
Statistical deliberations for exotic nuclei
K. Riisager

Citation: AIP Conference Proceedings 455, 797 (1998); doi: 10.1063/1.57283
View online: http://dx.doi.org/10.1063/1.57283
View Table of Contents: http://aip.scitation.org/toc/apc/455/1
Published by the American Institute of Physics

http://aip.scitation.org/author/Riisager%2C+K
/loi/apc
http://dx.doi.org/10.1063/1.57283
http://aip.scitation.org/toc/apc/455/1
http://aip.scitation.org/publisher/


Statistical  deliberations for exotic nuclei 

K. Riisager 

IFA, Aarhus Universitet, DK-8000 Aarhus C, Denmark 

Abstract. An often encountered situation in experiments on nuclei far from stability 
is that the count number per channel in various differential spectra becomes small. 
This might require the use of not so well-known statistical methods. Some examples 
are given. 

I N T R O D U C T I O N  

The question of what statistical method to use in the analysis of experimental 
data  has been considered in many textbooks, e.g. [1,2]. Experiments with nuclei 
far from stability nevertheless often result in situations where standard statistical 
methods do not immediately apply, part ly due to the low count numbers that often 
are encountered. The aim of the present contribution is through three different 
illustrative examples to show how one then can proceed. The topics treated are 
biases in fit methods for Poisson distributed data, how to employ simple estimators 
in line shape analysis and efficient estimation of half-lifes. 

LOW C O U N T  N U M B E R S  

When low count numbers occur one must use the Possion distribution explicitly 
rather than doing a Gaussian approximation. Since the Possion distribution is of 
exponential type the maximum likelihood will be an optimal method of analysis 
[2]. The often employed least squares minimization (g2-fit) gives a biased result. In 
two different variations of this method  the count numbers or the theoretical values 
are used to est imate the error on the data  points so that  X 2 = ~ ( n ~  - Oi)2/n~ or 
X 2 = Z~(n; - 6i)~/6;. Both methods gives a bias that  asymptotically will be - 1  
and 1/2, respectively [3]. For "experimental  error bars" this follows since points 
below the "true value" will be a t t r ibuted a too small error, conversely for points 
above. For "theoretical error bars" this follows since the denominator in X 2 on its 
own would force 0; to become large. A detailed derivation of the bias can be found 
in [3]. For a large number of channels No with common "true value" # the two 
variants of x2-minimization gives fit-parameters that  are approximately/~2/(# + 1) 
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and #~/1 + 1/#, respectively. Results are also given in the limit of small No and 
have in all cases been verified by means of Monte Carlo methods. Note that  a 
maximum likelihood minimization not only gives the correct result for all No, but 
also gives the smallest variance of the estimate. It should therefore be used instead 
of least squares minimization whenever effects of order 1/nl are judged important.  

SIMPLE ESTIMATORS 

Other methods than maximum likelihood and least squares are occasionally 
preferable, e.g. when the exact underlying distribution is not well established and 
one at first can be satisfied with obtaining only a few characteristics of the data. 
This situation might be encountered when the total statistics is limited and/or  does 
not allow a detailed line shape analysis to be made, but one nevertheless would like 
to extract some main quantities. A way out is to resort to simple (distribution-free) 
methods [1,2]. As a practical example we can refer to data from a recent experiment 
at GANIL [4] where the aim is to obtain the width for the neutron longitudinal 
momentum distribution following break-up of 1°Be and roBe in a Be target. 

Let the total number of counts be N. All summations should be understood to 
run over all counts, i.e. ~ i  fi should be interpreted as ~iN=l fi or if the data  are 
binned as ~i=~n m,s nifi ,  where ni is the number of counts in bin i (~i  ni = N). 
For each count a "position variable" is determined as xi, for binned data this is 
taken as the position in the middle of the bin. The data points are assumed to 
stem from some distribution that has mean value # and variance V. 

The location parameter can be estimated by/~ = 2, the average value of xi. The 
similar unbiased estimate of the variance is well-known to be: 

N 1 ~ ( x i -  2)2 
V -  N - 1  ( x - 2 ) 2 -  N - 1  • 

and an error estimate for t~ is then given by V(ft) = V / N .  The corresponding 
procedure for obtaining an error estimate for the width [1] is less well known. A 
relatively simple derivation gives the following unbiased estimators: 

1 1 ~ ( x i -  2) a 
cov( /~ ,V)-  N -  2 N -  1 . 

N N 1 ~ _ , ( x i -  2) 4 
V(~/) = N 2 _  3N + 3 - 1  . 

1 (3 2 N - 3  N - 3  1 
2 

where also the covariance between ~ and V is included. The statistical efficiency 
of these simple estimators will of course depend on what the exact underlying 
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distribution is (it might even asymptotically go to zero, cf. the discussion in section 
8.7 in [2]), so if independent reliable knowledge on the distribution is available one 
should incorporate it by using more elaborate methods. 

For the case in question the above formulas can be applied directly to extract pa- 
rameters for the distribution from 1°Be (core) break-up. The position decreases and 
the width increases significantly as one goes to larger angles, i.e. larger transverse 
momenta. For break-up of robe one might assume a two-component distribution: 
a contribution from the core (the one just extracted) and a contribution from the 
halo neutron. Using the ~°Be data a disentanglement can be done both for the 
position and for the width variables, but only the latter could be extracted with 
sufficient accuracy for the halo component. It is clearly smaller than the core width 
(the two variances differ by about a factor two) and also shows clear indications 
for an increase with angle. To draw more detailed physical conclusions one needs 
to introduce models for the process at this point. 

HALF-LIFE DETERM INAT IONS 

Finally, the case of half-life determinations will be considered in some detail. 
The maximum likelihood is here again an optimal method of analysis also in the 
limit of low count numbers and can be used for finding parameters and their errors. 
As is well-known [1,2] the best estimator for the mean life r is the average time 
[ (multiply with in 2 to get the half life instead). If data only are taken up to an 
upper limit T one must iterate the equation 

T 
e r#" - 1 

to obtain the mean life. If furthermore the data are binned with a bin width of At 
the equation to be iterated turns into 

r = t + e T / ~ _  l + r e a t - I - ; - 1  " 

The variance is similarly given by explicit formulas. It is r ~ / N  (where N is the 
number of data points) in the simplest case and increases for finite T and for 
increasing At. 

There are many powerful statistical methods for determining the fit-quality for 
an underlying exponential distribution [5]. As an example the Anderson-Darling 
statistics that  is based on the empirical distribution function will be employed here 
to illustrate how the half life can be determined for alAr from the observed time 
distribution of beta-delayed two-proton events [6]. The activity was produced at 
ISOLDE by a pulsed proton beam and diffuses gradually out of the target. The ions 
are collected while the decays are recorded and the goodness-of-fit test is therefore 
needed to ensure that  one has reached a regime of "pure exponential decay" before a 
reliable value can be extracted. As illustrated in figure 1 this happens about 85 ms 
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FIGURE 1. Half life of 31Ar determined from two-proton data for different fit-intervals as 
function of the starting point of the interval. Half life is found with maximum likelihood and 
goodness-of-fit is done with the Anderson-Darling statistics. 

after start of collection (the "A-D probability" measures the agreemen.t between the 
data  and a single exponential distribution). Only after this point can the extracted 
half life values be trusted. 
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