

www.pld.com.cn

FSM VHDL Code - Enumerated Data Type

LIBRARY ieee:

USE ieee.std_logic_1164.all; /ldle\
USE ieee.std logic_unsigned.all;

USE ieee.std logic_arith.all;

.
ENTITY state_ m2 IS : ‘/

PORT(clk, reset, nw : in std_logic;
sel: out std_logic_vector(1 downto 0);

/Tap\
nxt, first: out std_logic); /Tapd\ '
END state_m2; '
ARCHITECTURE logic OF state. m2 IS

TYPE state_type IS
(idle, tapl, tap2, tap3, tapATN

SIGNAL filter : state_type; Enumerated data type

www.pld.com.cn

FSM VHDL Code - Next State Logic

BEGIN RESET

PROCES (reset, clk)

BEGIN
IF reset ='1' THEN

filter <= idle;
ELSIF clk'event and clk ='1' THEN

CASE filter IS

WHEN idle =>

IF nw="1'THEN
filter <= tap1l;

END IF;
WHEN tapl =>
filter <= tap2;
WHEN tap2 =>
filter <= tap3;
WHEN tap3 =>
filter <= tap4;
WHEN tap4 =>
IF nw="1"THEN
filter <= tap1l;

ELSE
filter <= idle;
END IF;

END CASE;

END IF,;
END process;

www.pld.com.cn

FSM VHDL Code - Outputs

nxt <="'1" WHEN filter=tap4 ELSE /ldle\
0
first <='1" WHEN filter=tapl ELSE
s /Tapd
' select =3
nxt=1
WITH filter SELECT
sel <="00" WHEN tapl,
"01" WHEN tap2,
"10" WHEN tap3, conditional
"11" WHEN tap4, signal assignments

"00" WHEN others:

END logic; selected
signal assignments

www.pld.com.cn

FSM VHDL Code - Outputs using a Case

output: PROCESS(filter)

BEGIN
CASE filter IS
WHEN idle =>
nxt <="'0",
first <="'0"
WHEN tapl =>
sel <="00";
first <="1"
WHEN tap2 =>
sel <="01";
first <="0";
WHEN tap3 =>
sel <="10"
WHEN tap4 =>
sel <="11";
nxt <="1";
END CASE;

END PROCESS output;

END logic;

www.pld.com.cn

Designing
Hierarchically

Recall - Structural Modeling

B Functionality and structure of the circuit
® Call out the specific hardware, lower-level components
B For the purpose of synthesis

Higher-level Component

inputl outputl
> — >
[D o

Lower-level —

o I Componentl ®
Lower-level I

() — o

Componentl

inputn outputn

www.pld.com.cn

Design Hierarchically - Multiple Design Files

B VHDL hierarchical design requires Component
Declarations and Component Instantiations
t op. vhd
entity-architecture “top”

conponent “md_a”
conponent “m d_b”

m d_a. vhd m d_b. vhd

entity-architecture “md_a” entity-architecture “m d_b”
conponent “bottom a” conponent “bottom a”
conponent “bottom b”

bott om a. vhd bott om b. vhd
entity-architecture “bottoma” entity-architecture “bottom.Db”

www.pld.com.cn

Component Declaration and Instantiation

B Component Declaration - Used to declare the Port types and
the Data Types of the ports for a lower-level design.
COMPONENT <lower-level _design _name> IS
PORT (<port_name> : <port_type> <data_type>;

<port_name> : <port_type> <data_type>);
END COMPONENT;

B Component Instantiation - Used to map the ports of a lower-
level design to that of the current-level design

<instance_name> : <lower-level design _name>

PORT MAP(<lower-level port hame> => <current_level port_name>,
...,<lower-level port_name> => <current_level port_name>);

www.pld.com.cn

Component Declaration and Instantiation

B Next-level of hierarchy design must have a Component
Declaration for a lower-level design before it can be Instantiated

ARCHITECTURE tolleab _arch OF tolleab IS
COMPONENT tollv < Component Declaration
PORT(clk:IN STD LOGIC;

cross, nickel, dime, quarter : IN STD_LOGIC,;
green, red : OUT STD_LOGIC;

sout : OUT STATE _TYPE;
state_ in :IN STATE_TYPE);
END COMPONENT; Positional Association

BEGIN -

ul: tollv PORT MAP (tclk, tcross, tnickel, tdime,
tquarter, tgreen, tred,
tsout, tstate);

Instance label/name

Component Instantiation

www.pld.com.cn

Component Declaration and Instantiation

LIBRARY ieee;

USE ieee.std_logic_1164.all;

ENTITY tolleab IS

PORT(tclk : IN STD_LOGIC;
tcross, tnickel, tdime, tquarter : IN STD_LOGIC;
tgreen, tred : OUT STD_LOGIC);

END tolleab;

ARCHITECTURE tolleab_arch OF tolleab IS

TYPE STATE_TYPE IS (cent0, cent5, centl0, centl5, cent20, cent25, cent30,
cent35, cent40, cent45, cent50, arrest);

SIGNAL connect : STATE_TYPE;

COMPONENT tollv
PORT(clk: IN STD_LOGIC;
cross, nickel, dime, quarter : IN STD_LOGIC;
green, red : OUT STD_LOGIC;
sout : OUT STATE_TYPE;
state_in: IN STATE_TYPE);
END COMPONENT;

BEGIN

lower-level port

dime => tdime

current-level port

ul: tollv PORT MAP (clk => tclk, cross => tcross, nickel => tnickel, dime => tdime,§

quarter => tquarter, green => tgreen, red =>tred,
sout => connect, state_in => connect);

END tolleab_arch;

www.pld.com.cn

Benefits of Hierarchical Designing

|
Designing Hierarchically

B |n a design group, each designer can create seperate
functions (components) in separate design files.

B These components can be shared by other designers
or can be used for future projects.

B Therefore, designing hierarchically can make designs
more modular and portable

B Designing Hierarchically can also allow easier and
faster alternative implementations

— Example: Try different counter implementations by replacing
component declaration and component instantiation

www.pld.com.cn

Vendor Libraries

B Silicon vendors often provide libraries of
macrofunctions & primitives
— Altera Library
¢ maxplus2
°* megacore

B Can be used to control physical implementation of
design within the PLD

B Vendor-specific libraries improve performance &
efficiency of designs

B Altera provides a complete library of LPM-compliant
macrofunctions, plus other primitives

www.pld.com.cn

Library Altera/LPM

B LIBRARY ALTERA;
— Contains the following packages:

 maxplus2 (Component declarations for all primitives and
megafunction Altera libraries)

 megacore (Component declarations for all Altera
Megacores)

B LIBRARY LPM,;

— Contains the following packages:

* Ipm_components (Component Declarations for all
Altera LPM functions)

= Note: See MAX+PLUS Il online help for more information

www.pld.com.cn

LPMs

M Library of Parametrized Modules
— Large building blocks that are easily configurable by:
e Using different Ports
- Setting different Parameters
B [ndustry standard:
— Port names
— Parameters
B However, the source code is different for each vendor.

B Altera’s LPMs have been optimized to access the
architectural features of Altera devices

www.pld.com.cn

LPM Instantiation

B All of the Altera LPM macrofunctions are declared In
the package Ipm_components.all in the
LIBRARY lpm;

® In the VHDL Code:

LIBRARY lpm;
USE Ipm.lpm_components.all;

www.pld.com.cn

LPM Instantiation - [pm_mux

LIBRARY ieee;

USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
USE ieee.std_logic_signed.all;

LIBRARY Ipm;
USE Ipm.lpm_components.all;

ENTITY tst_mux IS

* MAX+plus Il On-line HELP: VHDL Component Declaration:

COMPONENT Ipm_mux
GENERIC (LPM_WIDTH: POSITIVE;
LPM_WIDTHS: POSITIVE;
LPM_PIPELINE: INTEGER:= 0;
LPM_SIZE: POSITIVE;
LPM_HINT: STRING := UNUSED);
PORT (data: IN STD_LOGIC_2D(LPM_SIZE-1 DOWNTO 0, LPM_WIDTH-1 DOWNTO 0);
aclr: IN STD_LOGIC :='0
clock: IN STD_LOGIC :='0'
sel: IN STD_LOGIC_VECTOR(LPM_WIDTHS-1 DOWNTO 0);
result: OUT STD_LOGIC_VECTOR(LPM_WIDTH-1 DOWNTO 0));
END COMPONENT;

PORT (a:in std_logic_2d (3 downto 0O, 15 downto 0);
sel : in std_logic_vector(1 downto 0);
y . out std_logic_vector (15 downto 0));

END tst_mux;

ARCHITECTURE behavior OF tst mux IS
BEGIN

ul: [pm_mux GENERIC MAP(Iom_width => 16, Ipm_size => 4, lom_widths => 2)
PORT MAP (data => a, sel => sel, result =>y);

END behavior;

www.pld.com.cn

LPM Instantiation - [pm_mult

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std _logic_unsigned.all;

LIBRARY Ipm,;
USE Ipm.lpm_components.all;

ENTITY tst_mult IS
PORT (a, b :in std_logic_vector(7 downto 0);

g_out : out std_logic_vector(15 downto 0));
END tst_mult;

ARCHITECTURE behavior OF tst._mult IS
BEGIN
ul : lpm_mult GENERIC MAP (Ipm_widtha => 8, [pm_widthb => 8,
lpm_widths => 16, I[pm_widthp => 16)
PORT MAP(dataa => a, datab => b, result => q_out);

END behavior;

www.pld.com.cn

Benefits of LPMs

B |Industry standard

B Larger building blocks, so you don’t have to start from
scratch

— Reduces design time
— Therefore, faster time-to-market

B Easy to change the functionality by using different
Ports and/or Parameters

B Consistent synthesis

www.pld.com.cn

Appendix

ATTRIBUTES

<signal_name> : IN STD_LOGIC_VECTOR(7 DOWNTO 0)

‘HIGH -7

‘LOW -0

‘RIGHT -0

‘LEFT -7

‘RANGE - 7 DOWNTO O
‘REVERSE RANGE -0 TO 7
‘LENGTH - 8

www.pld.com.cn

SUBPROGRAMS

B FUNCTIONS
B PROCEDURES

www.pld.com.cn

SUBPROGRAMS

ARCHITECTURE
begin

end

PARAMETERS

« RETURN VALUE

PARAMETERS

FUNCTION

www.pld.com.cn

< OUT PARAMETERS

PROCEDURE

FUNCTIONS

B Format:

function <function_name> (<input_parameters>)
return <DATA TYPE>Is
{any declarations}
begin
{functionality}
return <name_of a declaration>

end <function_name>;

www.pld.com.cn

FUNCTIONS

® For functions:
— only allowable mode for parameters is in

— only allowed object classes are constant or
signal

— If the object class is not specified, constant is
assumed

www.pld.com.cn

PROCEDURES

B Format:

procedure <procedure _name> (<mode_parameters>)
begin
{functionality}
end <procedure name>;

www.pld.com.cn

PROCEDURES

B For Procedures:
— allowable modes for parameters are in, out, and inout

— allowable object classes for parameters are constant,
variable and signal

— If the mode Is in and no object class is specified, then
constant is assumed.

— If the mode Is inout or out and if no object class is
specified, then variable is assumed.

www.pld.com.cn

Signal Assignment inside a Process - delay

« ADelta cycle has 2 phases:
— process execution i
— signal update

c updated (c=1)

c updated (c=0)

y

ENTITY simp_prc IS
PORT(a, b : IN STD_LOGIC;

y: OUT STD_LOGIC);
END simp_prc;
ARCHITECTURE logic OF simp_prc IS
SIGNAL c: STD_LOGIC;

BEGIN

PROCESS(a, b)
BEGIN
c<=aandb;
y<=¢C

END PROCESS;

END logic;

y updated (y=X)

y updated (y=1)

www.pld.com.cn

a=1,b=1 a,b changes a,b changes
l a=0,b=1 a=0,b=1
| | |
cand y cand y cand vy
executed executed executed
| : | >
!

Al

A1l

simulation cyclel . simulation cycle2 >|

(visible delay)

(visible delay)

» y does not get the newest value of c until a

simulation cycle later.

« ADelta cycle is non-visible delay

(very small, close to zero)

2 Process

processl: PROCESS(a, b)
BEGIN
c<=aand b;
END PROCESS processli,
process2: PROCESS(c)
BEGIN
y <=¢;
END PROCESS process?2;

y updated
(y=1)

y updated
(y=0)

|

a,b changes

oo
i u
e

c a,b changes

updated a=0 ypdated a=1
(c=1) b=1 (c=0) b=1

c y c y c
executed executed executed executed executed

| | ‘. | >
Ag A2 Fay| A2

simulation cyclel simulation cycle2
(visible delay) (visible delay)

<

+ ¢ and y gets executed and updated within the
same simulation cycle s

www.pld.com.cn

VS.

1 Process

PROCESS(a, b)
BEGIN
c<=aandb;
y <=¢;

END PROCESS;

¢ updated (c=1) ¢ updated (c=0)

| ,

y updated (y=X) y updated (y=1)

a,b changes a,b changes

i a=0,b=1 a=0,b=1

.. L I

cand vy cand y | cand y

. executed | executed ;executed

R pr—— o e — I e
| Al | M1 |

simulation cycle2
(visible delay)

simulation cyclel > |<
(visible delay)

* y does not get the newest value of ¢ until a
simulation cycle later.

Variable Assignment - no delay

« ADelta cycle has 2 phases:
— process execution
— signal update

ENTITY var IS

PORT (a,b:IN STD LOGIC;
y : OUT STD_LOGIC);

END var;

ARCHITECTURE logic OF var IS

BEGIN

PROCESS (a, b)

VARIABLE c¢ : STD_LOGIC;

BEGIN

c :=a AND b;

y <=¢C,
END PROCESS;
END logic;

a=1,b=1 y updated y updated
i | y=1) _ (y=0)
execcuted a,b changes ~a,b changes
a=0,b=1 ‘a=1,b=1
and
updated | |
(c=1) cexecutedand c executed and
~ updated (c=0) updated (c=1)
| |
¢ y y
executed executed | executed |
i .|l):
N1 Al
< Simulation cyclel . simulation cycle2 >|
(visible delay) (visible delay)

e c and y gets executed and updated within the
same simulation cycle (at the end of the process)

www.pld.com.cn

« ADelta cycle is non-visible delay

(very small, close to zero)

2 Process

processl: PROCESS(a, b)
BEGIN
c<=aand b;
END PROCESS processli,
process2: PROCESS(c)
BEGIN
y <=¢;
END PROCESS process?2;

y updated
(y=1)

y updated
(y=0)

|

a,b changes

oo
i u
e

c a,b changes

updated a=0 ypdated a=1
(c=1) b=1 (c=0) b=1

c y c y c
executed executed executed executed executed

| | ‘. | >
Ag A2 Fay| A2

simulation cyclel simulation cycle2
(visible delay) (visible delay)

<

+ ¢ and y gets executed and updated within the
same simulation cycle s

www.pld.com.cn

VS.

1 Process

PROCESS(a, b)
BEGIN
c<=aandb;
y <=¢;

END PROCESS;

¢ updated (c=1) ¢ updated (c=0)

| ,

y updated (y=X) y updated (y=1)

a,b changes a,b changes

i a=0,b=1 a=0,b=1

.. L I

cand vy cand y | cand y

. executed | executed ;executed

R pr—— o e — I e
| Al | M1 |

simulation cycle2
(visible delay)

simulation cyclel > |<
(visible delay)

* y does not get the newest value of ¢ until a
simulation cycle later.

