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A prescription for the error analysis of experimental data in the case of stochastic back- 
ground is formulated. Several relations are given which allow to establish the signifi- 
cance of mother-daughter  relationships obtained from delayed coincidences. Both, the 
probabili ty that a cascade is produced randomly and the probability that the parame- 
ters of an observed event chain are incompatible with known properties of a given 
species are formulated. The expressions given are applicable also in cases of poor  statis- 
tics down even to single events. 

1. Introduction 

Particularly in nuclear physics, the technique of de- 
layed coincidences is widely used for detecting time 
correlations between signals of different groups. Pre- 
viously unknown isomeric states as well as new nu- 
clides may be identified by linking them to the sub- 
sequent decays of their known daughter nuclei. In 
many cases, c~ decay cascades were used for this pur- 
pose [1-10]. 
There are two aspects in establishing the significance 
for the existence of a true correlation: 

- Consideration of the possibility that the random 
background of uncorrelated events could simulate a 
correlation. 
- Estimation of the compatibility of the parameters 
of observed events with known properties of some 
members in the considered event chain. In the fol- 
lowing, both aspects are discussed. 
Many of the relations given here are not entirely 
new, the intention, however, is to compile the prob- 
ability arguments relevant for the correlation analysis 
so as to be easily accessible. Finally examples for the 
application in recent experiments are given as an il- 
lustration. 

* Present address: Siemens AG, Otto Hahn Ring 6, 
D-8000 Mfinchen 83, FRG 

2. The Definition of the Error Probability 
in the Case of Stochastic Background 

In most cases it is not possible to give the probabili- 
ty for a statement to be true because then the com- 
plete set of error possibilities would have to be 
known. But a special error possibility of the state- 
ment can always be defined and the probabili ty for 
the occurrence of this error can be estimated. 
In experimental nuclear physics, often some sort of 
stochastic background is present which may be a 
possible source of errors. This background may ea- 
sily be treated mathematically by use of Poisson's 
distribution. 
Let us consider a measurement in which the value x 
of a physical quantity X is determined for single 
events. The measured spectrum dn/dx is schemati- 
cally shown in Fig. 1. Part of the spectrum is similar 
to the expected frequency distribution f(x) of back- 
ground events which is assumed to be known. A 
group of n,, events with X>Xm~n, however, may have 
a different (perhaps more interesting) origin. Xml n is 
the value of the variable x of the events to be in- 
vestigated which is nearest to the mean value of the 
background. (In the example of Fig. 1, the interest- 
ing events are located in the right tail of the back- 
ground distribution.) The probabili ty that the n m 
events are produced by a stochastic fluctuation of 
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Fig. l. Schematic representation of a measured spectrum of the 
variable x. The expected frequency distribution f(x) of back- 
ground events is indicated. The probability that the group of events 
with X>Xm~ n can be understood as a stochastic fluctuation of 
the background distribution gives the error probability of a dif- 
ferent (more interesting) interpretation of these events 

members of different event groups. An event group 
may be defined by some decay mode of a specified 
kind of nuclei. The occurrence of events of the dif- 
ferent groups form independent Poisson processes. 
A true correlation between members of different 
event groups is characterized by the occurrence of 
time distances between the members of a correlation 
chain shorter than expected for the random distribu- 
tion. Therefore we may choose an arbitrary limit At 
which divides the measured spectrum of time dis- 
tances in an upper random group and a lower group 
of n,, events which may contain correlated events. A 
correlation can be established if there is only a small 
probabili ty to produce the observed number  of n= 
events with time distances t < A t as a stochastic fluc- 
tuation of the random distribution. The expressions 
for some special cases are formulated in the follow- 
ing. 

the background distribution is identical to the error 
probability of a different interpretation of these 
events, if only this special error possibility is consid- 
ered. 
The expectation value n b for the number of events, 
deviating at least as much from the mean value of 
the statistical frequency distribution as any of the 
events to be investigated, is given by integrating the 
background frequency distribution: 

nb(X>Xmi~)= ~ f(x)dx (1) 
Xmin 

The probability that a fluctuation of the back- 
ground distribution produces the observed number of 
events n m or more in the interval from Xm~ . to in- 
finity is given by the sum over Poisson's distribu- 
tion: 

n n 

n :  n m  

This is the error probability searched for. 
If the condition nb~ 1 is fulfilled, the following ap- 
proximation can be made" 

n ~  m 
Perr ~ L T -  " (3) 

3. Correlation Analysis 

In the case of a correlation analysis, the time distri- 
bu t ion  of the events has to be investigated. Other 
observed physical quantities of the events (e.g. pulse 
height, pulse shape) may be used to identify the 

3.1. Correlation Chain with Fixed Order 

Suppose that in an experiment at least K different 
event groups are defined. We assume that n m event 
chains, consisting of one even t  E 1 of the first group 
followed by one event E 2 of the second group and 
so on, and finally by one event E K of the K' th  
group, were observed. The probabili ty density that 
stochastically an event E i is followed by an event 
Ei+ 1 after the time distance t, is given by the ran- 
dom time interval distribution of events Ei+ 1 times 
the probability of not observing an event of any 
other group in between: 

- ~  2jr 
dPi,i+t/dt=Zi+t e-&+*t ~I e-&t='~i+l e ~=~ (4) 

j~=i+l 

where 2~ is the mean counting rate of the event 
group Ei. 
The probability to observe the sequence Ei,Ei+ I 
within a time interval Ate,i+ 1 is given by integrating 
(4) from zero to Ati,i+ 1. As the events of the dif- 
ferent groups are independent of each other, the ex- 
pectation value for the number  of the complete se- 
quences as defined above within the time Tis given by 
the product of all the probabilities for the sequences 
El, Ei+, (with i=  1 to  K - 1 )  times the number n I of 
events of type 1 (n t=21T) :  

nb=Z1 i=~ dPi'i+l/dtdt 

K 

= T  i = 1  1 7  { 1 - - e  ,=1 ' ( 5 )  
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Ati, i+ 1 are maximum time limits given for the se- 
quences E~, E~+ 1. 

K 

If the conditions ~ )~Atj, i+ 1 4 1  are fulfilled for all 
i=1  

possible j values, n b can be approximated:  

K K - 1  

n b ,,~ T [-I 2~ 1-[ A ti,i+ 1 (6) 
i=1  i=1  

The error probabili ty is calculated as formulated in 
Sect. 2. 

3.2. Correlation Chain with Partially Free Order 

The a priori knowledge of the order of the events in 
a possibly true event chain may be limited. There 
are many different possibilities for an incomplete 
knowledge. Therefore we only formulate one case 
which is characterized by the condition that possible 
decay sequences are known to start with the events 
E~ of the group 1. The events of the other event 
groups (E 2 to EK) may appear in any order, but at 
least one event E~ must appear within the time limit 
Aq,~. In a consideration similar to Subsect. 3.1 we 
obtain the expectation value for the number of com- 
plete sequences to be produced randomly:  

nb=21 T l-[ dPi,i+ i /d td t  
i = 1  

K 

I ~  2i K 

= T  K i=1 I ]  { 1-e-(zl+'~')A'l'i} (7) 

H (2 1 
j = 2  

If the conditions ( 2 a + 2 i ) A t l , ~ l  are fulfilled for all 
possible j values, the following approximation can 
be made:  

K K 

i = 1  i = 2  

4. The Concept of the Central Confidence Interval 

In a second step the identification of an established 
decay sequence is treated by comparing its proper- 
ties with known properties of previously investigated 
members of the sequence. For example the physical 
quantity X for which the value xm was measured is 
known by spectroscopic investigations to have the 
expectation value x o if the identification is correct. 
The compatibility between x m and x 0 is investi- 
gated. 

Since we want to treat cases of poor statistics, we 
cannot apply the ~2 test. Therefore we use the con- 
cept of central confidence intervals. For  a confidence 
level 1 -  e, this means that the error probabili ty (the 
probabili ty that the true value is not included in the 
confidence interval around xm) is smaller than or 
equal to e/2 on each side outside this interval. We 
restrict ourselves to one-dimensional distributions 
which decrease monotonically with increasing dis- 
tance from the most probable value and which de- 
pend on one parameter. If p(x[//) is the probability 
density of the random variable x with the parameter  
#, the central confidence limits //l (lower limit) and 
//, (upper limit) are given by the solutions of the fol- 
lowing equations [11]: 

p(xL#,)=e/2 
x ~ x ~  

x m  

E p(x[#,)=e/2 
x ~  - o , 9  

(9) 

x,, is the actually measured value of x. In the case of 
a continuous variable x, the summation is replaced 
by an integration. 
The values #~ and #u determine a confidence inter- 
val for the expectation value of the random variable 
x. (For many distributions p(xl#) of practical in- 
terest the values of the parameter  # and of the ex- 
pectation value of x are identical.) 
The identification of a correlation chain can only be 
accepted, if the confidence interval with a certain 
confidence level 1 - e  (e.g. 1 - ~ = 0 . 6 8 )  around the 
measured value x m of the variable x to be tested 
includes the known value x 0 of the suspected spe- 
cies. 

5. The Compatibility of Two Experimental Values 

In the more general case, the presently measured 
value xml of the physical quantity X has to be com- 
pared to a previously measured value Xm2. We want 
to test the hypothesis, that both measured values be- 
long to the same family of distributions p(x]#,vi) 
with the same parameter  # and possibly different pa- 
rameters v i. (For example two different measured 
values for an c~ decay energy may have different un- 
certainties. In this case two gaussians with different 
width parameters vi and the same mean value # may 
be taken.) This hypothesis can be accepted if there is 
a great chance that the variable x 1 of the distribu- 
tion p(xl#,vl)  is smaller than xml and that simul- 
taneously the variable x 2 of the distribution 
p(xl#,v2) is greater than xm2. A measure for the re- 
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jection probability is given by minimizing the fol- 
lowing expression with respect to #: 

X m l  

p(xl~,v~)dx ~ p(xl#,v2)dx 
Prej= l -xe~ x22 (10) 

f p(x[#,Vl)dX [. p(xl#,vz)dx 
- -  o o  x o 

It is assumed that the expectation value of the distri- 
bution p(x[#, v) does not depend on the value of v. 
The integrals in the denominator take into account 
the implicit restriction that Xma and x~z are allowed 
to deviate each only to one side of the expectation 
value x 0. 

x0=  ~ xp(xl#,vOdx= ~ xp(xl#,v2)dx 

For # that value has to be taken, which minimizes 
P~j as given by (10). It was assumed that Xma <xm2. 
In the opposite case, the integration limits in (10) 
have to be interchanged. 
For  symmetric distributions the result can be formu- 
lated by the error probabilities e a and e 2 of central 
confidence intervals belonging to the two distri- 
butions with the same parameter # which just reach 
to the appropriate measured value x,,~ and Xmz, re- 
spectively. In this case P~  is given by minimizing 
the following expression with respect to /~: 

P~j= 1 - e l  e2 

The present definition of P~j differs from the treat- 
ment often found in literature which considers the 
distribution of differences [x 2 -xa l  between one ran- 
dom variable x a of the distribution p(xl#,Vl) and 
one random variable x z of the second distribution 
p(xll~, v2). In the present definition the absolute val- 
ues determined in the measurement are used which 
are disregarded if the distribution of differences is 
considered. 
In any correlation analysis two measured quantities 
occur: the number of the possibly correlated events 
and their mean time distance. The first one must 
agree with the knowledge of the decay branches and 
the detection probability for decay chains and the 
second must be compatible with the knowledge of 
the life time of the consecutive event group. There- 
fore both will be discussed in the following. 

6. The Number of Decay Sequences 

For statistically independent events, the probability 
to observe n events if the mean value of the number 
of events is p, is described by the Poisson distribu- 

tion: 

p(nl~)=~, e-" (11) 

The confidence limits for an observed number of n m 
counts are implicitly given by the following equa- 
tions: 

,m- 1 #~, e -  u, = e/2 p ( n l ~ ) - - 1 -  Z ~ .  
t l ~  r ~  n =  0 

nm nm ]~n 

2 p(nlPu) = ~ ~/-~e-U~=e/2 
n = O  n : O  tl, . 

(12) 

For  nm > 2, a good approximation for the confidence 
limits is given by the following relations: 

(13) 

The quantity z is related to the chosen confidence 
level ( 1 - e )  by the following integral over the density 
of the normal distribution' 

_ oo 1 _X2/2 
- -  ~ - - e  dx (14) 2 zl/ - 

This is a convenient prescription for estimating er- 
rors of variables which are described by Poisson 
statistics, e.g. cross sections, if only a small number 
of events was observed. It even gives a reasonable 
estimate for the upper limit in the case of one ob- 
served event. 
For  small numbers, this approximation for the up- 
per limit is much more accurate than the generally 
used symmetric error (see Fig. 2): 

# u  - -  ~ m  : Ylm - -  # l  : Z ] ~ m  

The error limits in the cases which cannot be de- 
scribed by the approximation (13) have to be calcu- 
lated exactly. The standard errors ( z = l )  for nm__<2 
are given in Table 1. 

Table 1. Standard errors for small numbers.  Standard errors (con- 
fidence level 1 - e = 0 . 6 8 )  of the expectation value of the Poisson 
distribution and the exponential distribution for small numbers  n 
of observed events, calculated with relations (12) and (17). For n 
= 0  the upper limit /~ corresponds to an upper error probability 
of e=0.16. In cases where the approximations (13) and (18) are 
accurate within 10 %, the exact values are given in parentheses 

Number  
of counts 
n 

Poisson's distr. Exponential distr. 

0 0 1 . 8 4  - - 

1 0.173 (3.30) (0.543) 5.79 
2 (0.708) (4.64) (0.606) (2.82) 



K.-H. Schmidt et al.: Some Remarks on the Error Analysis 23 

C 

2L 

O)  
4 . J  

F: 

o r  

(1) 
" C J  k~ 

C 
0 

10 

0.1 

Poisson's distribution 

. . . . . . . .  i ' ' '1  
exact 

_- p. = n+~ 

l,,lt = n-~n j 
/ 

I I I I I I I l l  I I I ] 

10 
Number of events 

10 

t - '  

O )  

.E_ 

o 
C 

C 
0 

r 

0.1 

Exponen t ia l  d is t r ibu t ion 

i i J i i I I J  i I I I 

. , ~ a c t  % = {-~J(1-1/4-n')! 

.c t = tm( l -1 /q~-  ) 

i I i i i i l i  I i i 

10 

Number of events 

Fig. 2a and b. Central confidence intervals for a confidence level 
of 68 % (which corresponds to the standard deviation of a gauss- 
ian) for two different distributions as a function of the number 
n,, of observed events. Figure 2 a applies to a variable following 
Poisson's distribution and Fig. 2 b applies to a variable following 
an exponential distribution. In addition to the exact curves, two 
kinds of approximations are shown: The dotted curves show the 
conventional approximations based on the idea that the standard 

deviation of n events converges to ]fn for large n. The much more 
accurate approximations are shown by the dashed curves. The 
formulae are given in the figure. The few exceptions which cannot 
be described by the approximative formulae are given in Table 1 

7. The Life Time of the Daughter Species 

The maximum likelihood estimate of the life time r 
is the arithmetic mean t~ of the individual life times 
(G)~ at which events were observed (if the obser- 
vation time is not restricted): 

t~= 1In ~ (t~) i (15) 
i = 1  

For the calculation of confidence limits, the distribu- 
tion of the quantity 7 = 1/n X t~ is needed. For  a given 

life time r, the probability density of the random 
variable t is given by the product of the probability 
densities of the individual time values t~, integrated 
over all combinations which conserve the mean val- 
ue t. Making use of the 5 function the probability 
density can be written [14]: 

o o  

t--- ~ dta ...dt, 

t,zn + 1 ~n -- 1 

- e -"~/~ (16) 
H ] 72 n 

The confidence limits "c 1 and r ,  are given by the so- 
lutions of the following equations if t m is the actually 
observed value for t :  

n - - 1  n 

: P.(t]h) d~= ~ (ntm~ 1 e ( , ,~m=e/2 
.=o \ Tz i n !  

t~= __ (17) 
Vj n 1 
! p.~]r.)dt=l ~ /ntmV 1 ,t - / - - |  - - e  -( ~ / " = ~ / 2  

,,=o \ "c u ]n!  

(The sum is obtained by partial integration.) 
For n>2,  the following approximations hold for the 
confidence limits [12]: 

tm tra 
: . ~  ~ (18) 

1-zl ' :' i+zIr 

The quantity z is determined by the chosen confid- 
ence level (1 -e )  with relation (14). This is a con- 
venient prescription for estimating errors of the 
mean life time if only a small number of events was 
observed. It even gives a reasonable estimate for the 
lower limit in the case of one observed event. 
For small numbers, this approximation is much 
more accurate than the generally used symmetric er- 
ror (see Fig. 2): 

t m  - -  "C 1 = Z u - -  t m = Z t ~ / r  

The error limits in the cases which cannot be de- 
scribed by the approximation (18) have to be calcu- 
lated exactly. The standard errors ( z = l )  for nm<2 
are given in Table 1. 

8. Two Illustrative Examples 

The application of the correlation analysis as des- 
cribed above can best be illustrated by an exemplary 
treatment of experimental data. First we choose a 
case where the experimental technique [-2] has al- 
ready been published. We emphasize the description 
of the method for evaluating the data. 
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Fig. 3. Measured ~ spectrum of evaporation residues obtained in 
the reaction 96Zr+ 124Sn (570 MeV) 

For our purpose, only the knowledge of a small part of 
the experiment is essential: ~24Sn projectiles with an 
energy of 570 MeV impinge on a target of 96Zr. 
Evaporation residues are separated from the primary 
beam and directed to the detector position by the 
velocity filter SHIP [13]. Different kinds of unstable 
nuclei are implanted near the surface of a silicon 
surface barrier detector. Most of them decay by c~ 
radioactivity. The measured ~ spectrum is shown in 
Fig. 3. Among others two kinds of nuclei (214Th and 
2~~ are produced which differ by 2 neutrons and 
2 protons. Both have a strong c~ decay branch. In 
this case, part of the observed e decays of 21~ 
which can be identified by their known transition 
energy may be the decay of daughter nuclei pro- 
duced by the decay of 2~4Th. In this way, a previous 
identification ~15] of 214Th which was made with 
the help of systematic arguments can be confirmed 
by a correlation analysis. In the measurement, the 
abolute time of each event is registered. Therefore 
for each event chain, the time distance between the 
decay of 214Th and the consecutive decay of 2~~ 
is known. 
In the example, time distances between 20ms and 
15s were registered. In many cases it is difficult to 
treat this time span with sufficient accuracy in the 
usual way by considering a linear time scale. One 
would need several thousands of time channels in 
order not to loose too much information if the time 
distances are sorted into a spectrum. Therefore we 
choose a spectrum with a logarithmic time scale. In 
this representation, the ideal radioactive decay curve 
becomes a peak with a universal shape independent 
of the life time. The frequency distribution of decay 
times 

dn 
- - = n 2 e  -xt (19) 
dt 

(D 
r-  
r-  
t~ 4. 
r-  
(3 

2 
(r 

,.4-a 
t -  

O 0 C.) 

10-~ 10-2 10 o 10 2 10 ~ 

t / s e c  
Fig. 4. Correlation analysis for the identification of 214Tb by the 
subsequent decays of the daughter nucleus ; l~ Histogram: 
spectrum of time distances between the events of ct decays of 
mother and daughter nuclei. Dotted lines: fitted time spectrum for 
correlated decays together with a calculated time spectrum ex- 
pected for purely random time distances. The probability to ob- 
tain the observed spectrum as a stochastic fluctuation of the ran- 
dom distribution is less than 10 -3 

is changed to the following form, whereby the sub- 
stitution ln(t) = 0 is used: 

dn )~ e ~ e-xeo (20) 
dO 

Two free parameters - the number n of counts and 
the life time 7 - determine the height and the posi- 
tion of this peak, respectively. The most probable 
value of this distribution is ln(z). In this way, the 
relevant information of each time distance in our ex- 
ample is included in 10 channels. This is demon- 
strated in Fig. 4. 
In the spectrum of time distances, the expected ran- 
dom distribution (if no true correlation is present) is 
represented by a peak with the position 1/(21+22) 
(see Eq. (4)) and the number of events n~-n~ n2/(n 1 
+ n 2 )  (see Eq. (5)). In Fig. 4 the main intensity ap- 
pears at shorter time distances where~s the random 
peak is much smaller than expected. With the rela- 
tions given above, the probability for the left peak to 
be produced as a stochastic fluctuation of the ran- 
dom distribution can be estimated, if the numbers 
determined in the experiment are used: n~ =28, n 2 
=38, T=6080s .  The limit Aria can be chosen arbi- 
trarily. When the whole left peak with 18 events is 
included (Att2=40s),  the error probability as given 
by relations (2) and (6) is P~=<10 -3. In the range 
below At12=5s,  12 events occur. The error prob- 
ability for this part of the spectrum amounts to 
Perr < 10 - 9  . 

The number n m of observed events in this peak can 
be compared with the number nr of expected cor- 
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related events: 

n c = q • 2 1 5 2 1 5  1.0 x 28 =22.4 

where q = apparative detection probability for daugh- 
ter decays and b~=~ branching of the daughter nu- 
cleus, 

n =18 +5  
- - 4 '  

Within the confidence interval with the level 1 - e  
--0.68, both values are in agreement. 
The mean time value t c of the left peak in the mea- 
sured spectrum of time distances has to be com- 
pared with the known half life t l /2 of the daughter 
nucleus: 

= t l /2 / ln  2 = 3.7 s/In 2 = 5.34 s 

t c = 5.4 + 1.7 
_1.0 s" 

Again within the confidence interval with the level 1 
- e  = 0.68, both values are in agreement. 
Moreover, the measured mean ~ energy of daughter 
decays was found to be compatible with the known 
value for the decay of 2t~ 
With the procedure shown in this example, the ear- 
lier [15], still somewhat tentative, identification of 
214Th can be confirmed. According to the spectro- 
scopic information obtained in this experiment, 
2~4Th decays by e radioactivity with an ~ energy of 
(7,670+_20) keV and a half life of (96_+30)ms. These 
results agree with the values obtained in [4]. 
The second example we want to present deals with a 
single correlation chain involving several events. Re- 
cently, the observation of such a single characteristic 
decay chain was taken as an evidence for the first 
synthesis of an isotope of element 109 [16]. It was 
identified by determining its mass (with a limited 
resolution) and by observing the subsequent decay 
cascade of two alpha decays and one spontaneous 
fission. The identification relies on two aspects. First, 
one has to investigate the possibility to interpret the 
observed correlated event chain consisting of four 
events as a stochastic fluctuation of the time dis- 
tances between background events. In a second step, 
the observed decay chain has to be assigned to a 
certain group of nuclei by comparing its characteris- 
tics with known spectroscopic properties. 
In the first step, the error probability for a corre- 
lation chain with partially free order has to be eval- 
uated. The impinging evaporation residue must be 
the first event whereas the fission decay has to be 
the last event in the cascade. The error probability 
may be estimated by using formulae (7) and (2). (As 

in formula (7) only the evaporation residue is fixed 
as first event, we will get an upper limit for the error 
probability.) The characteristics of the event chain as 
described in [16] allow to use the approximative 
formulae (8) and (3). Thus, the error probability is 
given by the following expression: 

Perr ~ Z/~l 22 -~3 24 Atl,2 At1 ,3  At1,4" (21) 

By inserting the values for the counting rates 2 i of 
the different event groups, the total measuring time 
T a n d  the observed time differences A t l ,  i as given in 
[16], the following value is obtained: 

P~rr < 50 X 250 h 
288 

• 
1 1 1 

5 0 x 2 5 0 h  5 0 x 8 h  5 0 x 7 5 s  5 0 x 2 5 0 h  

x 5 ms x 27.3 ms x 12.9 s = 2  x 10 -18 

(The factor 50 accounts for the resolution of the po- 
sition sensitive detector used in the experiment.) This 
exceedingly small number holds for a background 
distribution which is described by Poisson's distribu- 
tion. 
The assignment of the decay chain to a special 
group of nuclei can be investigated by use of the 
ideas as given in Chap. 4 and 5. In [16] a slightly 
different method was applied by using the values of 
the likelihood function. 

9. Summary 

The mathematical relations needed for a critical 
analysis of results obtained by a correlation tech- 
nique are presented in detail. Two typical appli- 
cations are given: The nucleus 214Th could be iden- 
tified and the decay properties of this nucleus could 
be confirmed by a correlation analysis. The prob- 
ability for an event chain as observed in the recent 
discovery of element 109 to be produced by random 
background is evaluated. 
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