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Abstract 
Standard x2 fit procedures applied to Poisson-distributed data, e.g. count numbers, yield results that differ systematically 

from the “true values”. A quantitative assessment is made of this bias that for a commonly used x2 method is about - 1 per 

channel. 

1. Introduction 

A basic problem in data analysis is how to fit ex- 
perimental data of low statistics. This can in principle be 
done in a variety of ways that differ with respect to 
consistency, biasedness, efficiency and robustness (see Ref. 
[l] for a detailed discussion and for a general account of 
the use of statistical methods in physics). In practice 
x2-minimization is often employed by physicists, whereas 
the maximum-likelihood principle prevails among statisti- 
cians. When data points follow the normal distribution 
these two methods are equivalent and give reliable results. 
Count numbers follow the Poisson distribution, but since 
this distribution converges for large numbers to the normal 
distribution, the question of how different fitting methods 
behave when applied to the Poisson distribution has 
received very little attention. However, for low count 
numbers this question must be considered seriously. 

Before doing this a digression on what exactly is meant 
by “to fit” is needed. Three different steps can be implied, 
namely a goodness-of-fit test (called “test of hypothesis” 
in statistics), the determination of a parameter value 
(“point estimation”) and determination of the uncertainty 
on the parameter (“interval estimation”). Although x2 
methods can be used to obtain results for all three steps, 
one must keep in mind that they are in principle different. 
We shall throughout the paper be concerned mainly with 
the estimation of parameter values and only comment 
briefly on the determination of “error bars” or goodness- 
of-fit tests. 

It is often tacitly assumed that x2 will work for Poisson- 
distributed data as long as the number of counts per 
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channel is above 5. This seems to hold for goodness-of-fit 
tests [2], but as we shall show this is not true for a 
determination of the parameter value. That problems may 
occur has been known for some time [3-61, but no 
quantitative assessment has been published so far. Note, 
however, that one of our results mentioned below was 
obtained in the internal report [6]. Even though the 

systematic biases can become quite important, they are not 
mentioned in standard statistics textbooks for physicists 
[ 1,7]. The problem has apparently also not been discussed 
in the statistical literature. The simple solution is to use the 
maximum-likelihood method instead of x2, but due to the 
predilection of the latter method among physicists the 
following detailed account of its biases might nevertheless 
be useful. 

2. The problem 

In the following the notation will be introduced and the 
problem formulated precisely. The next section presents 
the analytical and numerical results and we shall end with 
a brief discussion. 

The observed quantities are the number of counts ni in 
the channels of a histogram or from a number of repeti- 
tions of the same experiment. The total number of channels 
(or repetitions) is N,. The number of counts are assumed to 
obey the Poisson distribution [8,9] 

P(nlp.) = pne-‘ln!, (1) 

where y is the “true” value. The outcome of the analysis 
are the estimates 0: for the values w. One type of analysis 
is the minimization of the least-squares statistics 
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where different choices for the weights wi are used. IIere 
three explicit cases will be considered: the x2 

x; = c, (pli - et)“/et , (3) 

me modified x2 

/& = c (pli - ~)2ini 

and the least-squares 

5 =x (Y$ - ej12 ’ (5) 

Since the names used for the former two statistics vary in 
the physics literature we shall, to avoid con~sion, follow 
Ref. [IO] and refer to them as “Pearson’s x2” and 
“Neyman’s x2>‘. Another type of analysis consists in 
maximizing the likelihood function 

It is often convenient to consider the logarithm of the 
likelihood function instead of L itself. The two x2-methods 
differ in estimating the variance of a given data point as @ 
and ni, respectively. In contrast, the likelihood function 
does not employ the variance, but rather the probability 
~s~bution itself. 

Powerful computer routines are available for finding the 
extrema in the statistics as 4 are varied according to the 
theoretical parametrization used in the fit, but it is im- 
portant to be aware of possible biases when these routines 
are used. In order to expose clearly the biases present we 
consider here the case where all pi are identical (a 
“constant spectrum”) and we shall be specially interested 
in the behaviour when the common value p is small, 

3. Analytical solution 

3.1. Finite No 

We first attempt to describe in detail the process of 
fitting a constant spectrum and thus consider No Poisson- 
distributed random variables Xi, all with expectation value 
E(X) = p and variance &r(X) = f_~ The advantage of using 
Xi rather than the count numbers ni (the “function values” 
of Xi) is that one can then not only look at average 
properties, but also analyse the statistical fluctuations in 
the fitted values. The log likelihood statistics is now 

In L = Z (Xi ln B - e - ln(Xi!)) , 
i=l 

(7) 

with derivative 

The result of the fit is thus given by the random variable 

and is a simple average of Poisson distributions. Since the 
sum of Poisson ~s~butions is a (new) Poisson distribu- 
tion, one can i~e~ately write down the expectation 
value E(B,) = p and the variance Vat@,) = &A$. (It is 
easy to show that the same result is obtained from the 
unweighted least-squares statistics, S. This statistics can, 
however, not be expected to perform well for the general 
case where pj varies with i.) 

Pearson’s x2 has the derivative 

2(8-x.) (e-x.)’ !!z&~ (i__._&) 
i=l 

(10) 

and is minimized for 

0 = 2 r2(e - x,je - (e - xl:)“1 = jTj (e* - x;) , 
i=l i=l 

which gives 

(11) 

(12) 

For Neyman’s x2 one has the derivative 

ax” N- 
ae 

_y3!!+ 
I 

2[e$L+L] f (13) 

which is minimal for 

(14) 

The expectation value and variance for $ and 0, are given 
in Tables 1 and 2 for the lowest values of No. In both cases 
a bias is clearly seen in the expectation value: the 
deviations I&S) - p 1 increase with N, and are largest for 
k. The variance decreases with increasing N,, it is largest 
for 0, and in both cases larger than the one for L. The best 
results are thus obtained when using L, and xg is favoured 

Table 1 

Pearson’s x2. Expectation values and variances 

2 5.234 2.602 
3 5.314 1.761 
4 5.354 1.331 
5 5.379 1.070 
6 5.395 0.894 
CC 5.477 - 

f.L = 10 1(.=20 

W’) vwo E(e) vwu 
10.242 5.112 20.246 10.118 
10.323 3.435 20.328 6.773 
10.364 2.587 20.369 5.090 
10.389 2.074 20.394 4.077 
10.405 1.732 20.411 3.400 
10.488 - 20.494 - 
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Table 2 
Neyrnan’s x2. Expectation values and variances 

NO /L=5 /.&= 10 /.L = 20 

Wt ==(e) WI =(e) EC@) va+ ) 

2 4.522 2.783 9.500 5.471 19.500 10.487 
3 4.323 1.998 9.310 3.852 19.322 7.150 
4 4.212 1.572 9.208 3.001 19.230 5.434 
5 4.141 1.299 9.143 2.470 19.174 4.385 
6 4.090 1.106 9.099 2.106 19.136 3.678 
m 3.780 - 8.844 - 18.940 - 

to xi (this ordering of the three methods is rather general 

LlOl>. 

3.2. Asymptotic behuviour 

For large N, the statistical fluctuations become unim- 

portant (the relative variances go to zero) and the expecta- 
tion values for the x2 statistics can be derived analytically. 
This is done by noting that the number of channels in the 
sum with the value k is N,P(klp). By reordering the 
summation one obtains for Pearson’s x2 

m 

,Y; 3 N, 2 P(klp)(k - O)‘l13 . 
L=O 

(15) 

The derivative with respect to 0 is easily calculated 

+$$ = 2 P(klp)(l - k”lf3’) 
0 k=O 

m 

= 1 - 0 -’ c P(klp)(k2 - k + k) 
k=O 

(16) 

The minimum in xz is thus obtained for 

o,=&?i&El.+1/2. (17) 

Fits with Pearson’s x2 will systematically yield too large 
values. 

The result for Neyman’s x2 is slightly more complicated 
to derive since one here must safeguard against division by 
zero. We follow the standard procedure of attributing a 
variance of one to count numbers that are zero. From 

m 

xi +N, x P(klp)(k - 0)‘/max(k, 1) 
k=O 

(18) 

one obtains the derivate 

Y+!$ = 2 

m 
P(Olp)@ + c I’(klp)(Blk - 1) 1 . (19) 

Cl k=1 

The minimum is thus obtained for 

e, = 1 - w&4 

J’@I,4 + c;z, P(kl/-W ’ 
where for huge ,U one can approximate 

- P(kl,4 c,-= 
k=, 

,r: Wh-4 (L ’ ‘) k+l+k-k+l 

so that 

ON-- p2 --=p-1. 

P+l 

(20) 

(21) 

(22) 

Fits with Neyman’s x2 will yield too small values [6]. 
Qualitatively the biases in the two x2 statistics arise as 
follows. For Pearson’s ,$ the (k - 0)’ factor would give 
the same minimum as for 5, but the factor 0-l clearly 
favours larger values of 0 and gives the upward shift. For 
Neyman’s x2 the k-values less than p are weighted 
stronger than the ones larger than Al. and this shifts the 
minimum downwards [4-61. In Ref. [5] a relation between 
the total areas of fit function and data was derived (for 
simple fit functions) that is similar to the asymptotic results 
just described. The present derivation is, however, more 
general and shows that the bias stems directly from the 
treatment of Poisson distributions with x2 statistics. 

The asymptotic values just derived are also given in 
Tables 1 and 2. The results are also plotted as a function of 
p in Fig. 1 for all three statistics considered. The asymp- 
totic deviations of - 1 and + 3 for xN and xi, are seen to be 
good approximations down to p about 10. Neyman’s x2 is 
again the most deviant. In the figure numerical results from 
Monte-Carlo calculations are also given. Poisson-distribut- 
ed values were obtained by using random numbers gener- 
ated with the CERNLIB routine RANMAR, and fits with 
the three different statistics were performed by MINUIT 
[l 11. Data sets (“spectra”) of varying length No were 
used. For each value of ,u and N, the average over several 
data sets were taken so that the final error on 0 in all cases 
he in the range 0.005 to 0.03. For small N, the minimiza- 
tion sometimes gave problems for very low values of CL, 
the lowest plotted points for N, = 5 therefore probably 
carry an additional systematic uncertainty. One should note 
that & convergences much slower to the asymptotic 
values, both analytically and numerically, than xz_ 

4. Discllssion 

Stated briefly, our main result is that x2-fits will yield a 
wrong value for the parameter of a Poisson distribution. 
The values obtained by two standard analysis methods, x: 

and xi, will asymptotically deviate by + + and - 1, 
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Fig. 1. The difference between the fit estimate 0 and the Poisson 

parameter p is plotted versus or. for the two x2 statistics and for 

the maximum-likelihood statistics (note the logarithmic scale). 

Solid lines are the asymptotic theoretical values for N, very large, 

dashed lines the ones for N0 = 5. The points are results from 

Monte-Carlo calculations with N,, = 5, 20, 10 000 (open circles, 

open squares, filled circles). 

respectively. We shall now discuss some of the implica- 

tions of this result. 

Since the relative size of the bias goes as pL-i it appears 

to be favourable to sum channels (rebin the spectrum) in 
order to reduce the effect. This will of course work 

perfectly well for a constant background, but there are 
limits to the applicability of this procedure for more 
realistic spectra since features present will gradually 
disappear due to the “lumping together”. For more details 
on the loss of information in binning and a discussion of 
the optimal bin size, see Ref. [2]. 

For the case considered so far, namely a constant 
background, the much simpler procedure of taking the 
average of all count numbers gives the correct result. So 
why worry about more elaborate fitting methods? An 
advantage is that they do allow for goodness-of-fit tests, 
i.e. one can check that the data actually are distributed as 
one believes them to be, but the constant background 
indeed mainly serves to illustrate the fit biases clearly, and 
we shall now consider briefly what happens in more 
realistic cases. 

For a spectrum with structure we would again expect xc 
and xi fits to give estimates for the count numbers in 
individual channels that are off by about + $ and - 1. The 

area of a component in the spectrum can therefore come 
out wrong, but also other parameters - the half life for an 
exponential decay [ 12,131 or the width of a peak - can be 
affected. This holds in particular if the fit is performed 

without a free background term, as sometimes is necessary 
to obtain reasonable results when the total number of 
counts is low. If a freely varying background term is 
included in the fit, it will often be able to include most of 
the bias and will thus give appreciably more reliable 
results for the other parameters. We have verified this with 
numerical simulations both for an exponential decay and 
for a Gaussian peak, with and without a background term, 
but since these cases now contain much more parameters, 
general results are more complicated to write down. To 
estimate the bias for a specific case one should do Monte- 
Carlo studies. It is of course preferable to avoid the bias by 
employing maximum-likelihood methods, and the Poisson 
likelihood chi-square x:,, from [lo] is here particularly 
attractive since it also allows for goodness-of-fit tests. 

In ending, it is perhaps worth stressing that the bias in 
the x2 methods depends on the number of counts per 
channel and not on the total number of counts in the 
spectrum or of any component in the spectrum (if one 
disregards the slight &-dependence). Also, it should be 
noted that the xk statistics, which seems to be the most 
widely used, gives the largest discrepancies. It should 
therefore be avoided for the determination of parameter 
values. 
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