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Abstract

When fitting spectra with a low number of counts per channel, the standardχ2 fits will give
systematic errors. The maximum likelihood method will perform better. Its behaviour in goodness-
of-fit testing is analyzed and some alternative methods employing empirical distribution functions
are mentioned. 2002 Elsevier Science B.V. All rights reserved.

In experiments with exotic nuclei one often will end up with spectra containing a low
number of counts per channel. The standard statistical methods, see, e.g., [1,2], typically
use “the law of large numbers” and assume a reasonable number of counts per bin (often
values around 10 are quoted as being needed). To obtain this one might have to add so
many channels that the resolution in the spectrum is lost. If binning is not done, one has to
proceed carefully since the behaviour of the standard methods at a low number of counts
can be quite different from the asymptotic limit. A general solution of this problem is to
perform Monte Carlo simulations of the experiment. However, specific results could be
useful and the aim of this contribution is to present some. In the general analysis we shall
often look at “background spectra”, i.e. spectra where all channels have the same number
of expected countsµ (obeying the Poisson distribution), but we shall also for definiteness
give examples of the use of the techniques for half-life spectra. Some earlier work in this
direction was presented in [3].

Two versions ofχ2 tests are often met. The first using “theoretical errors” and the
second using “experimental errors”. To avoid confusion we shall follow Ref. [4] and
refer to them as “Pearson’sχ2” and “Neyman’sχ2”, respectively. They are given by
χ2

P = ∑
i (ni − yi)

2/yi andχ2
N = ∑

i (ni − yi)
2/ni . An independent way of proceeding
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is to use maximum likelihood. We shall use it in the form of the “likelihoodχ2” that is
based on the likelihood ratio technique and for Poisson distributed data it is [4]

χ2
λ = 2

∑

i

(
yi − ni + ni ln(ni/yi)

)
. (1)

In the above formulaeni andyi are the count numbers and theoretical values in channeli.
In order to handle the caseni = 0, the last term in Eq. (1) should be changed to
ni ln(max(ni,1)/yi). This does not affect the numerical value.

For gaussian distributed data,χ2
P will give correct fit values, but for lowµ the difference

between the Poisson and the gaussian distribution will be felt. For estimation of a constant
background spectrum,χ2

P will give a fit value 0.5 larger than the correctµ; this bias is felt
stronger the smallerµ is. The alternativeχ2

N is even worse behaved and will give a fit value
1.0 smaller thanµ (the detailed derivation of these results can be found in [5]). In contrast,
χ2

λ will give the correct value no matter how lowµ gets. This bias in the standardχ2

methods will of course also be felt for nonconstant spectra. As an example we shall look
at the time distribution of the beta-delayed protons from17Ne based on the data in [6].
This spectrum had no background and extended for almost ten half-lives. Results from the
three different fit methods are given in Table 1, the errors are determined as the parameter
changes that increaseχ2 by one [1,2]. If the data are fit without a background term, the
resulting half-life values differ. Introducing a background, the half-life values become more
consistent, since the background term gets a value approximately equal to the bias given
above. Note that binning improves the reliability of theχ2 fits, but that the background
remains at the bias value. (The half-life for17Ne quoted in [6] of 109.3 ± 0.6 ms was
based on aχ2

N-analysis with binned spectrum but no background. It should be replaced by
109.6± 0.7 ms.)

Maximum likelihood gives correct parameter values and error bars. We now turn to
its use in goodness-of-fit tests. Althoughχ2

λ asymptotically will beχ2-distributed [1,4]
and therefore have an expectation value equal to the number of degrees of freedom
N , the behaviour for small count numbers will be different. For the case considered
above (constant spectrum with expectation valueµ per channel), one can derive explicit
expressions for the behaviour and show thatχ2

λ → N for largeµ. The behaviour at lower

values is given in Fig. 1. This figure also gives the variance of
√

2χ2
λ (for a trueχ2

Table 1
The half-life of17Ne evaluated with different methods

Background Bin width Half-life (ms)

in fit? (ms/ch) χ2
N χ2

P Max. likelihood

No 5.46 108.40± 0.54 110.10± 0.56 109.54± 0.56
Yes 5.46 109.69± 0.70 109.58± 0.74 109.61± 0.73
No 27.29 109.29± 0.55 109.67± 0.56 109.54± 0.56
Yes 27.29 109.65± 0.71 109.55± 0.74 109.59± 0.73

Background (counts/ch)

Yes 5.46 −1.1± 0.4 0.5± 0.5 −0.1± 0.4
Yes 27.29 −1.7± 2.1 0.6± 2.2 −0.2± 2.2
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Fig. 1. Left: the value of the Poisson likelihoodχ2
λ per degree of freedom for a flat spectrum with a Poisson

parameterµ. The line gives the result of an analysis done for a large number of channelsN . The stars are

experimental points for12Be decay spectra. Right: the variance of
√

2χ2
λ calculated via Monte Carlo simulations

of spectra withN = 1000 channels.

distribution this variance becomes 1 in the limit of largeN ) determined via Monte Carlo
simulations. In both cases clear deviations from aχ2 behaviour are seen forµ < 10. The
consequence is thatχ2

λ will take on unreasonably values if a large part of the spectrum has
less than 10 counts per channel, an example is the half-life spectra from12Be shown in
Fig. 1 in [7]. An analysis of the original data (binsize 0.1 ms, it is 3.2 ms in the figure) at
times larger than 520 and 350 ms, respectively, i.e. when only background remains, gives
the χ2

λ -values shown in the left panel in Fig. 1. They agree with the theoretical values
within the spread seen in the Monte Carlo simulations (cf. the variance in the right panel).

Even worse than this is thatχ2
λ in the limit of low count numbers effectively records

only the total number of counts in the spectrum and therefore looses statistical power.
In this limit, it is therefore logical to turn to other statistical methods in order to have a
reliable estimate of goodness-of-fit. Several methods from robust analysis and exploratory
data analysis should be considered, see, e.g., [8]. One class of methods that we shall
look into here rely on the empirical distribution function (EDF), the equivalent of the
theoretical cumulative distribution function. Formally, it can be defined for binned data
as EDFk = ∑k

i=1 ni/ntot and therefore increases monotonically from 0 to 1. Given a
theoretical distribution with probabilitiespi for lying in bin i and the corresponding
cumulative distributionFk = ∑k

i=1 pi , severalEDF-tests can be defined. The best known
test is probably the Kolmogorov–Smirnov statistics that uses the maximum deviation
betweenEDFk and Fk . We shall employ here two tests that make use of the summed
square deviation [9], namely the Cramér–von Mises statisticsW2 and the Anderson–
Darling statisticsA2 that puts more weight on points at the ends of the distribution.

We are presently investigating the use ofEDF tests for goodness-of-fit estimates for
spectra with low count rates, since they have been shown in many cases to be superior to
χ2 tests [9,10]. The main problem in employingEDF tests is that the confidence levels
must be estimated (e.g. with Monte Carlo methods) once the theoretical curves contain fit
parameters. For the case of the (continuous) gaussian and exponential distributions, this
is demonstrated in detail in [10]. However, most flat spectra turn out to give very similar
confidence levels forW2 andA2 for a large range of count rates. As an example, the 95%
confidence levels in the two cases are about 0.465 and 2.51. An ad hoc procedure for cases
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as the12Be half-life mentioned above would then be to employχ2
λ for the lowest part

of the spectrum where the count rate varies with channel number and use, e.g.,W2 for
the remaining “flat” part. The two resulting confidence levels can, if this is wanted, be
combined as shown in [1]. For our example, the Cramér–von Mises test shows that there is
less than 1% probability that the backgrounds in the two12Be spectra mentioned above are
constant. This is due to small systematic deviations that can be seen in the binned spectrum
in [7], but one should note that theχ2

λ analysis (Fig. 1) was not sensitive to these deviations.
TheEDF tests are more powerful.
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